CN108387359B - 飞行器颤振分析网格模型傅里埃建模方法 - Google Patents

飞行器颤振分析网格模型傅里埃建模方法 Download PDF

Info

Publication number
CN108387359B
CN108387359B CN201810172974.6A CN201810172974A CN108387359B CN 108387359 B CN108387359 B CN 108387359B CN 201810172974 A CN201810172974 A CN 201810172974A CN 108387359 B CN108387359 B CN 108387359B
Authority
CN
China
Prior art keywords
flutter
vibration
grid points
grid
axial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810172974.6A
Other languages
English (en)
Other versions
CN108387359A (zh
Inventor
史忠科
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Feisida Automation Engineering Co Ltd
Original Assignee
Xian Feisida Automation Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Feisida Automation Engineering Co Ltd filed Critical Xian Feisida Automation Engineering Co Ltd
Priority to CN201810172974.6A priority Critical patent/CN108387359B/zh
Publication of CN108387359A publication Critical patent/CN108387359A/zh
Application granted granted Critical
Publication of CN108387359B publication Critical patent/CN108387359B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M9/00Aerodynamic testing; Arrangements in or on wind tunnels
    • G01M9/08Aerodynamic models

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)

Abstract

为了克服现有技术不能有效表达气动力和强度变化影响下复杂颤振模型的问题,本发明提供了一种飞行器颤振分析网格模型傅里埃建模方法,该方法在飞行器机体轴系选择多个网格点,在不同飞行速度、大气密度、气流环境、不同温度等气动力和强度变化影响下按照机体轴系分解方法表示复杂颤振网格模型,根据建立该模型的要求提出安装传感器和数据、图像记录要求,通过有效颤振飞行试验获取数据,通过气流传感器测量值获得激励函数,采用傅里埃函数对振动变量进行逼近和等效描述,按照辨识方法同时确定了机体轴系坐标网格点处三个轴向振动方程求解,解决了现有技术不能有效表达气动力和强度变化影响下复杂颤振模型的技术问题。

Description

飞行器颤振分析网格模型傅里埃建模方法
技术领域
本发明涉及民用飞机、战斗机、无人机等飞行器飞行安全地面综合试验方法,特别涉及飞行器颤振分析网格模型傅里埃建模方法,属于航空航天与信息技术领域。
背景技术
颤振是弹性结构在均匀气流中受到空气动力、弹性力和惯性力的耦合作用而发生的一种大幅度振动现象。对于飞机而言,在飞行中受到不确定扰动后会发生振动。此时,由于气流的作用,飞机的弹性结构如机翼、尾翼或操纵面将会产生附加气动力;作为一种激振力,附加气动力将加剧结构的振动。同时空气对飞机结构的阻尼力又试图减弱振动;在低速飞行时,由于阻尼力占优,扰动后的振动逐渐消失;当达到某一飞行速度即颤振临界速度颤振边界后,激振力占优,平衡位置失稳,将产生大幅度振动,导致飞机在数秒内解体,酿成灾难性后果;可以说,从航空工业起步的那一天起,颤振就一直是航空界研究的热门问题。
为避免颤振事故发生,新机研制必须经历颤振试验环节,以确定不发生飞行颤振的稳定飞行包线;开展颤振问题研究主要有两类途径,一是数值计算:这需要对分析对象进行数学建模,此过程需要在结构、气动等方面引入一定的假设,难以考虑真实存在的各种非线性因素和建模误差的影响,分析结果具有一定的参考价值,但可能与实际情况有较大的偏差;二是试验手段:与颤振有关的试验主要有风洞试验和飞行试验。风洞试验可以考虑气动力影响,但此方法要求将试验对象进行缩比设计,缩比模型与真实结构存在一定的差别,且由于风洞洞壁与支架的干扰气动力难免失真;此外对于高速、热环境等情况,风洞试验模拟费用昂贵且实施困难。飞行试验可以完全模拟试验对象的真实工作环境,但试验的条件受限、费用高且风险大,飞机一旦在空中发生颤振,会在几秒甚至更短的时间内解体,飞行员几乎没有处置时间,逃脱概率基本为零。
地面颤振模拟试验就是一种可以有效弥补传统试验不足的、极具生命力的颤振研究方法。地面试验以飞行器地面颤振试验系统为研究对象,以多学科设计优化理论研究为核心,密切结合飞行器地面颤振试验系统的工程特点,突破等效试验建模方法、多点分布式气动力建模与控制、颤振试验一体化检测方法等关键技术,着力解决飞行器颤振气动力模型难实现、多点激振力无法精确控制、颤振试验结果无法反复回放等问题,提高总体设计水平。
航空界、力学界虽然较早对避免颤振的问题进行了研究,但目前的研究还是初级阶段,没有形成一个系统的理论方法体系;现有的方法缺乏飞行器等价地面颤振试验方法和评价;现有技术方法难以描述飞行器在不同飞行速度、大气密度、气流环境、不同温度等气动力和强度变化影响下的复杂颤振模型,使得颤振地面试验研究难以有工程化进展。
发明内容
为了克服现有技术不能有效表达气动力和强度变化影响下复杂颤振模型的问题,本发明提供了一种飞行器颤振分析网格模型傅里埃建模方法,该方法在飞行器机体轴系选择多个网格点,在不同飞行速度、大气密度、气流环境、不同温度等气动力和强度变化影响下按照机体轴系分解方法表示复杂颤振网格模型,根据建立该模型的要求提出安装传感器和数据、图像记录要求,通过有效颤振飞行试验获取数据,通过气流传感器测量值获得激励函数,采用傅里埃函数对振动变量进行逼近和等效描述,按照辨识方法同时确定了机体轴系网格点处三个轴向振动方程求解,解决了现有技术不能有效表达气动力和强度变化影响下复杂颤振模型的技术问题。
本发明解决其技术问题采用的技术方案是,一种飞行器颤振分析网格模型傅里埃建模方法,其特征包括以下步骤:
步骤1:以飞行器机体轴系
Figure 100002_DEST_PATH_IMAGE001
分析复杂颤振模型,在机体轴系选取个网格点,坐标为:
Figure 100002_DEST_PATH_IMAGE003
, 振动时第个网格点坐标
Figure DEST_PATH_IMAGE006
为时间
Figure DEST_PATH_IMAGE008
和其它两轴位置的函数,为了便于表达第个网格点在
Figure 100002_DEST_PATH_IMAGE009
轴的振动分量,以
Figure DEST_PATH_IMAGE010
为例,下标
Figure 100002_DEST_PATH_IMAGE011
为网格点标号,下标第二个字母
Figure 15014DEST_PATH_IMAGE009
分别表示振动在机体轴系
Figure 792478DEST_PATH_IMAGE001
的三个轴分量;为了简化问题,考虑第
Figure 210821DEST_PATH_IMAGE005
个网格点在
Figure DEST_PATH_IMAGE012
轴方向振动时,
Figure 100002_DEST_PATH_IMAGE013
考虑第
Figure 325100DEST_PATH_IMAGE005
个网格点在
Figure DEST_PATH_IMAGE014
轴方向振动时,
Figure 100002_DEST_PATH_IMAGE015
Figure DEST_PATH_IMAGE016
Figure 100002_DEST_PATH_IMAGE017
,考虑第
Figure 401772DEST_PATH_IMAGE011
个网格点在
Figure 100002_DEST_PATH_IMAGE019
轴方向振动时,;为了便于书写,将
Figure DEST_PATH_IMAGE022
Figure 100002_DEST_PATH_IMAGE023
简写为
Figure DEST_PATH_IMAGE024
Figure 100002_DEST_PATH_IMAGE025
Figure DEST_PATH_IMAGE026
在网格点邻域内建立的近似模型为:
Figure 100002_DEST_PATH_IMAGE027
式中,
Figure DEST_PATH_IMAGE028
为在机体轴系网格点
Figure 100002_DEST_PATH_IMAGE029
的邻域内轴向振动函数,
Figure 624287DEST_PATH_IMAGE030
轴向振动方程的结构系数函数,
Figure 100002_DEST_PATH_IMAGE033
分别为在机体轴系网格点
Figure 679443DEST_PATH_IMAGE003
,处
Figure 662443DEST_PATH_IMAGE030
轴向振动时对应于网格点
Figure 995335DEST_PATH_IMAGE029
的变化值;
Figure DEST_PATH_IMAGE034
为在机体轴系网格点
Figure 888336DEST_PATH_IMAGE029
的邻域内轴向振动函数,
Figure DEST_PATH_IMAGE036
Figure 100002_DEST_PATH_IMAGE037
Figure 735899DEST_PATH_IMAGE035
轴向振动方程的结构系数函数,
Figure DEST_PATH_IMAGE038
分别为在机体轴系网格点
Figure 878298DEST_PATH_IMAGE003
,处
Figure 749302DEST_PATH_IMAGE035
轴向振动时对应于网格点
Figure 355864DEST_PATH_IMAGE029
的变化值;
Figure 100002_DEST_PATH_IMAGE039
为在机体轴系网格点
Figure 83649DEST_PATH_IMAGE029
的邻域内
Figure DEST_PATH_IMAGE040
轴向振动函数,
Figure DEST_PATH_IMAGE042
轴向振动方程的结构系数函数,
Figure 100002_DEST_PATH_IMAGE043
分别为在机体轴系网格点
Figure 198159DEST_PATH_IMAGE003
Figure 659227DEST_PATH_IMAGE040
轴向振动时对应于网格点
Figure 761176DEST_PATH_IMAGE029
的变化值;
Figure DEST_PATH_IMAGE044
为在网格点
Figure 878167DEST_PATH_IMAGE029
的等效激励函数,
Figure 353623DEST_PATH_IMAGE008
为时间;
Figure 100002_DEST_PATH_IMAGE045
为参数向量,
Figure DEST_PATH_IMAGE046
表示网格点
Figure 544564DEST_PATH_IMAGE029
的温度,
Figure 100002_DEST_PATH_IMAGE047
为飞行高度,
Figure DEST_PATH_IMAGE048
为马赫数,
Figure 100002_DEST_PATH_IMAGE049
为网格点
Figure 364884DEST_PATH_IMAGE029
的气流环境影响,
Figure DEST_PATH_IMAGE050
为大气密度;
步骤2:对应步骤1的机体轴系网格点
Figure 700663DEST_PATH_IMAGE003
,安装微型温度传感器,
Figure 982740DEST_PATH_IMAGE030
Figure 418400DEST_PATH_IMAGE035
Figure 862151DEST_PATH_IMAGE040
三个轴向的气流和位置以及振动传感器,在机翼上下方和所有舵面两边安装微型
Figure 836240DEST_PATH_IMAGE035
三个轴向的气流和位置以及振动传感器,同时在机身加装大于1000帧/秒的图像传感器记录观测机翼翼尖、所有舵面的振动幅值和频率;飞机机载传感器记录时间、飞行高度、马赫数,大气密度;
步骤3:将飞行器到达给定高度和马赫数后颤振试验的过程表达成有效颤振飞行试验,有效颤振飞行试验数据采样时间为
Figure 100002_DEST_PATH_IMAGE051
Figure DEST_PATH_IMAGE052
为正整数, 为记录数据的采样周期,
Figure DEST_PATH_IMAGE054
为有效颤振飞行试验的总采样次数;通过颤振飞行试验获得机体轴系网格点
Figure 500581DEST_PATH_IMAGE003
,在采样时间时刻的测量值
Figure 100002_DEST_PATH_IMAGE055
Figure DEST_PATH_IMAGE056
Figure DEST_PATH_IMAGE058
测量值;
步骤4:根据机体轴系网格点,安装微型
Figure 986030DEST_PATH_IMAGE030
Figure 37162DEST_PATH_IMAGE035
Figure 900076DEST_PATH_IMAGE040
轴向气流传感器,在机翼上下方和所有舵面两边安装微型
Figure 62067DEST_PATH_IMAGE030
Figure 326826DEST_PATH_IMAGE035
Figure 548860DEST_PATH_IMAGE040
轴向气流传感器,确定
Figure 630561DEST_PATH_IMAGE051
时刻机体轴系网格点
Figure 596243DEST_PATH_IMAGE003
,的激励函数
Figure 100002_DEST_PATH_IMAGE059
Figure 653192DEST_PATH_IMAGE028
Figure 46127DEST_PATH_IMAGE034
Figure 883633DEST_PATH_IMAGE039
分别采用给定函数逼近,得到:
Figure 100002_DEST_PATH_IMAGE061
关于
Figure DEST_PATH_IMAGE062
连续可导,
Figure 100002_DEST_PATH_IMAGE063
关于
Figure DEST_PATH_IMAGE064
连续可导,
Figure 100002_DEST_PATH_IMAGE065
关于
Figure DEST_PATH_IMAGE066
连续可导;这样,可得:
Figure 100002_DEST_PATH_IMAGE067
Figure DEST_PATH_IMAGE068
以及
Figure 100002_DEST_PATH_IMAGE069
;
步骤5: 令:
以及
Figure 100002_DEST_PATH_IMAGE071
可将(1)式描述成:
(2)
Figure 100002_DEST_PATH_IMAGE073
Figure 100002_DEST_PATH_IMAGE075
式中:
Figure DEST_PATH_IMAGE076
Figure DEST_PATH_IMAGE078
为常数项;
Figure DEST_PATH_IMAGE080
Figure 100002_DEST_PATH_IMAGE081
Figure 100002_DEST_PATH_IMAGE083
Figure 100002_DEST_PATH_IMAGE085
,对应的傅里埃展开系数;
Figure DEST_PATH_IMAGE088
Figure 100002_DEST_PATH_IMAGE089
Figure DEST_PATH_IMAGE090
Figure 100002_DEST_PATH_IMAGE091
Figure DEST_PATH_IMAGE092
Figure 100002_DEST_PATH_IMAGE093
Figure DEST_PATH_IMAGE094
Figure 100002_DEST_PATH_IMAGE095
Figure DEST_PATH_IMAGE096
为角频率,
Figure 100002_DEST_PATH_IMAGE097
Figure DEST_PATH_IMAGE098
Figure 100002_DEST_PATH_IMAGE099
为对应于
Figure DEST_PATH_IMAGE100
的傅里埃展开的阶次;
Figure 100002_DEST_PATH_IMAGE101
Figure 100002_DEST_PATH_IMAGE103
Figure DEST_PATH_IMAGE104
Figure 100002_DEST_PATH_IMAGE105
Figure DEST_PATH_IMAGE106
式中:
Figure 100002_DEST_PATH_IMAGE107
式中:
Figure 100002_DEST_PATH_IMAGE109
为常数,
Figure DEST_PATH_IMAGE110
Figure 100002_DEST_PATH_IMAGE111
Figure DEST_PATH_IMAGE112
Figure 100002_DEST_PATH_IMAGE113
Figure DEST_PATH_IMAGE114
Figure 100002_DEST_PATH_IMAGE115
Figure DEST_PATH_IMAGE116
Figure 100002_DEST_PATH_IMAGE117
Figure DEST_PATH_IMAGE118
Figure 100002_DEST_PATH_IMAGE119
Figure DEST_PATH_IMAGE120
Figure 100002_DEST_PATH_IMAGE121
Figure DEST_PATH_IMAGE122
Figure DEST_PATH_IMAGE124
Figure 100002_DEST_PATH_IMAGE125
Figure 100002_DEST_PATH_IMAGE127
,为对应的傅里埃级数的系数,
可得:
(3)
以(3)式第一项为例,令
Figure 100002_DEST_PATH_IMAGE129
,对
(4)
两边求偏导数,可得
Figure DEST_PATH_IMAGE132
根据步骤3和步骤4得到的
Figure 491156DEST_PATH_IMAGE055
Figure 464928DEST_PATH_IMAGE056
Figure 28765DEST_PATH_IMAGE057
Figure 87988DEST_PATH_IMAGE059
的测试值,可得:
Figure 100002_DEST_PATH_IMAGE133
(5)
式中:
Figure DEST_PATH_IMAGE134
Figure 100002_DEST_PATH_IMAGE135
Figure DEST_PATH_IMAGE136
Figure 100002_DEST_PATH_IMAGE137
进而可得:
Figure DEST_PATH_IMAGE138
,带入(4)式中,得
Figure 100002_DEST_PATH_IMAGE139
进一步可写成:
Figure DEST_PATH_IMAGE140
(6)
式中:
Figure 100002_DEST_PATH_IMAGE141
将(6)式写成:
Figure DEST_PATH_IMAGE142
,有
Figure 100002_DEST_PATH_IMAGE143
可以按照最小二乘估计出
本发明的有益结果是:在飞行器机体轴系选择多个网格点,考虑不同飞行速度、大气密度、气流环境、不同温度等气动力和强度变化影响下按照机体轴系分解方法表示复杂颤振网格模型,根据建立该模型的要求提出安装传感器和数据、图像记录要求,通过有效颤振飞行试验获取数据,通过气流传感器测量值获得激励函数,通过气流传感器测量值获得激励函数,采用傅里埃函数对振动变量进行逼近和等效描述,按照辨识方法同时确定了机体轴系网格点处三个轴向振动方程求解,从而给出了完整的复杂颤振模型网格模型建模技术方案,解决了现有技术不能有效表达气动力和强度变化影响下复杂颤振模型的技术问题。
下面结合具体实例对本发明作详细说明。
具体实施方式
步骤1:以飞行器机体轴系
Figure 75600DEST_PATH_IMAGE001
分析复杂颤振模型,在机体轴系选取
Figure 622119DEST_PATH_IMAGE002
个网格点,坐标为:
Figure 936557DEST_PATH_IMAGE003
, 振动时第个网格点坐标
Figure 318789DEST_PATH_IMAGE006
Figure 821446DEST_PATH_IMAGE007
为时间
Figure 470733DEST_PATH_IMAGE008
和其它两轴位置的函数,为了便于表达第
Figure 70342DEST_PATH_IMAGE005
个网格点在
Figure 146882DEST_PATH_IMAGE009
轴的振动分量,以
Figure 402414DEST_PATH_IMAGE010
为例,下标为网格点标号,下标第二个字母
Figure 244260DEST_PATH_IMAGE009
分别表示振动在机体轴系的三个轴分量;为了简化问题,考虑第
Figure 234530DEST_PATH_IMAGE005
个网格点在轴方向振动时,
Figure 3083DEST_PATH_IMAGE013
考虑第
Figure 421426DEST_PATH_IMAGE005
个网格点在
Figure 917130DEST_PATH_IMAGE014
轴方向振动时,
Figure 446331DEST_PATH_IMAGE015
Figure 352669DEST_PATH_IMAGE016
Figure 941913DEST_PATH_IMAGE017
Figure 659334DEST_PATH_IMAGE018
,考虑第
Figure 992226DEST_PATH_IMAGE011
个网格点在轴方向振动时,
Figure 504427DEST_PATH_IMAGE020
;为了便于书写,将
Figure 709143DEST_PATH_IMAGE021
Figure 845726DEST_PATH_IMAGE022
Figure 449359DEST_PATH_IMAGE023
简写为
在网格点邻域内建立的近似模型为:
式中,为在机体轴系网格点
Figure 348493DEST_PATH_IMAGE029
的邻域内轴向振动函数,
Figure 142453DEST_PATH_IMAGE031
Figure 677952DEST_PATH_IMAGE032
Figure 78978DEST_PATH_IMAGE030
轴向振动方程的结构系数函数,
Figure 361055DEST_PATH_IMAGE033
分别为在机体轴系网格点
Figure 531136DEST_PATH_IMAGE003
,处
Figure 240466DEST_PATH_IMAGE030
轴向振动时对应于网格点的变化值;
Figure 948976DEST_PATH_IMAGE034
为在机体轴系网格点的邻域内
Figure 116445DEST_PATH_IMAGE035
轴向振动函数,
Figure 492062DEST_PATH_IMAGE036
Figure 260615DEST_PATH_IMAGE035
轴向振动方程的结构系数函数,分别为在机体轴系网格点,处轴向振动时对应于网格点
Figure 70254DEST_PATH_IMAGE029
的变化值;
Figure 35497DEST_PATH_IMAGE039
为在机体轴系网格点
Figure 385707DEST_PATH_IMAGE029
的邻域内轴向振动函数,
Figure 470655DEST_PATH_IMAGE041
Figure 435517DEST_PATH_IMAGE040
轴向振动方程的结构系数函数,
Figure 939311DEST_PATH_IMAGE043
分别为在机体轴系网格点
Figure 739569DEST_PATH_IMAGE040
轴向振动时对应于网格点
Figure 798792DEST_PATH_IMAGE029
的变化值;
Figure 106276DEST_PATH_IMAGE044
为在网格点
Figure 200134DEST_PATH_IMAGE029
的等效激励函数,为时间;
Figure 74866DEST_PATH_IMAGE045
为参数向量,
Figure 920463DEST_PATH_IMAGE046
表示网格点的温度,
Figure 774466DEST_PATH_IMAGE047
为飞行高度,
Figure 805352DEST_PATH_IMAGE048
为马赫数,为网格点
Figure 257510DEST_PATH_IMAGE029
的气流环境影响,
Figure 678258DEST_PATH_IMAGE050
为大气密度;
步骤2:对应步骤1的机体轴系网格点
Figure 199369DEST_PATH_IMAGE003
,安装微型温度传感器,
Figure 652347DEST_PATH_IMAGE030
Figure 306795DEST_PATH_IMAGE035
Figure 554237DEST_PATH_IMAGE040
三个轴向的气流和位置以及振动传感器,在机翼上下方和所有舵面两边安装微型
Figure 562644DEST_PATH_IMAGE030
Figure 553734DEST_PATH_IMAGE035
Figure 331197DEST_PATH_IMAGE040
三个轴向的气流和位置以及振动传感器,同时在机身加装大于1000帧/秒的图像传感器记录观测机翼翼尖、所有舵面的振动幅值和频率;飞机机载传感器记录时间、飞行高度、马赫数,大气密度;
步骤3:将飞行器到达给定高度和马赫数后颤振试验的过程表达成有效颤振飞行试验,有效颤振飞行试验数据采样时间为
Figure 749540DEST_PATH_IMAGE051
Figure 245243DEST_PATH_IMAGE052
为正整数,
Figure 367920DEST_PATH_IMAGE053
为记录数据的采样周期,
Figure 999890DEST_PATH_IMAGE054
为有效颤振飞行试验的总采样次数;通过颤振飞行试验获得机体轴系网格点,在采样时间
Figure 580922DEST_PATH_IMAGE051
时刻的测量值
Figure 913815DEST_PATH_IMAGE055
Figure 665870DEST_PATH_IMAGE056
Figure 426016DEST_PATH_IMAGE057
Figure 630732DEST_PATH_IMAGE058
测量值;
步骤4:根据机体轴系网格点
Figure 767315DEST_PATH_IMAGE003
,安装微型
Figure 373877DEST_PATH_IMAGE030
Figure 301994DEST_PATH_IMAGE035
Figure 994007DEST_PATH_IMAGE040
轴向气流传感器,在机翼上下方和所有舵面两边安装微型
Figure 473978DEST_PATH_IMAGE035
轴向气流传感器,确定
Figure 614289DEST_PATH_IMAGE051
时刻机体轴系网格点,的激励函数
Figure 405320DEST_PATH_IMAGE059
Figure 678170DEST_PATH_IMAGE028
Figure 344775DEST_PATH_IMAGE034
Figure 767797DEST_PATH_IMAGE039
分别采用给定函数逼近,得到:
Figure 203457DEST_PATH_IMAGE060
Figure 912787DEST_PATH_IMAGE061
关于
Figure 394584DEST_PATH_IMAGE062
连续可导,关于
Figure 502010DEST_PATH_IMAGE064
连续可导,
Figure 382241DEST_PATH_IMAGE065
关于连续可导;这样,可得:
Figure 116159DEST_PATH_IMAGE067
以及
Figure 577545DEST_PATH_IMAGE069
;
步骤5: 令:
Figure DEST_PATH_IMAGE145
以及
Figure 378141DEST_PATH_IMAGE071
可将(1)式描述成:
Figure 548922DEST_PATH_IMAGE072
(2)
Figure 548102DEST_PATH_IMAGE073
Figure 770136DEST_PATH_IMAGE074
式中:
Figure 554869DEST_PATH_IMAGE076
Figure 801491DEST_PATH_IMAGE078
为常数项;
Figure 638997DEST_PATH_IMAGE079
Figure 139861DEST_PATH_IMAGE080
Figure 379212DEST_PATH_IMAGE081
Figure 677469DEST_PATH_IMAGE083
Figure 2271DEST_PATH_IMAGE085
Figure 309756DEST_PATH_IMAGE087
,对应的傅里埃展开系数;
Figure 138035DEST_PATH_IMAGE088
Figure 872773DEST_PATH_IMAGE089
Figure 419292DEST_PATH_IMAGE090
Figure 527537DEST_PATH_IMAGE091
Figure 475902DEST_PATH_IMAGE092
Figure 415356DEST_PATH_IMAGE094
Figure 64643DEST_PATH_IMAGE095
Figure 867514DEST_PATH_IMAGE096
为角频率,
Figure 944054DEST_PATH_IMAGE097
Figure 465166DEST_PATH_IMAGE098
Figure 649635DEST_PATH_IMAGE099
为对应于
Figure 572591DEST_PATH_IMAGE100
的傅里埃展开的阶次;
Figure 820033DEST_PATH_IMAGE101
Figure 828440DEST_PATH_IMAGE102
Figure 819530DEST_PATH_IMAGE103
Figure 596993DEST_PATH_IMAGE104
Figure 15336DEST_PATH_IMAGE105
式中:
式中:
Figure 270244DEST_PATH_IMAGE109
为常数,
Figure 586136DEST_PATH_IMAGE111
Figure 72612DEST_PATH_IMAGE112
Figure 98337DEST_PATH_IMAGE113
Figure 33112DEST_PATH_IMAGE115
Figure 371165DEST_PATH_IMAGE116
Figure 567791DEST_PATH_IMAGE117
Figure 259804DEST_PATH_IMAGE118
Figure 934499DEST_PATH_IMAGE119
Figure 395567DEST_PATH_IMAGE120
Figure 763094DEST_PATH_IMAGE121
Figure 676824DEST_PATH_IMAGE122
Figure 733434DEST_PATH_IMAGE124
Figure 943967DEST_PATH_IMAGE125
Figure 79413DEST_PATH_IMAGE126
Figure 627069DEST_PATH_IMAGE127
,为对应的傅里埃级数的系数,
可得:
Figure 62729DEST_PATH_IMAGE128
(3)
以(3)式第一项为例,令
Figure 506480DEST_PATH_IMAGE129
,对
Figure 660381DEST_PATH_IMAGE130
(4)
两边求
Figure 946481DEST_PATH_IMAGE131
偏导数,可得
Figure 236648DEST_PATH_IMAGE132
根据步骤3和步骤4得到的
Figure 492497DEST_PATH_IMAGE056
Figure 850797DEST_PATH_IMAGE057
Figure 261050DEST_PATH_IMAGE059
Figure 46604DEST_PATH_IMAGE051
Figure 909517DEST_PATH_IMAGE058
的测试值,可得:
Figure 80297DEST_PATH_IMAGE133
(5)
式中:
Figure 345057DEST_PATH_IMAGE134
Figure 567091DEST_PATH_IMAGE135
Figure 917301DEST_PATH_IMAGE136
Figure 617403DEST_PATH_IMAGE137
进而可得:
Figure 736669DEST_PATH_IMAGE138
,带入(4)式中,得
Figure 723080DEST_PATH_IMAGE139
进一步可写成:
Figure 560586DEST_PATH_IMAGE140
(6)
式中:
Figure 64379DEST_PATH_IMAGE141
将(6)式写成:
Figure 35222DEST_PATH_IMAGE142
,有
Figure 599058DEST_PATH_IMAGE143
可以按照最小二乘估计出
Figure 923860DEST_PATH_IMAGE144

Claims (1)

1.一种飞行器颤振分析网格模型傅里埃建模方法,其特征包括以下步骤:
步骤1:以飞行器机体轴系
Figure DEST_PATH_IMAGE001
分析复杂颤振模型,在机体轴系选取个网格点,坐标为:
Figure DEST_PATH_IMAGE003
, 振动时第
Figure DEST_PATH_IMAGE005
个网格点坐标
Figure 189506DEST_PATH_IMAGE006
Figure DEST_PATH_IMAGE007
为时间
Figure 543127DEST_PATH_IMAGE008
和其它两轴位置的函数,为了便于表达第个网格点在
Figure DEST_PATH_IMAGE009
轴的振动分量,以为例,下标
Figure DEST_PATH_IMAGE011
为网格点标号,下标第二个字母
Figure 250510DEST_PATH_IMAGE009
分别表示振动在机体轴系
Figure 306191DEST_PATH_IMAGE001
的三个轴分量;为了简化问题,考虑第
Figure 873569DEST_PATH_IMAGE005
个网格点在
Figure 672898DEST_PATH_IMAGE012
轴方向振动时,
Figure DEST_PATH_IMAGE013
考虑第
Figure 599878DEST_PATH_IMAGE005
个网格点在
Figure 842772DEST_PATH_IMAGE014
轴方向振动时,
Figure DEST_PATH_IMAGE015
Figure 959764DEST_PATH_IMAGE016
Figure 579095DEST_PATH_IMAGE018
,考虑第
Figure 816041DEST_PATH_IMAGE011
个网格点在
Figure DEST_PATH_IMAGE019
轴方向振动时,
Figure 492486DEST_PATH_IMAGE020
;为了便于书写,将
Figure 96773DEST_PATH_IMAGE022
Figure DEST_PATH_IMAGE023
简写为
Figure 582113DEST_PATH_IMAGE024
Figure DEST_PATH_IMAGE025
Figure 955456DEST_PATH_IMAGE026
在网格点邻域内建立的近似模型为:
Figure DEST_PATH_IMAGE027
式中,
Figure 599540DEST_PATH_IMAGE028
为在机体轴系网格点
Figure DEST_PATH_IMAGE029
的邻域内轴向振动函数,
Figure 183416DEST_PATH_IMAGE032
Figure 348949DEST_PATH_IMAGE030
轴向振动方程的结构系数函数,
Figure DEST_PATH_IMAGE033
分别为在机体轴系网格点
Figure 175653DEST_PATH_IMAGE003
,处
Figure 675904DEST_PATH_IMAGE030
轴向振动时对应于网格点
Figure 909570DEST_PATH_IMAGE029
的变化值;
Figure 850982DEST_PATH_IMAGE034
为在机体轴系网格点
Figure 26748DEST_PATH_IMAGE029
的邻域内
Figure DEST_PATH_IMAGE035
轴向振动函数,
Figure DEST_PATH_IMAGE037
Figure 927019DEST_PATH_IMAGE035
轴向振动方程的结构系数函数,
Figure 798636DEST_PATH_IMAGE038
分别为在机体轴系网格点
Figure 145303DEST_PATH_IMAGE003
,处轴向振动时对应于网格点
Figure 461195DEST_PATH_IMAGE029
的变化值;
Figure DEST_PATH_IMAGE039
为在机体轴系网格点的邻域内
Figure 520866DEST_PATH_IMAGE040
轴向振动函数,
Figure DEST_PATH_IMAGE041
Figure 824284DEST_PATH_IMAGE042
Figure 452712DEST_PATH_IMAGE040
轴向振动方程的结构系数函数,
Figure DEST_PATH_IMAGE043
分别为在机体轴系网格点轴向振动时对应于网格点
Figure 252806DEST_PATH_IMAGE029
的变化值;为在网格点
Figure 74055DEST_PATH_IMAGE029
的等效激励函数,
Figure 933426DEST_PATH_IMAGE008
为时间;
Figure DEST_PATH_IMAGE045
为参数向量,
Figure 417628DEST_PATH_IMAGE046
表示网格点
Figure 404170DEST_PATH_IMAGE029
的温度,
Figure DEST_PATH_IMAGE047
为飞行高度,为马赫数,
Figure DEST_PATH_IMAGE049
为网格点
Figure 798121DEST_PATH_IMAGE029
的气流环境影响,
Figure 707302DEST_PATH_IMAGE050
为大气密度;
步骤2:对应步骤1的机体轴系网格点,安装微型温度传感器,
Figure 159460DEST_PATH_IMAGE030
Figure 360635DEST_PATH_IMAGE035
Figure 757112DEST_PATH_IMAGE040
三个轴向的气流和位置以及振动传感器,在机翼上下方和所有舵面两边安装微型三个轴向的气流和位置以及振动传感器,同时在机身加装大于1000帧/秒的图像传感器记录观测机翼翼尖、所有舵面的振动幅值和频率;飞机机载传感器记录时间、飞行高度、马赫数,大气密度;
步骤3:将飞行器到达给定高度和马赫数后颤振试验的过程表达成有效颤振飞行试验,有效颤振飞行试验数据采样时间为
Figure DEST_PATH_IMAGE051
为正整数,
Figure DEST_PATH_IMAGE053
为记录数据的采样周期,
Figure 642635DEST_PATH_IMAGE054
为有效颤振飞行试验的总采样次数;通过颤振飞行试验获得机体轴系网格点
Figure 295464DEST_PATH_IMAGE003
,在采样时间
Figure 838441DEST_PATH_IMAGE051
时刻的测量值
Figure DEST_PATH_IMAGE055
Figure 3319DEST_PATH_IMAGE056
Figure DEST_PATH_IMAGE057
Figure 735783DEST_PATH_IMAGE058
测量值;
步骤4:根据机体轴系网格点,安装微型
Figure 815362DEST_PATH_IMAGE035
Figure 272888DEST_PATH_IMAGE040
轴向气流传感器,在机翼上下方和所有舵面两边安装微型
Figure 290523DEST_PATH_IMAGE030
Figure 188684DEST_PATH_IMAGE035
Figure 518035DEST_PATH_IMAGE040
轴向气流传感器,确定
Figure 529984DEST_PATH_IMAGE051
时刻机体轴系网格点
Figure 995600DEST_PATH_IMAGE003
,的激励函数
Figure DEST_PATH_IMAGE059
Figure 129910DEST_PATH_IMAGE028
Figure 697288DEST_PATH_IMAGE034
Figure 496617DEST_PATH_IMAGE039
分别采用给定函数逼近,得到:
Figure 841841DEST_PATH_IMAGE060
Figure DEST_PATH_IMAGE061
关于
Figure 147051DEST_PATH_IMAGE062
连续可导,关于
Figure 998464DEST_PATH_IMAGE064
连续可导,
Figure DEST_PATH_IMAGE065
关于
Figure 414533DEST_PATH_IMAGE066
连续可导;这样,可得:
Figure DEST_PATH_IMAGE067
Figure 930440DEST_PATH_IMAGE068
以及
Figure DEST_PATH_IMAGE069
;
步骤5: 令:
Figure 672131DEST_PATH_IMAGE070
以及
Figure DEST_PATH_IMAGE071
可将(1)式描述成:
Figure 276419DEST_PATH_IMAGE072
(2)
Figure DEST_PATH_IMAGE073
Figure 230600DEST_PATH_IMAGE074
Figure DEST_PATH_IMAGE075
式中:
Figure 601014DEST_PATH_IMAGE076
Figure DEST_PATH_IMAGE077
Figure 982448DEST_PATH_IMAGE078
为常数项;
Figure DEST_PATH_IMAGE079
Figure 74031DEST_PATH_IMAGE080
Figure DEST_PATH_IMAGE081
Figure DEST_PATH_IMAGE083
Figure DEST_PATH_IMAGE087
,对应的傅里埃展开系数;
Figure 766656DEST_PATH_IMAGE088
Figure DEST_PATH_IMAGE089
Figure 994507DEST_PATH_IMAGE090
Figure DEST_PATH_IMAGE091
Figure 812421DEST_PATH_IMAGE092
Figure DEST_PATH_IMAGE093
Figure 125722DEST_PATH_IMAGE094
Figure DEST_PATH_IMAGE095
Figure 242994DEST_PATH_IMAGE096
为角频率,
Figure DEST_PATH_IMAGE097
Figure 997455DEST_PATH_IMAGE098
Figure DEST_PATH_IMAGE099
为对应于
Figure 720691DEST_PATH_IMAGE100
的傅里埃展开的阶次;
Figure DEST_PATH_IMAGE101
Figure 521288DEST_PATH_IMAGE102
Figure DEST_PATH_IMAGE103
Figure 618032DEST_PATH_IMAGE104
Figure DEST_PATH_IMAGE105
式中:
Figure DEST_PATH_IMAGE107
Figure 980192DEST_PATH_IMAGE108
式中:
Figure DEST_PATH_IMAGE109
为常数,
Figure 799243DEST_PATH_IMAGE110
Figure DEST_PATH_IMAGE111
Figure DEST_PATH_IMAGE113
Figure 491048DEST_PATH_IMAGE114
Figure DEST_PATH_IMAGE115
Figure 821667DEST_PATH_IMAGE116
Figure DEST_PATH_IMAGE117
Figure DEST_PATH_IMAGE119
Figure 35403DEST_PATH_IMAGE120
Figure DEST_PATH_IMAGE121
Figure 946858DEST_PATH_IMAGE122
Figure DEST_PATH_IMAGE123
Figure DEST_PATH_IMAGE125
Figure 710863DEST_PATH_IMAGE126
,为对应的傅里埃级数的系数,
可得:
Figure 346244DEST_PATH_IMAGE128
(3)
以(3)式第一项为例,令
Figure DEST_PATH_IMAGE129
,对
Figure 386574DEST_PATH_IMAGE130
(4)
两边求
Figure DEST_PATH_IMAGE131
偏导数,可得
Figure 58995DEST_PATH_IMAGE132
根据步骤3和步骤4得到的
Figure 247848DEST_PATH_IMAGE056
Figure 101851DEST_PATH_IMAGE059
Figure 8103DEST_PATH_IMAGE051
的测试值,可得:
Figure DEST_PATH_IMAGE133
(5)
式中:
Figure DEST_PATH_IMAGE135
Figure 536801DEST_PATH_IMAGE136
Figure DEST_PATH_IMAGE137
进而可得:
Figure 995596DEST_PATH_IMAGE138
,带入(4)式中,得
Figure DEST_PATH_IMAGE139
进一步可写成:
Figure 117748DEST_PATH_IMAGE140
(6)
式中:
Figure DEST_PATH_IMAGE141
将(6)式写成:
Figure 384912DEST_PATH_IMAGE142
,有
Figure DEST_PATH_IMAGE143
可以按照最小二乘估计出
Figure 570037DEST_PATH_IMAGE144
CN201810172974.6A 2018-03-02 2018-03-02 飞行器颤振分析网格模型傅里埃建模方法 Active CN108387359B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810172974.6A CN108387359B (zh) 2018-03-02 2018-03-02 飞行器颤振分析网格模型傅里埃建模方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810172974.6A CN108387359B (zh) 2018-03-02 2018-03-02 飞行器颤振分析网格模型傅里埃建模方法

Publications (2)

Publication Number Publication Date
CN108387359A CN108387359A (zh) 2018-08-10
CN108387359B true CN108387359B (zh) 2020-01-24

Family

ID=63070174

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810172974.6A Active CN108387359B (zh) 2018-03-02 2018-03-02 飞行器颤振分析网格模型傅里埃建模方法

Country Status (1)

Country Link
CN (1) CN108387359B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101599104A (zh) * 2009-07-16 2009-12-09 北京航空航天大学 一种航空涡轮发动机叶片颤振边界的模拟方法
CN101908088A (zh) * 2010-07-22 2010-12-08 北京航空航天大学 一种基于时域双向迭代的叶轮机叶片颤振应力预测方法
US8600707B1 (en) * 2011-03-24 2013-12-03 Florida Turbine Technologies, Inc. Process for analyzing a labyrinth seal for flutter
CN103823945A (zh) * 2014-03-13 2014-05-28 大连理工大学 一种平面切削过程的颤振稳定域建模方法
RU2537753C1 (ru) * 2013-08-28 2015-01-10 Федеральное государственное унитарное предприятие "Центральный аэрогидродинамический институт имени профессора Н.Е. Жуковского" (ФГУП "ЦАГИ") Лопасть аэродинамической модели воздушного винта и способ ее изготовления
CN104965991A (zh) * 2015-07-08 2015-10-07 中国人民解放军军械工程学院 基于传递函数的机翼颤振速度确定方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4310043B2 (ja) * 2000-12-05 2009-08-05 本田技研工業株式会社 フラッタ試験用模型
US8204701B2 (en) * 2007-06-15 2012-06-19 United Technologies Corporation Aeroelastic model using the principal shapes of modes (AMPS)
CN104182560B (zh) * 2014-01-08 2018-04-06 中国商用飞机有限责任公司北京民用飞机技术研究中心 飞行器颤振预测分析方法和装置
CN104143014B (zh) * 2014-04-17 2017-06-16 中国航空工业集团公司沈阳飞机设计研究所 一种无独立配重空间筒状物颤振模型设计方法
CN104443427B (zh) * 2014-10-15 2016-08-31 西北工业大学 飞行器颤振预测系统及方法
CN105843076A (zh) * 2016-03-31 2016-08-10 北京理工大学 一种柔性飞行器气动弹性建模与控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101599104A (zh) * 2009-07-16 2009-12-09 北京航空航天大学 一种航空涡轮发动机叶片颤振边界的模拟方法
CN101908088A (zh) * 2010-07-22 2010-12-08 北京航空航天大学 一种基于时域双向迭代的叶轮机叶片颤振应力预测方法
US8600707B1 (en) * 2011-03-24 2013-12-03 Florida Turbine Technologies, Inc. Process for analyzing a labyrinth seal for flutter
RU2537753C1 (ru) * 2013-08-28 2015-01-10 Федеральное государственное унитарное предприятие "Центральный аэрогидродинамический институт имени профессора Н.Е. Жуковского" (ФГУП "ЦАГИ") Лопасть аэродинамической модели воздушного винта и способ ее изготовления
CN103823945A (zh) * 2014-03-13 2014-05-28 大连理工大学 一种平面切削过程的颤振稳定域建模方法
CN104965991A (zh) * 2015-07-08 2015-10-07 中国人民解放军军械工程学院 基于传递函数的机翼颤振速度确定方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"飞机颤振模型参数辨识的频域广义整体最小二乘算法";唐炜;《控制与决策》;20060731;第21卷(第7期);第725-729页 *

Also Published As

Publication number Publication date
CN108387359A (zh) 2018-08-10

Similar Documents

Publication Publication Date Title
RU2615220C1 (ru) Способ определения управляющего сигнала по углу крена модели гиперзвукового летательного аппарата (ГЛА) для контроля аэродинамической идентичности по числам Рейнольдса траекторий полёта модели и натурного изделия при проведении опережающих лётных исследований
CN108333945B (zh) 飞机颤振试验分布式充分激励输入信号设计方法
CN108318203B (zh) 飞行器等价地面颤振综合试验方法
CN108446461B (zh) 飞行器颤振分析网格模型建模方法
Saderla et al. Parameter estimation of unmanned flight vehicle using wind tunnel testing and real flight data
Felt et al. Aeroservoelastic encounters
CN108303897B (zh) 飞行器颤振分析网格模型拉盖尔建模方法
Lind et al. Incorporating flight data into a robust aeroelastic model
Gong et al. Development of an in-flight thrust measurement system for UAVs
CN108387359B (zh) 飞行器颤振分析网格模型傅里埃建模方法
Duncan Jr The effects of step excrescences on swept-wing boundary-layer transition
CN108388741B (zh) 飞行器颤振分析网格模型沃尔什建模方法
Bi et al. Experimental investigation of aerodynamic interactions during shipboard launch & recovery of unconventional UAVs
Tischler et al. Bell 412 system identification and model fidelity assessment for hover and forward flight
CN108341073A (zh) 飞机颤振高温试验图像测试方法
CN113525711B (zh) 通过飞行试验辨识飞机气动焦点的方法
CN108398231B (zh) 飞行器颤振分析网格模型Hartley建模方法
CN108387360B (zh) 飞行器颤振分析网格模型切比雪夫建模方法
CN108399297B (zh) 飞行器颤振分析网格模型勒让德建模方法
CN108446462B (zh) 飞行器颤振分析网格模型埃米特建模方法
Jurisson et al. Aeroservoelastic flight testing platform development for system identification
Krueger et al. Flight loads analysis and measurements of external stores on an atmospheric research aircraft
Gehlert et al. Vortex force decomposition—forces associated with individual elements of a vorticity field
Bartasevicius et al. Design and testing of an in-flight thrust measurement system for a pylon-mounted miniature jet engine
Dogan et al. Wake-vortex induced wind with turbulence in aerial refueling-part a: Flight data analysis

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant