CN108445482A - 一种无人机载sar低空数据采集系统 - Google Patents

一种无人机载sar低空数据采集系统 Download PDF

Info

Publication number
CN108445482A
CN108445482A CN201810367583.XA CN201810367583A CN108445482A CN 108445482 A CN108445482 A CN 108445482A CN 201810367583 A CN201810367583 A CN 201810367583A CN 108445482 A CN108445482 A CN 108445482A
Authority
CN
China
Prior art keywords
sar
aerial vehicle
unmanned aerial
mini
main shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810367583.XA
Other languages
English (en)
Inventor
李长春
都伟冰
马春艳
王双亭
牛海鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henan University of Technology
Original Assignee
Henan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henan University of Technology filed Critical Henan University of Technology
Priority to CN201810367583.XA priority Critical patent/CN108445482A/zh
Publication of CN108445482A publication Critical patent/CN108445482A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/86Combinations of radar systems with non-radar systems, e.g. sonar, direction finder
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • G01C21/165Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation combined with non-inertial navigation instruments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/48Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/48Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system
    • G01S19/49Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system whereby the further system is an inertial position system, e.g. loosely-coupled

Abstract

本发明提供了一种无人机载SAR低空数据采集系统,通过采用无人机系统、SAR数据采集系统、地面差分定位系统组成无人机载SAR低空数据采集系统,将Mini SAR传感器以及GPS、INS集成在无人机平台上,可实现无人机SAR采集系统体积小、重量轻、成本低、机动灵活、作业效率高,且高精度SAR数据采集。

Description

一种无人机载SAR低空数据采集系统
技术领域
本发明属于无人机技术领域,具体涉及一种无人机载SAR低空数据采集系统。
背景技术
合成孔径雷达(SAR)是一种具备距离向高分辨和方位向高分辨能力的成像雷达。它利用以多普勒频移理论和雷达相干为基础的合成孔径技术,突破了真实孔径天线对方位向分辨率的限制,与脉冲压缩技术相结合,实现了远距离目标的二维高分辨率成像,从而能够获得大面积的高分辨率雷达图像。目前,SAR对地遥感观测技术主要有星载SAR和机载SAR两种方式。
对于星载SAR,由于卫星的地面覆盖周期较长,单次飞行观测任务的时效性较差,因此,在突发事件、应急救援等方面不能满足快速部署的时效性要求;同时,星载SAR设备的研发和使用费用很高、调用卫星进行对地观测也需要专业的技术人员等因素,造成了使用高分辨率SAR图像的成本极高,所以在很多民用领域,星载SAR的高成本严重限制了其进一步在各个行业的推广和应用。
对于机载SAR,由于传统的SAR具有体积较大、重量较重等缺点,SAR成像质量对飞行平台的要求较为严格。飞行任务对飞行平台的载重量、飞行时间、飞行高度等因素的要求也进一步限制了SAR在不同飞机上的使用和普及,因此,机载SAR的飞机平台目前主要集中在大中型有人机和部分无人机上。虽然机载SAR相较于星载SAR,观测时效性方面得到了提高,但使用成本和系统复杂度也得到降低,但是,飞行平台(有人机和无人机)的驾驶、操作、使用、保养、空域审批、气象条件等因素也提高了SAR图像的获取成本,降低了SAR的部署灵活性;同时成本高、体积重量大。因此,传统机载SAR的遥感图像获取手段不能满足部分行业应用在低成本、高灵活性、使用简单的要求。
发明内容
为了解决上述技术问题,本发明提供了一种无人机载SAR低空数据采集系统。
本发明采用如下技术方案:
一种无人机载SAR低空数据采集系统,其特征在于:无人机系统、SAR数据采集系统、地面差分定位系统;
所述无人机系统包括无人机平台、飞控系统、Mini SAR载荷平台;
其中,所述无人机平台,包括位于所述无人机主轴前段的发动机,位于所述无人机主轴中部的变速箱,位于所述无人机主轴尾端的尾翼;所述发动机与所述变速箱通过传动皮带连接;
所述飞控系统包括自动驾驶仪和地面控制系统,其中,所述自动驾驶仪与舵机相连,位于变速箱后方,且固定于所述无人机主轴中部;所述自动驾驶仪连接固定于所述无人机主轴后端的第一GPS;
所述Mini SAR载荷平台位于所述无人机平台的最前端,连接支架位于所述无人机平台主轴上,且所述连接支架上放置Mini SAR载荷主板;
所述SAR数据采集系统包括固定在Mini SAR载荷主板下端的Mini SAR主机、通过第一信号线与所述Mini SAR主板连接的第一天线模块、固定于Mini SAR载荷主板后方的惯性导航仪INS,所述惯性导航仪INS通过第二信号线与所述Mini SAR主机连接;固定于所述无人机平台主轴后方、所述尾翼前方的第二GPS,所述第二GPS通过第三信号线连接到所述MiniSAR主机。
优选的,在本发明中,所述自动驾驶仪包括CPU模块、方位高度计、加速度计、电源模块,第二天线模块,其中,所述第二天线模块用于所述自动驾驶仪与所述地面控制系统之间数据传输。
优选的,在本发明中,所述第一GPS与所述方位高度计连接。
优选的,在本发明中,所述地面控制系统包括一电脑,所述电脑通过数据线与所述天线模块连接,进行发送或接收信号。
优选的,在本发明中,所述地面差分定位系统为一高精度的第三GPS。
本发明有益技术效果
本发明通过采用无人机系统、SAR数据采集系统、地面差分定位系统组成无人机载SAR低空数据采集系统,将Mini SAR传感器以及GPS、INS集成在无人机平台上,可实现无人机SAR采集系统体积小、重量轻、成本低、机动灵活、作业效率高,且高精度SAR数据采集。
附图说明
图1为本发明无人机载SAR低空数据采集系统示意图;
图2为本发明无人机系统结构示意图;
图3为本发明无人机平台结构示意图;
图4为本发明的自动驾驶仪结构示意图;
图5为本发明的地面控系统结构示意图;
图6为本发明的Mini SAR载荷平台结构示意图;
图7为本发明的SAR数据采集系统结构示意图;
图8为本发明的地面差分定位系统结构示意图。
具体实施方式
通过采用本发明所提出的技术方案,可实现一种作用距离远、不受云雾限制,能全天时、全天候工作的无人直升机载SAR低空数据采集系统。本发明提出了一种无人机载SAR低空数据采集系统,下面结合附图1-8详细进行说明。
如图1所示,本发明所提出一种无人机载SAR低空数据采集系统包括:无人机系统1、SAR数据采集系统2、地面差分定位系统3。其中,所述无人机系统可具体为无人直升机系统,采用无人直升机作为整体平台。
具体的,如图2所示,所述无人机系统包括无人机平台4、Mini SAR载荷平台5、飞控系统6。
其中,如图3所示,所述无人机平台4,包括位于所述无人机主轴前段的发动机8,位于所述无人机主轴13中部的变速箱15,位于所述无人机主轴尾端的尾翼12;所述发动机与所述变速箱通过传动皮带16连接,尾翼12通过传动轴与变速箱15相连,固定在无人直升机主轴13尾部。舵机11固定在变速箱15齿轮上端,通过传动轴连接平衡翼10,平衡翼10固定在舵机11上部,平衡翼10上部用固定支架连接螺旋桨9,排气管14与发动机8相连位于无人直升机平台4中后端两侧,固定在无人直升机主轴13两侧。
如图4所示,所述飞控系统6包括自动驾驶仪和地面控制系统,其中,所述自动驾驶仪与舵机11相连,位于变速箱15后方,且固定于所述无人机主轴13中部;所述自动驾驶仪连接固定于所述无人机主轴后端的第一GPS。
优选的,在本发明中,所述自动驾驶仪为自动驾驶仪方盒17,包括CPU模块19、方位高度计20、加速度计21、电源模块,第二天线模块23,其中,自动驾驶仪方盒17外右侧连接第一电台23,所述第二天线模块23用于所述自动驾驶仪与所述地面控制系统5之间数据传输。
优选的,在本发明中,所述第一GPS22与所述方位高度计20连接,第一GPS 22固定于无人机主轴13后端。
如图5所示,优选的,在本发明中,所述地面控制系统包括一电脑24,所述电脑24通过数据线与第二台27相连,所示第二电台27连接天线模块26,进行发送或接收信号,第一电源25与所示电脑24和所示第二电台27相连。
如图6所示,所述Mini SAR载荷平台5位于所述无人机平台4的最前端,连接支架28位于所述无人机平台主轴13的前段,且所述连接支架28上放置Mini SAR载荷主板29;MiniSAR载荷主板29四个角安装四个减震器30,减震器30与连接支架28相连,并与Mini SAR载荷主板29,可有效减弱、甚至防止无人机平台4的震动,并将震动传递给SAR数据采集系统2。
如图7所示,所述SAR数据采集系统2包括固定在Mini SAR载荷主板29下端的MiniSAR主机36,Mini SAR主机36下方固定有45°角支架32,在该支架32上固定第一天线模块33,所述Mini SAR主机36通过第一信号线与第一天线模块33、固定于Mini SAR载荷主板后方的惯性导航仪INS31,所述惯性导航仪INS通过第二信号线与所述Mini SAR主机36连接;固定于所述无人机平台主轴13后方、所述尾翼12前方的第二GPS 34,第二GPS 34通过信号线连接到Mini SAR主机36上,并固定于无人直升机平台主轴13后方,尾翼12前方。其他的,第二电源35固定于Mini SAR载荷主板29前上方。
如图8所示,优选的,在本发明中,所述地面差分定位系统3为一高精度的第三GPS37,固定于GPS三角架38上。
在此需要指出,采用本发明所提出的系统,能够低空飞行,且便于携带、飞行灵活,特别适合在能见度差的天气条件下或夜间进行对地探测,为灾害监测和云雾天的应急测绘提供了一种新型的对地观测设备;其次,该系统体积小、重量轻、能耗低、成本低、可作用距离较远的微波成像;最后,无人直升机平台上装有高精度惯导系统( INS) 和全球定位系统( GPS) 以改善和测量位置误差,进行运动误差补偿处理,减弱受环境的影响,达到精准的数据采集。
以上实施方式仅用于说明本发明,而并非对本发明的限制,有关技术领域的普通技术人员,在不脱离本发明的精神和范围的情况下,还可以做出各种变化和变型,因此所有等同的技术方案也属于本发明的范畴,本发明的专利保护范围应由权利要求限定。

Claims (5)

1.一种无人机载SAR低空数据采集系统,其特征在于:无人机系统、SAR数据采集系统、地面差分定位系统;
所述无人机系统包括无人机平台、飞控系统、Mini SAR载荷平台;
其中,所述无人机平台,包括位于所述无人机主轴前段的发动机,位于所述无人机主轴中部的变速箱,位于所述无人机主轴尾端的尾翼;所述发动机与所述变速箱通过传动皮带连接;所述飞控系统包括自动驾驶仪和地面控制系统,其中,所述自动驾驶仪与舵机相连,位于变速箱后方,且固定于所述无人机主轴中部;所述自动驾驶仪连接固定于所述无人机主轴后端的第一GPS;
所述Mini SAR载荷平台位于所述无人机平台的最前端,连接支架位于所述无人机平台主轴上,且所述连接支架上放置Mini SAR载荷主板;
所述SAR数据采集系统包括固定在Mini SAR载荷主板下端的Mini SAR主机、通过第一信号线与所述Mini SAR主板连接的第一天线模块、固定于Mini SAR载荷主板后方的惯性导航仪INS,所述惯性导航仪INS通过第二信号线与所述Mini SAR主机连接;固定于所述无人机平台主轴后方、所述尾翼前方的第二GPS,所述第二GPS通过第三信号线连接到所述MiniSAR主机。
2.根据权利要求1所述一种无人机载SAR低空数据采集系统,其特征在于:所述自动驾驶仪包括CPU模块、方位高度计、加速度计、电源模块,第二天线模块,其中,所述第二天线模块用于所述自动驾驶仪与所述地面控制系统之间数据传输。
3.根据权利要求2所述一种无人机载SAR低空数据采集系统,其特征在于:所述第一GPS与所述方位高度计连接。
4.根据权利要求1所述一种无人机载SAR低空数据采集系统,其特征在于:所述地面控制系统包括一电脑,所述电脑通过数据线与所述天线模块连接,进行发送或接收信号。
5.根据权利要求1-4任一所述一种无人机载SAR低空数据采集系统,其特征在于:所述地面差分定位系统为一高精度的第三GPS。
CN201810367583.XA 2018-04-23 2018-04-23 一种无人机载sar低空数据采集系统 Pending CN108445482A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810367583.XA CN108445482A (zh) 2018-04-23 2018-04-23 一种无人机载sar低空数据采集系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810367583.XA CN108445482A (zh) 2018-04-23 2018-04-23 一种无人机载sar低空数据采集系统

Publications (1)

Publication Number Publication Date
CN108445482A true CN108445482A (zh) 2018-08-24

Family

ID=63200649

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810367583.XA Pending CN108445482A (zh) 2018-04-23 2018-04-23 一种无人机载sar低空数据采集系统

Country Status (1)

Country Link
CN (1) CN108445482A (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040230353A1 (en) * 2003-05-14 2004-11-18 Airbus France Method and device for piloting an aircraft
CN1669874A (zh) * 2004-03-16 2005-09-21 清华大学 一种用于飞行器的自动驾驶仪
CN201004180Y (zh) * 2007-01-26 2008-01-09 青岛天骄无人机遥感技术有限公司 无人机姿态控制系统
US8134489B2 (en) * 2008-07-14 2012-03-13 The Boeing Company System and method for bistatic change detection for perimeter monitoring
CN102830708A (zh) * 2012-09-05 2012-12-19 北京理工大学 基于arm和fpga架构的固定翼无人机自动驾驶仪
CN203222114U (zh) * 2013-04-03 2013-10-02 无锡汉和航空技术有限公司 一种用于喷洒农药的电动小型无人直升机
CN105892483A (zh) * 2016-04-05 2016-08-24 中科九度(北京)空间信息技术有限责任公司 一种基于多旋翼无人机的微型sar遥感观测方法
CN106354155A (zh) * 2016-11-24 2017-01-25 海鹰航空通用装备有限责任公司 一种无人机智能飞行控制系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040230353A1 (en) * 2003-05-14 2004-11-18 Airbus France Method and device for piloting an aircraft
CN1669874A (zh) * 2004-03-16 2005-09-21 清华大学 一种用于飞行器的自动驾驶仪
CN201004180Y (zh) * 2007-01-26 2008-01-09 青岛天骄无人机遥感技术有限公司 无人机姿态控制系统
US8134489B2 (en) * 2008-07-14 2012-03-13 The Boeing Company System and method for bistatic change detection for perimeter monitoring
CN102830708A (zh) * 2012-09-05 2012-12-19 北京理工大学 基于arm和fpga架构的固定翼无人机自动驾驶仪
CN203222114U (zh) * 2013-04-03 2013-10-02 无锡汉和航空技术有限公司 一种用于喷洒农药的电动小型无人直升机
CN105892483A (zh) * 2016-04-05 2016-08-24 中科九度(北京)空间信息技术有限责任公司 一种基于多旋翼无人机的微型sar遥感观测方法
CN106354155A (zh) * 2016-11-24 2017-01-25 海鹰航空通用装备有限责任公司 一种无人机智能飞行控制系统

Similar Documents

Publication Publication Date Title
CN201000576Y (zh) 无人机飞行控制系统
CN109507757B (zh) 一种基于临空飞艇的新型台风追踪探测方法与系统
US8910902B2 (en) Towed sensor array maneuvering system and methods
CN106813900B (zh) 一种基于无人机技术的民用机场助航灯光飞行校验方法
CN105892483A (zh) 一种基于多旋翼无人机的微型sar遥感观测方法
CN107402583B (zh) 一种有动力氦气球的轻重量遥感传感器搭载装置
KR20180031298A (ko) 실시간 기상 관측용 복합센서와 자체 풍향과 풍속 측정 기능을 탑재한 드론 및 이를 활용한 기상 관측 시스템
CN107247465A (zh) 一种基于无人机的自驾游控制系统及方法
CN107539453A (zh) 一种低空飞行作业无人机及其控制系统和应用
CN104808558A (zh) 一种适用于特种通用飞机的多任务载荷系统
CN209102898U (zh) 一种基于高性能无人机的隧道二次衬砌检测系统
CN112485837A (zh) 一种无人机航磁水平梯度测量系统及方法
CN107329157A (zh) 一种辅助固定翼无人机动态回收的实现装置和实现方法
CN110749943A (zh) 一种基于气象无人机的气象探测系统
CN201004180Y (zh) 无人机姿态控制系统
CN202923888U (zh) 光伏鹰式海域治理无人侦察机
CN207051491U (zh) 一种辅助固定翼无人机动态回收的实现装置
CN214308790U (zh) 一种无人直升机航磁测量系统
WO2023009200A3 (en) System and method for tethered unmanned aerial vehicle takeoff, landing, and storage
CN208796112U (zh) 一种四核无人直升机飞控系统
RU187275U1 (ru) Беспилотный авиационный комплекс
CN105292472A (zh) 多用途软翼无人机
CN204203456U (zh) 用于无线电监测的空中智能机器人
Shuqing et al. A miniature robotic plane meteorological sounding system
Schuchardt et al. Maritime operation of an unmanned rotorcraft with tethered ship deck landing system

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20180824

RJ01 Rejection of invention patent application after publication