CN108441880B - 金属比例可调的FeNiCo含氧化合物纳米片及其制备方法和应用 - Google Patents

金属比例可调的FeNiCo含氧化合物纳米片及其制备方法和应用 Download PDF

Info

Publication number
CN108441880B
CN108441880B CN201810294901.4A CN201810294901A CN108441880B CN 108441880 B CN108441880 B CN 108441880B CN 201810294901 A CN201810294901 A CN 201810294901A CN 108441880 B CN108441880 B CN 108441880B
Authority
CN
China
Prior art keywords
oxygen
fenico
zif
organic framework
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810294901.4A
Other languages
English (en)
Other versions
CN108441880A (zh
Inventor
周亮
黄文忠
麦立强
李坚涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University of Technology WUT
Original Assignee
Wuhan University of Technology WUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Technology WUT filed Critical Wuhan University of Technology WUT
Priority to CN201810294901.4A priority Critical patent/CN108441880B/zh
Publication of CN108441880A publication Critical patent/CN108441880A/zh
Application granted granted Critical
Publication of CN108441880B publication Critical patent/CN108441880B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • C25B11/095Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds at least one of the compounds being organic
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • C01P2004/22Particle morphology extending in two dimensions, e.g. plate-like with a polygonal circumferential shape
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Catalysts (AREA)
  • Compounds Of Iron (AREA)

Abstract

本发明涉及一种金属比例可调的FeNiCo含氧化合物纳米片及其制备方法,包括如下步骤:S1采用常温静置沉淀法制备金属有机框架ZIF‑67;S2按一定比例称取FeSO4·7H2O和NiSO4·6H2O,充分溶解于去离子水中得A液;另取适量步骤S1所得的金属有机框架ZIF‑67粉末,充分分散于无水乙醇中得B液;S3将B液迅速倒入A液,搅拌;S4将步骤3)所得到的产物洗涤,离心产物进行冷冻干燥,即得形貌均一的FeNiCo含氧化合物纳米片。本发明的有益效果是:将其作为电催化水分解的阳极,析氧催化性能优异。该材料的合成工艺简单、成本低廉、环境友好、可重复性极高。

Description

金属比例可调的FeNiCo含氧化合物纳米片及其制备方法和 应用
技术领域
本发明属于纳米材料与电化学技术领域,具体涉及一种金属比例可调的FeNiCo含氧化合物纳米片及其制备方法,其可以作为析氧反应的催化剂材料。
背景技术
现今,人类对化石能源的需求急剧增加,这在导致传统能源材料日渐枯竭的同时也使得人们对能源危机、能源安全以及使用化石能源所导致的环境污染问题的担忧日益增长。如果能够高效、环保、低成本地生产氢气——这种安全、清洁、可持续的替代能源——将可解决不断增长的全球能源需求。
电解水制氢是清洁可再生能源发展的重要途径之一。水的电解包括析氢和析氧两个反应,制约其发展的重大挑战之一就是析氧反应(oxygen evolution reaction, OER)需要消耗极大的能量。析氧反应涉及多步质子耦合和电子转移过程,反应过程在动力学上较为缓慢,因此需要电催化剂促进反应进行、降低能量消耗。目前为止,最好的电催化析氧催化剂是 RuO2、IrO2等贵金属基化合物,但是它们资源匮乏、价格昂贵,大规模应用受到了限制。因此,面向电催化析氧反应的高效、廉价、长寿命电催化剂的开发对于电解水制氢的发展起着举足轻重的作用。
过渡金属氧化物及其衍生物,由于具有丰富的储量、较高的活性、易于调控的位点,在电催化领域受到了较为广泛的研究。金属有机框架(metal-organic frameworks,MOFs)是由金属离子和有机配体络合形成的一类晶体材料,ZIF-67是典型的由过渡金属Co和2-甲基咪唑配位形成的一类MOF,由于金属离子和配体之间的键合程度容易受到其它化合物的影响而发生断裂重构,因此ZIF-67可以作为模板构筑新型纳米材料。
发明内容
本发明的目的在于提供一种工艺简单、成本低廉、环境友好,而且电催化析氧性能优异的金属比例可调的FeNiCo纳米片及其制备方法,其可作为析氧反应的催化剂材料。
为了实现上述目的,本发明的技术方案是:金属比例可调的FeNiCo含氧化合物纳米片,其厚度8-10 nm,形貌均一,比表面积可达130m2·g-1以上,电化学有效面积大,其结晶程度介于无定型和晶体结构之间。
所述的金属比例可调的FeNiCo含氧化合物纳米片的制备方法,其特征在于包括如下步骤:
S1采用常温静置沉淀法制备金属有机框架ZIF-67;
S2按一定比例称取FeSO4·7H2O和NiSO4·6H2O,充分溶解于去离子水中得A液;另取适量步骤S1所得的金属有机框架ZIF-67粉末,充分分散于无水乙醇中得B液;
S3将B液迅速倒入A液,搅拌;
S4将步骤3)所得到的产物洗涤,离心产物进行冷冻干燥,即得形貌均一的FeNiCo含氧化合物纳米片。
按上述方案,所述的金属有机框架ZIF-67粒径为800 nm。
按上述方案,所述的FeSO4·7H2O用量为0-1 mmol,所述的NiSO4·6H2O用量为0-1mmol,且两者的投料总量为1 mmol,所述的金属有机框架ZIF-67粉末的用量为40mg。
按上述方案,所述的去离子水用量为20 ml,所述的无水乙醇用量为5ml。
按上述方案,步骤S3所述的搅拌时间为30分钟,温度为常温至80℃。
按上述方案,步骤S4所述的洗涤是用去离子水和无水乙醇分别洗涤两次
所述的金属比例可调的FeNiCo含氧化合物纳米片作为析氧反应的催化剂材料的应用。
本发明利用ZIF-67做为模板,通过极简的工艺,合成FeNiCo含氧化合物纳米片。这种二维纳米结构为电催化析氧反应提供了丰富的活性位点、快速的电荷输运和充分的接触面积,实现了高效的析氧催化性能。该策略实现的关键在于利用ZIF-67作为模板,配合特定的无机盐,实现ZIF-67分解的同时形成形貌均一的FeNiCo含氧化合物二维纳米结构。这种策略成本极低、合成可控、方法简单,所得材料催化性能优异,利于市场推广。
本发明的有益效果是:本发明利用ZIF-67作为模板,通过调控Fe、Ni金属离子,常温搅拌形成不同金属比例的FeNiCo纳米片材料,该种材料厚度均匀、比表面积大,利于充分暴露催化位点、缩短电化学反应过程中电荷的传输路径、降低反应阻抗,将其作为电催化水分解的阳极,析氧催化性能优异。该材料的合成工艺简单、成本低廉、环境友好、可重复性极高,所得材料催化性能优异,具有大规模应用于电解水阳极的潜力。
附图说明
图1为本发明的FeNiCo含氧化合物纳米片(记为FexNiy-ZIF纳米片)的形成机理图;
图2为FexNiy-ZIF纳米片的XRD图;
图3为FexNiy-ZIF纳米片的SEM图;
图4为Fe4Ni6-ZIF纳米片的TEM (a-b)、HRTEM (c)、EDX元素分布 (d)和能谱图;
图5为FexNiy-ZIF纳米片的FTIR图;
图6为FexNiy-ZIF纳米片的电催化析氧性能图;
图7为FexNiy-ZIF纳米片的AFM图。
具体实施方式
为了更好地理解本发明,下面结合实施例进一步阐明本发明的内容,但本发明的内容不仅仅局限于下面的实施例。
实施例1:
1)采用静置沉淀法制备粒径为800纳米的金属有机框架ZIF-67;
2)称取0.4 mmol FeSO4·7H2O 与0.6 mmol NiSO4·6H2O,充分溶解于20 ml的去离子水中,得到A液;
3)称取40 mg 金属有机框架ZIF-67粉末,将其充分分散于5 ml无水乙醇,得到B液;
4)将B液迅速倒入A液,常温磁力搅拌30分钟;
5)将步骤4)所得产物用无水乙醇/去离子水混合溶液洗涤四次,冷冻干燥,即可得到形貌均一的FeNiCo含氧化合物纳米片,即Fe4Ni6-ZIF纳米片。
本发明FexNiy-ZIF纳米片的形成过程如图1所示:A液和B液混合之后,ZIF-67将在溶液环境中发生解离,释放2-甲基咪唑离子和Co2+,2-甲基咪唑离子将与溶液中的H+发生络合促进溶液OH-离子浓度的增加,与此同时,金属离子Fe2+、Ni2+、Co2+与OH-或/及2-甲基咪唑离子将在ZIF-67周围发生共沉淀反应,形成形貌均一的FexNiy-ZIF纳米片。
对本发明FexNiy-ZIF纳米片进行结构和形貌表征。如图2所示,ZIF-67衍生合成的FexNiy-ZIF纳米片,XRD强度整体很弱,说明材料的结晶程度不高甚至未能结晶;随着Fe/Ni比例减小,仅在8度和16度左右出现一对相对明显的衍射峰,二者对应的晶面间距成倍数关系,说明材料只在这个晶面方向结晶程度较高;但当Fe的含量为零时,衍射峰再度消失,说明Fe、Ni两个元素比例对材料的晶体结构具有较大影响。如图3所示,调控Fe/Ni比例,虽然形貌有所区别,但是总体都为均匀的纳米片结构。图4为Fe4Ni6-ZIF纳米片的TEM和能谱表征,图a-b显示材料为均匀的片状结构(图7的AFM表征,显示材料厚度为8 nm),而且是在原ZIF-67十二面体的基础上生长而来;图c显示材料仅在局部显示晶格条纹,说明材料结晶程度不高,介于无定型和晶体结构之间,这与XRD的衍射结果一致;图d-e表明材料含有元素Fe、Ni、Co、C、N、O,同时元素分布均匀(金属元素摩尔比例Fe/Ni/Co≈48/44/8,这与ICP元素分析结果一致Fe/Ni/Co≈48/44/8)。金属元素Fe、Ni来自无机盐,Co来自ZIF-67,C、N来自2-甲基咪唑,O则来自水溶液,由此可以说明金属不仅与含氧基团(如OH-)配位,也可能与2-甲基咪唑发生配位,因此定义材料为FeNiCo含氧化合物。如图5所示,通过对比不同样品的FTIR数据,发现不同Fe/Ni比例的FTIR图谱与无定型的“MOF”和“FeOOH”具有类似的图谱,鉴于此,推断FexNiy-ZIF纳米片的基团振动与上述二者类似,因此FexNiy-ZIF纳米片是一类同时拥有2-甲基咪唑配体和含氧基团的化合物,这与TEM能谱数据的推断一致。
本发明制备的FexNiy-ZIF纳米片作为活性物质,称取5 mg活性物质、5 mg VXC-72R(导电炭黑)分散至800 μl异丙醇和150 μl水中,在70 Hz的条件下超声30 分钟,再加50μl 5wt% 的Nafion水分散液,进行二度超声30分钟,最终得到均匀分散的“墨水”;另外配置1.0 M KOH作为电解液在PINE旋转圆盘环盘装置中进行电化学性能测试。如图6a所示,Fe4Ni6-ZIF纳米片材料在以5 mV s-1的扫速下测试线性伏安特性,在10 mA cm-2电流密度下过电位为~220 mV,而且Tafel斜率仅为60 mV dec-1(图6b),证明材料的动力学过程快、电催化活性高,这主要源于Fe4Ni6-ZIF纳米片具有大的电化学活性面积8225 μF cm-2(图6c)和快的电荷传输能力(图6d)。同时,Fe4Ni6-ZIF纳米片的电催化稳定性优异(图6e),在10mA cm-2的电流密度下能够稳定10 h以上,极化几乎没有增加。
Fe4Ni6-ZIF纳米片优异的电催化析氧活性与其结构有着密切的关系。第一,二维纳米片状结构可以提供较为充分的接触面积,暴露更多的活性位点;第二,二维纳米片状结构可以缩减电子或离子传输的路径,加快电荷传输速率;第三,合适比例的Fe、Ni、Co可以起到一个协同提升的作用,使得催化活性得到极大提升。以上结果表明,以Fe4Ni6-ZIF为代表的FexNiy-ZIF含氧化合物纳米片优异的电催化性能与其独特的结构有着密切关系,这种结构在电解水析氧催化领域具有极大的潜力和实际应用价值。
实施例2:
1)采用静置沉淀法制备粒径为800纳米的金属有机框架ZIF-67;
2)称取0.6 mmol FeSO4·7H2O 与0.4 mmol NiSO4·6H2O,充分溶解于20 ml的去离子水中,得到A液;
3)称取40 mg 金属有机框架ZIF-67粉末,将其充分分散于5 ml无水乙醇,得到B液;
4)将B液迅速倒入A液,常温磁力搅拌30分钟;
5)将步骤4)所得产物用无水乙醇/去离子水混合溶液洗涤四次,冷冻干燥,即可得到形貌均一的FeNiCo含氧化合物纳米片,即Fe6Ni4-ZIF纳米片。
本实施例所得的Fe6Ni4-ZIF纳米片,结晶度低(图2的XRD衍射结果可知),形貌均匀(图3c),ICP元素分析表明金属的摩尔比例Fe/Ni/Co≈66/25/9,电催化析氧性能优异,在10 mA cm-2电流密度下过电位为~250 mV,而且电化学活性面积为2615μF cm-2(图6)。
实施例3:
1)采用静置沉淀法制备粒径为800纳米的金属有机框架ZIF-67;
2)称取1.0 mmol FeSO4·7H2O,充分溶解于20 ml的去离子水中,得到A液;
3)称取40 mg 金属有机框架ZIF-67粉末,将其充分分散于5 ml无水乙醇,得到B液;
4)将B液迅速倒入A液,常温磁力搅拌30分钟;
5)将步骤4)所得产物用无水乙醇/去离子水混合溶液洗涤四次,冷冻干燥,即可得到形貌均一的FeNiCo含氧化合物纳米片,即Fe-ZIF纳米片。
本实施例所得的Fe-ZIF纳米片,结晶度低(图2的XRD衍射结果可知),形貌均匀(图3a),ICP元素分析表明金属的摩尔比例Fe/Ni/Co≈100/0/0,具有一定的电催化析氧性能,在10 mA cm-2电流密度下过电位为~390 mV,而且电化学活性面积为655μF cm-2(图6)。
实施例4:
1)采用静置沉淀法制备粒径为800纳米的金属有机框架ZIF-67;
2)称取1.0 mmol NiSO4·6H2O,充分溶解于20 ml的去离子水中,得到A液;
3)称取40 mg 金属有机框架ZIF-67粉末,将其充分分散于5 ml无水乙醇,得到B液;
4)将B液迅速倒入A液,80 ℃ 水浴磁力搅拌30分钟;
5)将步骤4)所得产物用无水乙醇/去离子水混合溶液洗涤四次,冷冻干燥,即可得到形貌均一的FeNiCo含氧化合物纳米片,即Ni-ZIF纳米片。
本实施例所得的Ni-ZIF纳米片,结晶度低(图2的XRD衍射结果可知),形貌均匀(图3f),ICP元素分析表明金属的摩尔比例Fe/Ni/Co≈0/80/20,具有一定的电催化析氧性能,在10 mA cm-2电流密度下过电位为~330 mV,而且电化学活性面积为455μF cm-2(图6)。
实施例5:
1)采用静置沉淀法制备粒径为800纳米的金属有机框架ZIF-67;
2)称取0.2 mmol FeSO4·7H2O 与0.8 mmol NiSO4·6H2O,充分溶解于20 ml的去离子水中,得到A液;
3)称取40 mg 金属有机框架ZIF-67粉末,将其充分分散于5 ml无水乙醇,得到B液;
4)将B液迅速倒入A液,常温磁力搅拌30分钟;
5)将步骤4)所得产物用无水乙醇/去离子水混合溶液洗涤四次,冷冻干燥,即可得到形貌均一的FeNiCo含氧化合物纳米片,即Fe2Ni8-ZIF纳米片。本实施例所得的Fe2Ni8-ZIF纳米片,结晶度低(图2的XRD衍射结果可知),形貌均匀(图3e)。
实施例6:
1)采用静置沉淀法制备粒径为800纳米的金属有机框架ZIF-67;
2)称取0.8 mmol FeSO4·7H2O 与0.2 mmol NiSO4·6H2O,充分溶解于20 ml的去离子水中,得到A液;’
3)称取40 mg 金属有机框架ZIF-67粉末,将其充分分散于5 ml无水乙醇,得到B液;
4)将B液迅速倒入A液,常温磁力搅拌30分钟;
5)将步骤4)所得产物用无水乙醇/去离子水混合溶液洗涤四次,冷冻干燥,即可得到形貌均一的FeNiCo含氧化合物纳米片,即Fe8Ni2-ZIF纳米片。本实施例所得的Fe8Ni2-ZIF纳米片,结晶度低(图2的XRD衍射结果可知),形貌均匀(图3b)。

Claims (4)

1.金属比例可调的FeNiCo含氧化合物纳米片的制备方法,所述的金属比例可调的FeNiCo含氧化合物纳米片,其厚度8-10 nm,形貌均一,比表面积可达130m2·g-1以上,电化学有效面积大,其结晶程度介于无定型和晶体结构之间,其特征在于包括如下步骤:
S1采用常温静置沉淀法制备金属有机框架ZIF-67;
S2按一定比例称取FeSO4·7H2O和NiSO4·6H2O,充分溶解于去离子水中得A液;另取适量步骤S1所得的金属有机框架ZIF-67粉末,充分分散于无水乙醇中得B液;所述的FeSO4·7H2O用量为0-1 mmol,所述的NiSO4·6H2O用量为0-1 mmol,且两者的投料总量为1 mmol,所述的金属有机框架ZIF-67粉末的用量为40mg;所述的去离子水用量为20 mL,所述的无水乙醇用量为5mL;
S3将B液迅速倒入A液,搅拌;所述搅拌的时间为30分钟,温度为常温至80℃;
S4将S3所得到的产物洗涤,离心产物进行冷冻干燥,即得形貌均一的FeNiCo含氧化合物纳米片。
2.根据权利要求1所述的金属比例可调的FeNiCo含氧化合物纳米片的制备方法,其特征在于所述的金属有机框架ZIF-67粒径为800 nm。
3.根据权利要求1所述的金属比例可调的FeNiCo含氧化合物纳米片的制备方法,其特征在于步骤S4所述的洗涤是用去离子水和无水乙醇分别洗涤两次。
4.权利要求1所述的金属比例可调的FeNiCo含氧化合物纳米片的制备方法所得的产物作为析氧反应的催化剂材料的应用。
CN201810294901.4A 2018-03-30 2018-03-30 金属比例可调的FeNiCo含氧化合物纳米片及其制备方法和应用 Active CN108441880B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810294901.4A CN108441880B (zh) 2018-03-30 2018-03-30 金属比例可调的FeNiCo含氧化合物纳米片及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810294901.4A CN108441880B (zh) 2018-03-30 2018-03-30 金属比例可调的FeNiCo含氧化合物纳米片及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN108441880A CN108441880A (zh) 2018-08-24
CN108441880B true CN108441880B (zh) 2020-04-21

Family

ID=63199076

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810294901.4A Active CN108441880B (zh) 2018-03-30 2018-03-30 金属比例可调的FeNiCo含氧化合物纳米片及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN108441880B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110591103B (zh) * 2019-08-22 2021-05-28 安徽建筑大学 一种ZIFs负载β-FeOOH纳米棒杂化物及其制备方法
CN110586196B (zh) * 2019-09-20 2022-04-19 济南大学 一种FeOOH@Ni-BDC电解水催化剂的制备方法
CN110828825B (zh) * 2019-11-19 2023-02-10 肇庆市华师大光电产业研究院 一种钠离子电池负极材料的制备方法及应用
CN111525124B (zh) * 2020-04-08 2021-03-16 荆门市诺维英新材料科技有限公司 一种锂离子电池负极材料的制备方法
CN113502487B (zh) * 2021-08-05 2022-10-04 先进能源产业研究院(广州)有限公司 一种高活性双功能氧电催化剂的制备方法
CN114855186B (zh) * 2022-05-10 2024-03-08 中汽创智科技有限公司 一种制氢催化剂及其制备方法和用途
CN115029713B (zh) * 2022-06-27 2023-04-18 海南大学 用于电解水析氧反应的镍基mof自重构异质结的制备方法及所得产品和应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106149025A (zh) * 2016-06-26 2016-11-23 北京化工大学 一种铁类水滑石纳米片阵列的一步电合成方法

Also Published As

Publication number Publication date
CN108441880A (zh) 2018-08-24

Similar Documents

Publication Publication Date Title
CN108441880B (zh) 金属比例可调的FeNiCo含氧化合物纳米片及其制备方法和应用
Li et al. Rational design of porous Ni-Co-Fe ternary metal phosphides nanobricks as bifunctional electrocatalysts for efficient overall water splitting
Sun et al. In situ produced Co9S8 nanoclusters/Co/Mn-S, N multi-doped 3D porous carbon derived from eriochrome black T as an effective bifunctional oxygen electrocatalyst for rechargeable Zn-air batteries
Chen et al. Hierarchical porous NiFe-P@ NC as an efficient electrocatalyst for alkaline hydrogen production and seawater electrolysis at high current density
Dai et al. Interfacial La diffusion in the CeO2/LaFeO3 hybrid for enhanced oxygen evolution activity
Qiang et al. Efficient electrocatalytic water splitting by bimetallic cobalt iron boride nanoparticles with controlled electronic structure
Yang et al. Prussian blue analogue assisted formation of iron doped CoNiSe2 nanosheet arrays for efficient oxygen evolution reaction
Chen et al. Interface engineering for boosting electrocatalytic performance of CoP-Co2P polymorphs for all-pH hydrogen evolution reaction and alkaline overall water splitting
Shi et al. In-situ generated MOFs with supportive LDH substrates and their derivatives for photo-electrocatalytic energy production and electrochemical devices: Insights into synthesis, function, performance and mechanism
Fan et al. Interface and doping engineering of Co-based electrocatalysts for enhanced oxygen reduction and evolution reactions
Zhou et al. Fe incorporation-induced electronic modification of Co-tannic acid complex nanoflowers for high-performance water oxidation
Xie et al. Ultrasmall Co-NiP embedded into lantern shaped composite achieved by coordination confinement phosphorization for overall water splitting
Zhang et al. Cubic KNiFe (CN) 6/C loaded on nickel foam for rechargeable liquid/flexible Zn-air batteries
Xiao et al. Surface reconstruction and structural transformation of two-dimensional Ni-Fe MOFs for oxygen evolution in seawater media
Qi et al. Plasma-induced implanting of active species in metal–organic frameworks for efficient hydrogen evolution reaction
Wu et al. Hierarchical core-shell structural Ni2P/NiMoO4@ CoP/FeP2 nanorods as difunctional electrocatalysts for efficient overall water splitting
Ding et al. Ni-B-Co nanoparticles based on ZIF-67 as efficient electrocatalyst for oxygen evolution reaction
Ping et al. Tailoring B-site of lead-ruthenate pyrochlore for boosting acidic water oxidation activity and stability
Yu et al. Synergistic Coupling of CoFe-LDH Nanosheets with Cu3P Nanoarrays for Efficient Water Splitting
Qin et al. Ru/Ir‐based electrocatalysts for oxygen evolution reaction in acidic conditions: From mechanisms, optimizations to challenges
Zhang et al. Peony-like CuxSy hybrid iron-nickel sulfide heterogeneous catalyst for boosting alkaline oxygen evolution reaction
Wu et al. Two-dimensional CoP-Ni2P heterostructure nanosheets intertwined with carbon nanotubes as catalysts for enhanced hydrogen generation and urea oxidation
Jiang et al. Rare earth oxide based electrocatalysts: synthesis, properties and applications
Xing et al. Construction of nickel phosphide/iron oxyhydroxide heterostructure nanoparticles for oxygen evolution
Wang et al. Synthesis of NiSe2@ M (M= Cu, Fe and Zn)–NiCo LDH with porous structure on nickel foam for overall fresh and seawater splitting

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant