CN108427104B - 一种全极化多输入多输出合成孔径雷达(fp-mimo-sar)的极化校准方法 - Google Patents

一种全极化多输入多输出合成孔径雷达(fp-mimo-sar)的极化校准方法 Download PDF

Info

Publication number
CN108427104B
CN108427104B CN201810441902.7A CN201810441902A CN108427104B CN 108427104 B CN108427104 B CN 108427104B CN 201810441902 A CN201810441902 A CN 201810441902A CN 108427104 B CN108427104 B CN 108427104B
Authority
CN
China
Prior art keywords
polarization
calibration
radar
rodaparc
electric field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810441902.7A
Other languages
English (en)
Other versions
CN108427104A (zh
Inventor
孔令宇
许小剑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beihang University
Original Assignee
Beihang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beihang University filed Critical Beihang University
Priority to CN201810441902.7A priority Critical patent/CN108427104B/zh
Publication of CN108427104A publication Critical patent/CN108427104A/zh
Application granted granted Critical
Publication of CN108427104B publication Critical patent/CN108427104B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • G01S13/90Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
    • G01S13/904SAR modes
    • G01S13/9076Polarimetric features in SAR
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • G01S13/90Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

本发明公开了一种全极化多输入多输出合成孔径雷达(FP‑MIMO‑SAR)极化校准方法,该方法采用可旋转双天线有源极化校准器(RODAPARC)和标准金属圆柱体作为极化校准体,并通过以下两个步骤实现极化校准:首先利用RODAPARC双站极化散射矩阵(PSM)和有源极化校准器全极化(PARC‑FP)雷达极化校准模型,对FP‑MIMO‑SAR中N组收发通道、每通道4种极化组合进行有源极化校准,获得N组极化校准参数;然后利用标准金属圆柱定标体进行无源极化校准,对N组极化校准参数进行优化,实现雷达系统的辐射定标、串扰和通道不平衡校准。

Description

一种全极化多输入多输出合成孔径雷达(FP-MIMO-SAR)的极 化校准方法
技术领域
本发明涉及多输入多输出(MIMO)雷达技术领域,特别涉及一种全极化多输入多输出合成孔径雷达(FP-MIMO-SAR)的极化校准方法。
背景技术
MIMO技术最早被应用在通信系统中,以克服多径效应,后引入到雷达领域,提出基于 MIMO技术的新体制雷达(参见文献[1]Bliss D W,Forsythe K W,Hero AO,et al.Environmental issues for MIMO capacity[J].IEEE Transactions on SignalProcessing,Vol.50,No. 9,pp:2128-2142,2002.)。为解决合成孔径雷达(SAR)系统面临的新需求,又将MIMO技术引入到合成孔径雷达系统(参见文献[2]Ender J H G.MIMO-SAR[C]//Proc.ofInt.Radar Symp. (IRS).Cologne,Germany:[s.n.]:pp:580-588,2007.),提出了MIMO-SAR。利用MIMO技术获得多个等效SAR通道,来突破传统单通道SAR系统的技术局限,通过一次照射便可对目标进行成像(参见文献[3]Y.Z.Liu,X.J.Xu,and G.Y.Xu.MIMOradar calibration and imagery for near-field target scattering diagnosis[J].IEEE Transactions on Aerospace and Electronic Systems,Vol.54,No.1,pp: 442-452,2018.)。
将全极化(FP)引入MIMO-SAR系统构成的FP-MIMO-SAR不仅可以对被测目标进行快速的高分辨率成像,还可以获得其极化散射矩阵。现有文献中几乎没有提及到 FP-MIMO-SAR系统。由于FP雷达系统至少具有4个收发通道(HH、HV、VH和VV),各通道间出现的耦合(串扰)以及各通道增益不稳定带来的幅相振荡(通道不平衡)现象都会使得系统接收到的极化信号产生畸变,因此研究FP雷达系统的极化校准问题具有重要的意义。
随着越来越多的星载(参见文献[4]Touzi R,Hawkins.R.K and Gote.S.High-precision Assessment and Calibration of Polarimetric RADARSAT-2SAR UsingTransponder Measurements[J].IEEE Transactions on Geoscience and RemoteSensing,Vol.51,No.1,pp: 487-503,2013.),机载(参见文献[5]A.G.Fore et al.UAVSARpolarimetric calibration[J].IEEE Transactions on Geoscience and RemoteSensing,Vol.53,No.6,pp:3481–3491,2015.)和地基 (参见文献[6]S.Baffelli etal.Polarimetric Calibration of the Ku-Band Advanced Polarimetric RadarInterferometer[J].IEEE Transactions on Geoscience and Remote Sensing,Vol.56,No.4, pp:2295–2311,2018.)FP-SAR系统的使用,大量关于地物信息的极化数据得到收集用于图像解译和定量参数反演。因此FP-SAR必须进行极化校准,才能获取地物目标的真实极化信息。FP-SAR极化校准可分为点目标,分布目标和点目标与分布目标结合的极化校准方法。点目标极化校准通常仅对目标所在的周围区域有效,因此对于FP-SAR系统需要布设较多的目标才能有效完成全场景校准。分布目标定标方法采用成像区域存在的自然分布散射体进行极化校准,方便进行系统极化特性的维护更新,具有良好场景灵活性和适应性(参见文献[7] 陶利,曲圣杰,陈曦.简述极化SAR定标处理技术研究进展[J].遥感技术与应用,No.3,pp: 459-467,2016.)。
发明内容
本发明所要解决的技术问题为:针对FP-MIMO-SAR系统,提出了一种基于RODAPARC和标准金属圆柱校准体的极化校准方法,用于提高系统的测量精度。
本发明采用的技术方案为:一种全极化多输入多输出合成孔径雷达(FP-MIMO-SAR)极化校准方法,该方法利用可旋转双天线有源极化校准器(RODAPARC)和标准金属圆柱定标体实现极化校准,该方法包括如下步骤:
步骤1:利用RODAPARC双站极化散射矩阵(PSM)和可旋转双天线有源极化校准器全极化(PARC-FP)雷达极化校准模型,对FP-MIMO-SAR中N×4个收发通道(N组收发通道、每通道4种极化组合)进行有源极化校准,获得N组极化校准参数;
步骤2:利用标准金属圆柱定标体进行无源极化校准,对N组极化校准参数进行优化,实现雷达系统的辐射定标、串扰和通道不平衡校准。
具体地,所述的RODAPARC双站PSM推导过程如下:
针对双站情况,必须在单站PSM的基础上引入RODAPARC和待校准雷达的收发天线辐射电场。由于RODAPARC和待校准雷达的收发天线均采用喇叭天线,因此可通过惠更斯辐射元简化分析辐射电场的作用;
水平极化惠更斯元的辐射电场为:
Figure BDA0001656213520000021
垂直极化惠更斯元的辐射电场为:
Figure BDA0001656213520000022
与水平极化方向呈φr旋转角度的惠更斯元辐射电场为:
Figure BDA0001656213520000031
其中E0为惠更斯元上的电场值,s为惠更斯元,λ为波长,k为波数,r、θ与φ分别为球坐标系下的径向距离、俯仰和方位角,
Figure BDA0001656213520000032
Figure BDA0001656213520000033
分别为球坐标系下惠更斯元辐射电场的俯仰和方位单位矢量;
由于RODAPARC和待校准雷达的收发天线处于同一水平面(φ=0),并忽略辐射电场前面的系数,则式(29)-(31)可化简为:
Figure BDA0001656213520000034
Figure BDA0001656213520000035
Figure BDA0001656213520000036
其中pe和ph分别为惠更斯元的E面和H面辐射电场;旋转角度为φr的惠更斯元辐射电场可以通过E面和H面辐射电场进行表示。则待校准雷达和RODAPARC发射和接收天线水平面的惠更斯元辐射场为:
Figure BDA0001656213520000037
Figure BDA0001656213520000038
Figure BDA0001656213520000039
Figure BDA00016562135200000310
Figure BDA00016562135200000311
Figure BDA00016562135200000312
其中
Figure BDA00016562135200000313
Figure BDA00016562135200000314
分别为待校准雷达的发射和接收天线惠更斯元的E面和H面辐射电场,
Figure BDA00016562135200000315
Figure BDA00016562135200000316
分别为RODAPARC接收和发射天线惠更斯元在旋转角度为φr时水平向的辐射电场,
Figure BDA00016562135200000317
Figure BDA00016562135200000318
分别为RODAPARC接收和发射天线惠更斯元在E 面和H面的辐射电场,
Figure BDA00016562135200000319
Figure BDA00016562135200000320
分别为球坐标系下待校准雷达的发射和接收天线惠更斯元辐射电场的俯仰和方位单位矢量,
Figure BDA00016562135200000321
Figure BDA00016562135200000322
分别为球坐标系下RODAPARC 的接收和发射天线惠更斯元辐射电场的俯仰和方位单位矢量,θ1为RODAPARC接收天线在待校准雷达发射天线坐标系下的方位角,θ2为待校准雷达发射天线在RODAPARC接收天线坐标系下的方位角,θ3为待校准雷达接收天线在RODAPARC发射天线坐标系下的方位角,θ4为RODAPARC发射天线在待校准雷达接收天线坐标系下的方位角;
根据RODAPARC与雷达收发天线的关系,可以列出4条RODAPARC收发路径上的惠更斯元辐射电场乘积:
Figure BDA0001656213520000041
Figure BDA0001656213520000042
Figure BDA0001656213520000043
Figure BDA0001656213520000044
其中
Figure BDA0001656213520000045
Figure BDA0001656213520000046
分别为待校准雷达的发射和接收天线惠更斯元的E面和H面辐射电场值,
Figure BDA0001656213520000047
Figure BDA0001656213520000048
分别为RODAPARC接收和发射天线惠更斯元在E 面和H面的辐射电场值;
通过对惠更斯元的辐射电场进行口面积分可得到喇叭天线的辐射电场,可得到4条 RODAPARC收发路径等式关系:
Figure BDA0001656213520000049
Figure BDA00016562135200000410
Figure BDA00016562135200000411
Figure BDA00016562135200000412
其中
Figure BDA00016562135200000413
Figure BDA00016562135200000414
分别为雷达发射和接收的水平和垂直极化电场值,Pr和Pt分别为 RODAPARC接收和发射的电场值,
Figure BDA00016562135200000415
Figure BDA00016562135200000416
分别为待校准雷达的发射和接收天线的E面和H面辐射电场值,
Figure BDA00016562135200000417
Figure BDA00016562135200000418
分别为RODAPARC接收和发射天线的E面和H面辐射电场值;
根据RODAPARC的PSM通用表达式:
Figure BDA00016562135200000419
其中,σ为RODAPARC的雷达散射截面,JT为RODAPARC发射的Jones矢量基,JR为接收的Jones矢量基;
可写出RODAPARC双站状态时收发路径的Jones矢量基:
Figure BDA00016562135200000420
Figure BDA00016562135200000421
得到RODAPARC双站PSM表达式为:
Figure BDA00016562135200000422
具体地,所述的PARC-FP雷达极化校准模型推导过程如下:
8参数的FP雷达极化校准模型为:
Figure BDA0001656213520000051
其中,MHH,MHV,MVH,MVV为4种极化状态的测量数据,SHH,SHV,SVH,SVV为4种极化状态的校准后数据,
Figure BDA0001656213520000052
Figure BDA0001656213520000053
代表4种极化组合的通道不平衡,
Figure BDA0001656213520000054
Figure BDA0001656213520000055
代表4种极化组合的串扰,运算符⊙代表矩阵元素之间点乘;
相比于无源极化校准,有源极化校准由于RODAPARC的存在,引入了一些误差。这些误差主要是由RODAPARC收发天线存在的交叉极化引起的。只有当RODAPARC收发天线的交叉极化远远低于被校准系统的交叉极化时,这种误差才可以忽略不计,但这种具有极低交叉极化的喇叭天线,往往因为其他性能的劣势或者成本过高而无法被采用。为了尽可能地减小这种误差引入4个调节因子
Figure BDA0001656213520000056
Figure BDA0001656213520000057
代表RODAPARC自身的各极化通道的串扰,构成具有参数的的极化校准模型:
Figure BDA0001656213520000058
12参数模型完整地表述了利用RODAPARC校准雷达系统的整个过程,但是12个未知量,需要采用12个方程进行求解,更重要的是8个通道串扰根本无法精确地求解。因此对 12参数模型进行化简:
Figure BDA0001656213520000059
由于串扰与调节因子均为很小的量,故省略2阶项,简化为PARC-FP雷达极化校准模型:
Figure BDA00016562135200000510
其中
Figure BDA00016562135200000511
Figure BDA00016562135200000512
a、b、c和d分别为调节系数。
具体地,所述的有源极化校准,包括:确定FP-MIMO-SAR中发射天线和接收天线的位置坐标,对每个通道的双站角和方向图进行补偿,使其等效为单站情况,再通过单站的RODAPARC极化校准方法进行校准。RODAPARC的优点之一就是可以通过双天线的不同姿态组合构成多种RODAPARC的PSM,即可以采用傅里叶分析的极化校准方法和多种静态极化校准的方法,通过有源极化校准可获得带有4个调节系数的极化校准参数。
具体地,所述的无源极化校准,包括:FP-MIMO-SAR对标准的金属圆柱进行测量,并利用有源极化校准得到的极化校准参数对测量数据进行极化校准。通过4个调节系数优化校准后的数据,优化准则为:金属圆柱PSM中为0的极化项校准前后的差值为主要优化条件,其差值越大越好;校准后数据的变化范围为辅助优化条件,保证校准前后的数据变化趋势基本一致。最终确定调节系数,得到系统的全部极化校准参数。
本发明与现有技术相比的优点在于:
(1)现有技术中极少提及MIMO阵列极化校准问题,本发明提出一种基于RODAPARC和标准金属圆柱校准体的极化校准方法,用于解决MIMO阵列的极化校准问题。
(2)本发明基于天线辐射电场推导RODAPARC双站时的PSM,为雷达双站极化校准提供可行方案。
(3)本发明基于8参数FP雷达极化校准模型,进一步将其扩展为PARC-FP雷达极化校准模型,充分考虑RODAPARC自身的串扰,提高极化校准精度。
附图说明
图1为利用RODAPARC对MIMO阵列进行有源极化校准示意图;
图2为RODAPARC双站PSM推导示意图;
图3为通道不平衡随通道的变化曲线;
图4为利用FP-MIMO-SAR获得的金属圆柱未校准全极化图像;
图5为利用FP-MIMO-SAR获得的金属圆柱校准后全极化图像。
具体实施方式
以下结合附图和具体实施例对本发明进行详细描述,但不作为对本发明的限定。
图1为利用RODAPARC对MIMO阵列进行有源极化校准示意图,图2为RODAPARC 双站PSM推导示意图,图3为通道不平衡随通道的变化曲线,图4为利用FP-MIMO-SAR 获得的金属圆柱未校准全极化图像,图5为利用FP-MIMO-SAR获得的金属圆柱校准后全极化图像。
本发明提供一种FP-MIMO-SAR极化校准方法,该方法的具体介绍如下:
如图1所示,FP-MIMO-SAR系统具有线性的天线阵列,共80组收发通道,RODAPARC具有两个可以独立旋转的天线,RODAPARC放置在系统天线阵列的中垂线上,与系统的距离为5.4米。设定系统的工作频率范围为9-11GHz,频点数为401。RODAPARC的优点之一就是可以通过双天线的不同姿态组合构成多种RODAPARC的PSM。
表1RODAPARC的4种极化状态
Figure BDA0001656213520000071
如表1所示,通过旋转RODAPARC的收发天线获得4种极化状态,并利用系统测量得到RODAPARC每种极化状态下的全极化数据。
Figure BDA0001656213520000072
Figure BDA0001656213520000073
Figure BDA0001656213520000074
Figure BDA0001656213520000075
式中
Figure BDA0001656213520000076
Figure BDA0001656213520000077
Figure BDA0001656213520000078
表示16种极化状态下的回波数据,左下标表示FP-MIMO-SAR系统接收信号的极化方向,右下标表示FP-MIMO-SAR系统发射信号的极化方向,H代表水平极化, V代表垂直极化,上标表示RODAPARC对应的极化状态。
确定FP-MIMO-SAR中发射天线和接收天线的位置坐标,对每个通道的双站角和方向图进行补偿,使其等效为单站情况,再通过单站的RODAPARC极化校准方法进行校准。则通道不平衡可表示为
Figure BDA0001656213520000079
Figure BDA0001656213520000081
Figure BDA0001656213520000082
Figure BDA0001656213520000083
串扰可表示为:
Figure BDA0001656213520000084
Figure BDA0001656213520000085
Figure BDA0001656213520000086
Figure BDA0001656213520000087
FP-MIMO-SAR对标准的900金属圆柱进行测量,并利用有源极化校准得到的极化校准参数对测量数据进行极化校准。通过4个调节系数优化校准后的数据,优化准则为:金属圆柱PSM中为0的极化项校准前后的差值为主要优化条件,其差值越大越好;校准后数据的变化范围为辅助优化条件,保证校准前后的数据变化趋势基本一致。最终确定调节系数,得到系统的全部极化校准参数。为验证校准效果,利用获得的全极化校准参数,对750金属圆柱的测量数据进行校准。
如图3所示为750金属圆柱校准前后通道不平衡随通道的变化曲线,校准前的通道不平衡范围为(-1dB,2dB),校准后的通道不平衡范围为(-0.5dB,0.5dB)。
如图4所示为750金属圆柱未校准的全极化图像,归一化的HV极化为-35.5dB,归一化的HV极化为-31.1dB。
如图5所示为750金属圆柱校准后的全极化图像,归一化的HV极化为-39.7dB,归一化的HV极化为-37.2dB。
由上述本发明较佳实施例可知,应用本发明的优点为:本发明提出了一种基于RODAPARC和标准金属圆柱校准体的极化校准方法,可用于解决MIMO阵列的极化校准问题。推导了RODAPARC双站下的PSM,为雷达双站极化校准提供可行方案。基于8参数 FP雷达极化校准模型,进一步将其扩展为PARC-FP雷达极化校准模型,充分考虑 RODAPARC自身的串扰,提高极化校准精度。
当然,本发明还可有其他多种实施例,在不背离本发明精神及其实质的情况下,熟悉本领域的技术人员依然可以对前述实施例所记载的技术方法进行修改,或者对其中部分或者全部技术特征进行等同替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (2)

1.一种全极化多输入多输出合成孔径雷达FP-MIMO-SAR极化校准方法,其特征在于,该方法利用可旋转双天线有源极化校准器RODAPARC和标准金属圆柱定标体实现极化校准,包括如下步骤:
步骤1:利用RODAPARC双站极化散射矩阵(PSM)和可旋转双天线有源极化校准器全极化PARC-FP雷达极化校准模型,对FP-MIMO-SAR中N×4个N组收发通道、每通道4种极化组合进行有源极化校准,获得N组极化校准参数;
步骤2:利用标准金属圆柱定标体进行无源极化校准,对N组极化校准参数进行优化,实现雷达系统的辐射定标、串扰和通道不平衡校准;
所述的RODAPARC双站PSM推导过程如下:
针对双站情况,必须在单站PSM的基础上引入RODAPARC和待校准雷达的收发天线辐射电场,由于RODAPARC和待校准雷达的收发天线均采用喇叭天线,因此可通过惠更斯辐射元简化分析辐射电场的作用;
水平极化惠更斯元的辐射电场为:
Figure FDA0003057451260000011
垂直极化惠更斯元的辐射电场为:
Figure FDA0003057451260000012
与水平极化方向呈φr旋转角度的惠更斯元辐射电场为:
Figure FDA0003057451260000013
其中E0为惠更斯元上的电场值,s为惠更斯元,λ为波长,k为波数,r,θ与φ分别为球坐标系下的径向距离,俯仰和方位角,
Figure FDA0003057451260000014
Figure FDA0003057451260000015
分别为球坐标系下惠更斯元辐射电场的俯仰和方位单位矢量;
由于RODAPARC和待校准雷达的收发天线处于同一水平面,φ=0,并忽略辐射电场前面的系数,则式(1)-(2)可化简为:
Figure FDA0003057451260000016
Figure FDA0003057451260000017
Figure FDA0003057451260000018
其中pe与ph分别为惠更斯元的E面和H面辐射电场;旋转角度为φr的惠更斯元辐射电场可以通过E面和H面辐射电场进行表示,则待校准雷达和RODAPARC发射和接收天线水平面的惠更斯元辐射场为:
Figure FDA0003057451260000021
Figure FDA0003057451260000022
Figure FDA0003057451260000023
Figure FDA0003057451260000024
Figure FDA0003057451260000025
Figure FDA0003057451260000026
其中
Figure FDA0003057451260000027
Figure FDA0003057451260000028
分别为待校准雷达的发射和接收天线惠更斯元的E面和H面辐射电场,
Figure FDA0003057451260000029
Figure FDA00030574512600000210
分别为RODAPARC接收和发射天线惠更斯元在旋转角度为φr时水平向的辐射电场,
Figure FDA00030574512600000211
Figure FDA00030574512600000212
分别为RODAPARC接收和发射天线惠更斯元在E面和H面的辐射电场,
Figure FDA00030574512600000213
Figure FDA00030574512600000214
分别为球坐标系下待校准雷达的发射和接收天线惠更斯元辐射电场的俯仰和方位单位矢量,
Figure FDA00030574512600000215
Figure FDA00030574512600000216
分别为球坐标系下RODAPARC的接收和发射天线惠更斯元辐射电场的俯仰和方位单位矢量,θ1为RODAPARC接收天线在待校准雷达发射天线坐标系下的方位角,θ2为待校准雷达发射天线在RODAPARC接收天线坐标系下的方位角,θ3为待校准雷达接收天线在RODAPARC发射天线坐标系下的方位角,θ4为RODAPARC发射天线在待校准雷达接收天线坐标系下的方位角;
根据RODAPARC与待校准雷达收发天线的关系,可以列出4条RODAPARC收发路径上的惠更斯元辐射电场乘积:
Figure FDA00030574512600000217
Figure FDA00030574512600000218
Figure FDA00030574512600000219
Figure FDA00030574512600000220
其中
Figure FDA00030574512600000221
Figure FDA00030574512600000222
分别为待校准雷达的发射和接收天线惠更斯元的E面和H面辐射电场值,
Figure FDA00030574512600000223
Figure FDA00030574512600000224
分别为RODAPARC接收和发射天线惠更斯元在E面和H面的辐射电场值;
通过对惠更斯元的辐射电场进行口面积分可得到喇叭天线的辐射电场,可得到4条RODAPARC收发路径等式关系:
Figure FDA0003057451260000031
Figure FDA0003057451260000032
Figure FDA0003057451260000033
Figure FDA0003057451260000034
其中
Figure FDA0003057451260000035
Figure FDA0003057451260000036
分别为雷达发射和接收的水平和垂直极化电场值,Pr和Pt分别为RODAPARC接收和发射的电场值,
Figure FDA0003057451260000037
Figure FDA0003057451260000038
分别为待校准雷达的发射和接收天线的E面和H面辐射电场值,
Figure FDA0003057451260000039
Figure FDA00030574512600000310
分别为RODAPARC接收和发射天线的E面和H面辐射电场值;
根据RODAPARC的PSM通用表达式:
Figure FDA00030574512600000311
其中,σ为RODAPARC的雷达散射截面,JT为RODAPARC发射的Jones矢量基,JR为接收的Jones矢量基;
可写出RODAPARC双站状态时收发路径的Jones矢量基:
Figure FDA00030574512600000312
Figure FDA00030574512600000313
得到RODAPARC双站PSM表达式为:
Figure FDA00030574512600000314
所述的PARC-FP雷达极化校准模型推导过程如下:
8参数的FP雷达极化校准模型为:
Figure FDA00030574512600000315
其中,MHH,MHV,MVH,MVV为4种极化状态的测量数据,SHH,SHV,SVH,SVV为4种极化状态的校准后数据,
Figure FDA00030574512600000316
Figure FDA00030574512600000317
代表4种极化组合的通道不平衡,
Figure FDA00030574512600000318
Figure FDA00030574512600000319
代表4种极化组合的串扰,运算符⊙代表矩阵元素之间点乘;
引入4个调节因子
Figure FDA00030574512600000320
Figure FDA00030574512600000321
代表RODAPARC自身的各极化通道的串扰,构成具有参数的的极化校准模型:
Figure FDA0003057451260000041
对12参数模型进行化简:
Figure FDA0003057451260000042
由于串扰与调节因子均为很小的量,故省略2阶项,简化为PARC-FP雷达极化校准模型:
Figure FDA0003057451260000043
其中
Figure FDA0003057451260000044
Figure FDA0003057451260000045
a、b、c和d分别为调节系数;
所述的无源极化校准,包括:FP-MIMO-SAR对标准金属圆柱定标体进行测量,并利用有源极化校准得到的极化校准参数对测量数据进行极化校准,通过4个调节系数优化校准后的数据,优化准则为:金属圆柱PSM中为0的极化项校准前后的差值为主要优化条件,其差值越大越好;校准后数据的变化范围为辅助优化条件,保证校准前后的数据变化趋势基本一致,最终确定调节系数,得到系统的全部极化校准参数。
2.根据权利要求1所述的一种全极化多输入多输出合成孔径雷达FP-MIMO-SAR极化校准方法,其特征在于,所述的有源极化校准,包括:确定FP-MIMO-SAR中发射天线和接收天线的位置坐标,对每个通道的双站角和方向图进行补偿,使其等效为单站情况,再通过单站的RODAPARC极化校准方法进行校准,RODAPARC的优点之一就是可以通过双天线的不同姿态组合构成多种RODAPARC的PSM,即可以采用傅里叶分析的极化校准方法和多种静态极化校准的方法,通过有源极化校准可获得带有4个调节系数的极化校准参数。
CN201810441902.7A 2018-05-10 2018-05-10 一种全极化多输入多输出合成孔径雷达(fp-mimo-sar)的极化校准方法 Active CN108427104B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810441902.7A CN108427104B (zh) 2018-05-10 2018-05-10 一种全极化多输入多输出合成孔径雷达(fp-mimo-sar)的极化校准方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810441902.7A CN108427104B (zh) 2018-05-10 2018-05-10 一种全极化多输入多输出合成孔径雷达(fp-mimo-sar)的极化校准方法

Publications (2)

Publication Number Publication Date
CN108427104A CN108427104A (zh) 2018-08-21
CN108427104B true CN108427104B (zh) 2021-06-29

Family

ID=63162677

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810441902.7A Active CN108427104B (zh) 2018-05-10 2018-05-10 一种全极化多输入多输出合成孔径雷达(fp-mimo-sar)的极化校准方法

Country Status (1)

Country Link
CN (1) CN108427104B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109959902B (zh) * 2018-12-26 2021-04-09 国网浙江省电力有限公司 一种雷达极化天线校准曲线测试方法
CN111103572B (zh) * 2019-12-25 2023-11-07 中国科学院遥感与数字地球研究所 基于分布目标的星载sar极化定标方法及设备
CN111983575A (zh) * 2020-08-17 2020-11-24 北京环境特性研究所 一种有源和无源融合定标方法及装置
CN113050055B (zh) * 2021-03-25 2023-02-24 北京环境特性研究所 一种有源定标设备等效rcs标定方法及系统
CN113765600B (zh) * 2021-09-18 2022-10-14 上海交通大学 一种分布式阵列天线的收发参数自矫正方法
CN117214843B (zh) * 2023-11-07 2024-01-12 中国科学院空天信息创新研究院 一种基于定标器组的全极化sar系统性能评估方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104614715A (zh) * 2015-03-05 2015-05-13 北京航空航天大学 一种可用于目标双站雷达散射截面测量定标与极化校准装置及其测量校准方法
CN104659498A (zh) * 2015-03-05 2015-05-27 北京航空航天大学 一种可旋转双天线有源极化校准装置及其极化校准方法
CN104678370A (zh) * 2015-03-05 2015-06-03 北京航空航天大学 用于估计和补偿极化校准二面角反射器双站散射影响的方法
WO2017095883A1 (en) * 2015-12-01 2017-06-08 Raytheon Company Array and module calibration with delay line
CN106970365A (zh) * 2017-05-12 2017-07-21 西安华腾微波有限责任公司 一种天气雷达机外有源标定设备及标定方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7199753B2 (en) * 2005-06-16 2007-04-03 Raytheon Company Calibration method for receive only phased array radar antenna
CN203480023U (zh) * 2013-08-08 2014-03-12 深圳光启创新技术有限公司 回波对消系统、罩壳

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104614715A (zh) * 2015-03-05 2015-05-13 北京航空航天大学 一种可用于目标双站雷达散射截面测量定标与极化校准装置及其测量校准方法
CN104659498A (zh) * 2015-03-05 2015-05-27 北京航空航天大学 一种可旋转双天线有源极化校准装置及其极化校准方法
CN104678370A (zh) * 2015-03-05 2015-06-03 北京航空航天大学 用于估计和补偿极化校准二面角反射器双站散射影响的方法
WO2017095883A1 (en) * 2015-12-01 2017-06-08 Raytheon Company Array and module calibration with delay line
CN106970365A (zh) * 2017-05-12 2017-07-21 西安华腾微波有限责任公司 一种天气雷达机外有源标定设备及标定方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"An Investigation of Bistatic Calibration Techniques";Christopher 等;《IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING》;20051031;第43卷(第10期);第2185-2191页 *
"混沌码正交频分复用SAR抗干扰能力研究";冯祥芝 等;《系统仿真学报》;20091130;第21卷(第22期);第459-467页 *
"简述极化SAR定标处理技术研究进展";陶利 等;《遥感技术与应用》;20160630;第31卷(第3期);第7359-7363页 *

Also Published As

Publication number Publication date
CN108427104A (zh) 2018-08-21

Similar Documents

Publication Publication Date Title
CN108427104B (zh) 一种全极化多输入多输出合成孔径雷达(fp-mimo-sar)的极化校准方法
US10663563B2 (en) On-site calibration of array antenna systems
Pupillo et al. Medicina array demonstrator: calibration and radiation pattern characterization using a UAV-mounted radio-frequency source
CN106848546A (zh) 一种宽带双极化天线阵列装置及高分辨测向方法
CN110764068A (zh) 一种多探头准远场电磁散射截面(rcs)外推测试系统
CN106654507B (zh) 基于宽带双极化天线阵列的相位干涉仪的测向方法
CN111641464B (zh) 基于阵列波束扫描的相控阵天线初始幅度和相位检测方法
US20140292578A1 (en) Beam steering antenna method for unmanned vehicle
Fulton et al. Calibration of a digital phased array for polarimetric radar
CN106483494A (zh) 基于空间取样天线阵列的全极化干涉仪及其参数估计方法
US11171416B2 (en) Multi-element antenna array with integral comparison circuit for phase and amplitude calibration
Schvartzman et al. Holographic back-projection method for calibration of fully digital polarimetric phased array radar
Jha The millimeter Wave (mmW) radar characterization, testing, verification challenges and opportunities
CN109905185B (zh) 一种基于飞行器的全空域相控阵天线校准系统及方法
Döring et al. Highly accurate calibration target for multiple mode SAR systems
Knott et al. SAR experiments using a conformal antenna array radar demonstrator
Awasthi et al. Ultra-Wideband Patch Antenna Array With an Inclined Proximity Coupled Feed for Small Unmanned Aircraft RADAR Applications
KR101167097B1 (ko) 부배열 근접 전계 데이터를 이용한 능동 위상배열 안테나 복사소자의 위상 획득 방법
Sharma et al. Mutual coupling compensation in circular dipole array for FM based passive coherent location radar
Zhang et al. A modified model for quasi-monostatic ground penetrating radar
Herndon et al. Self-Calibration of the Horus All-Digital Phased Array Using Mutual Coupling
Zhu et al. Pattern performance of active phased array antenna for Gaofen-3 satellite
Mi et al. SAR Antenna Pattern Measurement by Internal Calibration Method for GF‐3 Satellite
Foged et al. Higher order versus first order Probe Correction techniques applied to experimental spherical NF antenna measurements
Lan et al. A UAV-based measurement method for three-dimensional antenna radiation pattern

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant