CN108426782A - The lower damage of rock evolution ultrasonic monitor device of multi- scenarios method effect - Google Patents

The lower damage of rock evolution ultrasonic monitor device of multi- scenarios method effect Download PDF

Info

Publication number
CN108426782A
CN108426782A CN201810160510.3A CN201810160510A CN108426782A CN 108426782 A CN108426782 A CN 108426782A CN 201810160510 A CN201810160510 A CN 201810160510A CN 108426782 A CN108426782 A CN 108426782A
Authority
CN
China
Prior art keywords
rock
transparent
monitor device
digital display
enclosed hood
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810160510.3A
Other languages
Chinese (zh)
Inventor
谭云亮
马庆
刘学生
赵增辉
于凤海
徐强
范德源
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University of Science and Technology
Original Assignee
Shandong University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University of Science and Technology filed Critical Shandong University of Science and Technology
Priority to CN201810160510.3A priority Critical patent/CN108426782A/en
Publication of CN108426782A publication Critical patent/CN108426782A/en
Priority to PCT/CN2018/125976 priority patent/WO2019165846A1/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/02Details
    • G01N3/06Special adaptations of indicating or recording means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • G01N3/18Performing tests at high or low temperatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0014Type of force applied
    • G01N2203/0016Tensile or compressive
    • G01N2203/0019Compressive
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/003Generation of the force
    • G01N2203/0042Pneumatic or hydraulic means
    • G01N2203/0048Hydraulic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/0202Control of the test
    • G01N2203/0208Specific programs of loading, e.g. incremental loading or pre-loading
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/022Environment of the test
    • G01N2203/0222Temperature
    • G01N2203/0226High temperature; Heating means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/022Environment of the test
    • G01N2203/0236Other environments
    • G01N2203/0242With circulation of a fluid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/0658Indicating or recording means; Sensing means using acoustic or ultrasonic detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/067Parameter measured for estimating the property
    • G01N2203/0676Force, weight, load, energy, speed or acceleration

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

The present invention proposes a kind of lower damage of rock evolution ultrasonic monitor device of multi- scenarios method effect, including stress loading unit, aqueous vapor generating unit, water-gas circulation unit and computer;Aqueous vapor generating unit connects stress loading unit through water-gas circulation unit, and Computer signal connects each sensor.Beneficial effects of the present invention:By computer proof stress loading unit to rock sample stress loading;Aqueous vapor generating unit is controlled by computer and generates setting humidity, the aqueous vapor of temperature, and the influence to rock sample different humidity, temperature change is realized by water-gas circulation unit;Effect of the different chemical solutions to rock sample is realized by replacing different chemical solutions;While different stress, different humidity, different temperatures, different chemical solution coupling rock samples, monitoring ultrasonic experiment, the long term stability problem under separately or cooperatively being acted on by stress, humidity, temperature and chemical attack with quantitative study rock are carried out to rock sample.

Description

The lower damage of rock evolution ultrasonic monitor device of multi- scenarios method effect
Technical field
The present invention relates to geotechnical engineering experimental technique fields, and acting on lower damage of rock more particularly to a kind of multi- scenarios method drills Change ultrasonic monitor device.
Background technology
The destruction research of rock is one of the project of rock mechanics field forefront under the conditions of multi- scenarios method, is that core is useless Expect the base of numerous rock engineerings such as underground storage, underground energy storage, carbon dioxide underground storage, geothermal exploitation, oil exploitation Plinth Journal of Sex Research project has highly important scientific meaning and actual application value.In numerous geotechnical engineerings, rock is always located In certain crustal stress, epidemic disaster collective effect under, and the various chemical substances contained in the aqueous vapor of underground also will be to rock Corroded, is had a significant impact to the destruction of rock material.Influence of the temperature to rock mainly passes through its macroscopic property body Existing, the variation of temperature can generate prodigious stress in rock interior, and then influence its mechanical property;The long duration of action of humidity, Different degrees of deterioration will be caused to the various intensive parameters of rock, on the other hand, the deterioration of rock strength parameter will also be led Moisture field is caused to change.It is therefore desirable to carry out dynamic characteristic test of the rock under multi- scenarios method, analysis rock is in Duo Chang Problem steady in a long-term under coupling condition.
Invention content
The purpose of the present invention is to provide a kind of multi- scenarios methods to act on lower damage of rock evolution ultrasonic monitor device, realizes To rock material in the case where different stress, different humidity, different temperatures, different chemical solution separately or cooperatively act ons damage development rule The test of rule.
The present invention provides a kind of lower damage of rock evolution ultrasonic monitor device of multi- scenarios method effect, under multi- scenarios method effect Damage of rock evolution ultrasonic monitor device includes stress loading unit, aqueous vapor generating unit, water-gas circulation unit and computer; Stress loading unit includes supporting rack, transparent enclosed hood, seaming chuck pedestal, push-down head pedestal, telescopic oil cylinder, rock sample and oil Press pump, transparent enclosed hood is provide with around supporting rack, and the upper end of supporting rack is arranged seaming chuck pedestal, is provided on seaming chuck pedestal just Property seaming chuck, the lower end of supporting rack is arranged telescopic oil cylinder, push-down head pedestal, push-down head pedestal is arranged on the telescopic end of telescopic oil cylinder On be provided with rigid push-down head, the lower surface of rigid seaming chuck is provided with ultrasonic wave transmitting probe, the upper surface of rigid push-down head It is provided with ultrasonic wave receiving transducer, rock sample is set between rigid seaming chuck and rigid push-down head, oil pressure pump is through oil pipeline Telescopic oil cylinder is connected, is provided with digital display oil pressure gauge on oil pipeline, the top in transparent enclosed hood is provided with the first temperature digital display Meter and the first digital display hygrometer;Aqueous vapor generating unit includes clear solution bottle, and chemical solution is filled in clear solution bottle, transparent Bottom in solution bottle is provided with bubbling heater, and the top in clear solution bottle is provided with the second digital display thermometer and the second number Aobvious hygrometer;Water-gas circulation unit includes air inlet pipeline and return line, and one end of air inlet pipeline connects clear solution bottle, air inlet The other end of pipeline connects transparent enclosed hood, is provided with the first air pump and air intake valve on air inlet pipeline, and the one of return line End connection clear solution bottle, the other end of return line connect transparent enclosed hood, be provided in return line the second air pump and Return air valve;Computer is connected separately ultrasonic wave transmitting probe, ultrasonic wave receiving transducer, oil pressure pump, the first temperature digital display Meter, the first digital display hygrometer, bubbling heater, the second digital display thermometer and the second digital display hygrometer.
Further, having heaters, wind turbine and several gas blow pipes, wind turbine in bubbling heater are set and are connected with blast pipe The end of road and air supply pipeline, air inlet pipeline is located at chemical solution ullage, and wind turbine connects several air blowings through air supply pipeline Pipe, computer are connected separately heater and wind turbine.
Further, the other end of air inlet pipeline connects the lower end of transparent enclosed hood, and the other end connection of return line is saturating The upper end of bright enclosed hood.
Further, ultrasonic wave transmitting probe is embedded in the lower surface of rigid seaming chuck, and ultrasonic wave receiving transducer is embedded in The upper surface of rigid push-down head.
Further, transparent enclosed hood is made of transparent corrosion-resistant and high-temperature resistant glass material, and the lower end of transparent enclosed hood is set Installation opening is set, transparent enclosed hood is detachably connected push-down head pedestal through installation opening.
Further, clear solution bottle is made of transparent corrosion-resistant and high-temperature resistant glass material.
Further, air inlet pipeline, return line are made of transparent corrosion-resistant and high-temperature resistant material.
Further, the both sides above clear solution bottle are respectively arranged with inlet pipe connection and return-air connecting tube, and air inlet connects One end of connection air inlet pipeline is taken over, return-air connecting tube connects one end of return line.
Compared with prior art, the lower damage of rock evolution ultrasonic monitor device of multi- scenarios method effect of the invention have with Lower features and advantages:
The lower damage of rock evolution ultrasonic monitor device of multi- scenarios method effect of the present invention, is added by computer proof stress Carrier unit is to rock sample stress loading;Aqueous vapor generating unit is controlled by computer and generates setting humidity, the aqueous vapor of temperature, is led to Cross influence of the water-gas circulation unit realization to rock sample different humidity, temperature change;It is realized by replacing different chemical solutions Effect of the different chemical solutions to rock sample;Make in different stress, different humidity, different temperatures, different chemical solution couplings While with rock sample, monitoring ultrasonic experiment is carried out to rock sample, with quantitative study rock by stress, humidity, temperature And chemical attack separately or cooperatively act under long term stability problem.
After the specific implementation mode of the present invention is read in conjunction with the figure, the features and advantages of the invention will become clearer.
Description of the drawings
In order to more clearly explain the embodiment of the invention or the technical proposal in the existing technology, to embodiment or will show below There is attached drawing needed in technology description to be briefly described, it should be apparent that, the accompanying drawings in the following description is the present invention Some embodiments for those of ordinary skill in the art without creative efforts, can also basis These attached drawings obtain other attached drawings.
Fig. 1 is the structural representation of the lower damage of rock evolution ultrasonic monitor device of multi- scenarios method of embodiment of the present invention effect Figure;
Wherein, 1, computer, 2, rock sample, 3, air intake valve, 4, air inlet pipeline, the 5, first air pump, 6, oil pressure pump, 7, digital display oil pressure gauge, 8, inlet pipe connection, the 9, second digital display thermometer, the 10, second digital display hygrometer, 11, bubbling heater, 12, return-air connecting tube, the 13, first digital display thermometer, the 14, first digital display hygrometer, 15, transparent enclosed hood, 16, seaming chuck bottom Seat, 17, rigid seaming chuck, 18, rigid push-down head, 19, telescopic oil cylinder, 20, oil pipeline, 21, ultrasonic wave transmitting probe, 22, Ultrasonic wave receiving transducer, 23, return air valve, the 24, second air pump, 25, return line, 26, clear solution bottle, 27, push-down head Pedestal.
Specific implementation mode
As shown in Figure 1, the present embodiment provides a kind of multi- scenarios methods to act on lower damage of rock evolution ultrasonic monitor device, packet Include stress loading unit, aqueous vapor generating unit, water-gas circulation unit and computer 1 etc..
Stress loading unit includes supporting rack, transparent enclosed hood 15, seaming chuck pedestal 16, push-down head pedestal 27, flexible oil Cylinder 19, rock sample 2 and oil pressure pump 6 etc..Transparent enclosed hood 15 is provide with around above supporting rack, transparent enclosed hood 15 is by transparent Corrosion-resistant and high-temperature resistant glass material is made, and installation opening is arranged in the lower end of transparent enclosed hood 15, and transparent enclosed hood 15 can through installation opening Dismantling connection push-down head pedestal 27.Seaming chuck pedestal 16 is assembled in the upper end of supporting rack, assembles on seaming chuck pedestal 16 and is pressed in rigidity First 17.Telescopic oil cylinder 19 is arranged in the lower end of supporting rack, and push-down head pedestal 27, push-down head bottom are assembled on the telescopic end of telescopic oil cylinder 19 Assembly rigidity push-down head 18 on seat 27.The lower surface of rigid seaming chuck 17 is embedded with ultrasonic wave transmitting probe 21, rigid push-down head 18 upper surface is embedded with ultrasonic wave receiving transducer 22, for rock examination to be clamped between rigid seaming chuck 17 and rigid push-down head 18 Part 2.Oil pressure pump 6 connects telescopic oil cylinder 19 through oil pipeline 20, and digital display oil pressure gauge 7 is provided on oil pipeline 20.It is transparent closed Top in cover 15 is provided with the first digital display thermometer 13 and the first digital display hygrometer 14.
Aqueous vapor generating unit includes clear solution bottle 26, and clear solution bottle 26 is by transparent corrosion-resistant and high-temperature resistant glass material system At.Chemical solution is filled in clear solution bottle 26, the bottom in clear solution bottle 26 is provided with bubbling heater 11, and bubbling adds Having heaters, wind turbine and several gas blow pipes, wind turbine are set in hot device 11 and are connected with air inlet pipeline and air supply pipeline, air inlet pipeline End be located at chemical solution ullage, wind turbine connects several gas blow pipes through air supply pipeline.It is upper in clear solution bottle 26 Side is provided with the second digital display thermometer 9 and the second digital display hygrometer 10.
Water-gas circulation unit includes air inlet pipeline 4 and return line 25, and air inlet pipeline 4, return line 25 are by transparent resistance to Corrosion heat-resisting material is made.The both sides of the top of clear solution bottle 26 are respectively arranged with inlet pipe connection 8 and return-air connecting tube 12, one end of air inlet pipeline 4 connects clear solution bottle 26 through inlet pipe connection 8, and the other end connection of air inlet pipeline 4 is transparent closed 15 lower end is covered, the first air pump 5 and air intake valve 3, one end cooled via return air connection of return line 25 are provided on air inlet pipeline 4 Pipe 12 connects clear solution bottle 26, and the other end of return line 25 connects the upper end of transparent enclosed hood 15, is set in return line 25 It is equipped with the second air pump 24 and return air valve 23.
Computer 1 is respectively through signal cable signal connection ultrasonic wave transmitting probe 21, ultrasonic wave receiving transducer 22, oil pressure pump 6, the first digital display thermometer 13, the first digital display hygrometer 14, the heater in bubbling heater 11 and wind turbine, the second temperature digital display Meter 9 and the second digital display hygrometer 10.
The lower damage of rock evolution ultrasonic monitor device of multi- scenarios method effect of the present embodiment, the use process is as follows:
(1) it utilizes core bit to obtain underground core sample, chooses intact, lossless and original internal structural integrity core Sample is processed into standard cylindrical rock sample 2, by rock sample 2 be clamped in rigid seaming chuck 17 and rigid push-down head 18 it Between.
(2) pass through signal cable in ultrasonic wave transmitting probe 21, the ultrasonic wave receiving transducer 22 of about 2 both sides of rock sample It realizes that data are connected with computer 1, is used for recording in real time being received to ultrasonic wave by the transmitting ultrasonic wave of ultrasonic wave transmitting probe 21 and visit First 22 receive the time of ultrasonic wave, and preserve processing and analysis that related data carries out the later stage.
(3) the first digital display thermometer 13 and the first digital display hygrometer 14 of top in transparent enclosed hood 15 are passed through into signal electricity Cable is connected with 1 data of computer, and testing crew can check the first digital display thermometer 13 and the first digital display by transparent enclosed hood 15 The reading of hygrometer 14 determines the temperature and humidity in transparent enclosed hood 15.Transparent enclosed hood 15 is located on supporting rack, it is close The installation opening connection push-down head pedestal 27 for closing 15 lower section of cover, so as to confined space be formed around supporting rack, by 66 sum number of oil pressure pump Aobvious oil pressure gauge 7 is connected on the bottom of telescopic oil cylinder 19 by oil pipeline 20, air inlet pipeline 4 and return line 25 is connected to transparent On enclosed hood 15.
(4) by bubbling heater 11 by signal cable and 1 data connection of computer, by the of 26 top of clear solution bottle Two digital display thermometers 9 and the second digital display hygrometer 10 are by signal cable and 1 data connection of computer, air inlet pipeline 4 and return-air Pipeline 25 connects clear solution bottle 26 through inlet pipe connection 8 and return-air connecting tube 12 respectively.
(5) entering the control interface of 1 cyclelog of computer, setting ultrasonic wave transmitting probe 21 emits ultrasonic wave, from The time that the transmitting ultrasonic wave of ultrasonic wave transmitting probe 21 receives excusing from death wave to ultrasonic wave receiving transducer 22 is denoted as Δ t0, rock examination The length of part 2 is L, therefore can basisThe ultrasonic wave that the first beginning and end start before stress loading experiment is calculated to exist The velocity of wave v of propagation in rock sample 20
(6) enter the control interface of 1 cyclelog of computer, the humidity value and temperature of setting clear solution bottle 26 Value, computer 1 control bubbling heater 11 and so that solution bottle 26 is reached according to the second digital display thermometer 9 and the second digital display hygrometer 10 To test requirements document humidity and temperature when, open return air valve 23, air intake valve 3 and the first air pump 5 and the second air pump 24, The aqueous vapor (being mixed with chemical reagent particle) for being mixed with certain temperature and humidity is pressed into transparent enclosed hood 15 by the first air pump 5, The aqueous vapor in transparent enclosed hood 15 is taken away so that aqueous vapor forms cycle by the second air pump 24.Testing crew can be by transparent molten Liquid bottle 26 checks the reading of the second digital display thermometer 9 and the second digital display hygrometer 10, determine temperature in clear solution bottle 26 and Humidity.Aqueous vapor is by lower section of the air inlet pipeline 4 through transparent enclosed hood 15 into transparent enclosed hood 15 and gradually in transparent enclosed hood 15 Interior rising exits into return line 25 from the top of transparent enclosed hood 15, and aqueous vapor is made to be full of entire transparent enclosed hood 15, so that Rock sample 2 is wrapped up by aqueous vapor.Computer 1 monitors transparent closed according to the first digital display thermometer 13 and the first digital display hygrometer 14 Temperature and humidity in cover 15, computer 1 and then adjusting control bubbling heater 11 again, make clear solution bottle 26 with it is transparent closed The humidity value and temperature value of cover 15 are close.
(7) by the control interface of 1 cyclelog of computer, start oil pressure pump 6 and stretched according to the control of digital display oil pressure gauge 7 Contracting oil cylinder 19 applies setting pressure, carries out uniaxial compression to carry out stress loading experiment to rock sample 2, is remembered by computer 1 The time for recording transmitting and the reception of ultrasonic wave transmitting probe 21 and ultrasonic wave receiving transducer 22 emits from ultrasonic wave transmitting probe 21 The time that ultrasonic wave receives excusing from death wave to ultrasonic wave receiving transducer 22 is Δ t1, the length of rock sample 2 is L, therefore can be with According toThe velocity of wave of the ultrasonic wave in 2 Failure under Uniaxial Compression of rock sample is calculatedKeep predetermined stress not Become, every time Δ T, measures a time ultrasonic velocity, be denoted asDefine damage variableBy stress- Experiment under humidity-temperature-chemical coupling effect obtains the value (t of the damage variable under a series of different moments1,D1), (t2, D2),…(tn,Dn), it is fitted to obtain damage evolution equation D=f (t) by data.
The lower damage of rock evolution ultrasonic monitor device of multi- scenarios method effect of the present embodiment, is answered by the control of computer 1 Power loading unit carries out stress loading experiment to rock sample 2;It is wet that the generation setting of aqueous vapor generating unit is controlled by computer 1 The aqueous vapor of degree, temperature realizes the influence to rock sample 2 different humidity, temperature change by water-gas circulation unit;Pass through replacement Different chemical solutions realize effect of the different chemical solutions to rock sample 2 in clear solution bottle 26;In different stress, DIFFERENT WET While degree, different temperatures, different chemical solution coupling rock sample 2, monitoring ultrasonic examination is carried out to rock sample 2 It tests, the long-time stability under separately or cooperatively being acted on by stress, humidity, temperature and chemical attack with quantitative study rock are asked Topic.
Certainly, above description is not limitation of the present invention, and the present invention is also not limited to the example above, this technology neck The variations, modifications, additions or substitutions that the technical staff in domain is made in the essential scope of the present invention should also belong to the present invention's Protection domain.

Claims (8)

1. a kind of lower damage of rock evolution ultrasonic monitor device of multi- scenarios method effect, it is characterised in that:Under multi- scenarios method effect Damage of rock evolution ultrasonic monitor device includes stress loading unit, aqueous vapor generating unit, water-gas circulation unit and computer; Stress loading unit includes supporting rack, transparent enclosed hood, seaming chuck pedestal, push-down head pedestal, telescopic oil cylinder, rock sample and oil Press pump, transparent enclosed hood is provide with around supporting rack, and the upper end of supporting rack is arranged seaming chuck pedestal, is provided on seaming chuck pedestal just Property seaming chuck, the lower end of supporting rack is arranged telescopic oil cylinder, push-down head pedestal, push-down head pedestal is arranged on the telescopic end of telescopic oil cylinder On be provided with rigid push-down head, the lower surface of rigid seaming chuck is provided with ultrasonic wave transmitting probe, the upper surface of rigid push-down head It is provided with ultrasonic wave receiving transducer, rock sample is set between rigid seaming chuck and rigid push-down head, oil pressure pump is through oil pipeline Telescopic oil cylinder is connected, is provided with digital display oil pressure gauge on oil pipeline, the top in transparent enclosed hood is provided with the first temperature digital display Meter and the first digital display hygrometer;Aqueous vapor generating unit includes clear solution bottle, and chemical solution is filled in clear solution bottle, transparent Bottom in solution bottle is provided with bubbling heater, and the top in clear solution bottle is provided with the second digital display thermometer and the second number Aobvious hygrometer;Water-gas circulation unit includes air inlet pipeline and return line, and one end of air inlet pipeline connects clear solution bottle, air inlet The other end of pipeline connects transparent enclosed hood, is provided with the first air pump and air intake valve on air inlet pipeline, and the one of return line End connection clear solution bottle, the other end of return line connect transparent enclosed hood, be provided in return line the second air pump and Return air valve;Computer is connected separately ultrasonic wave transmitting probe, ultrasonic wave receiving transducer, oil pressure pump, the first temperature digital display Meter, the first digital display hygrometer, bubbling heater, the second digital display thermometer and the second digital display hygrometer.
2. the lower damage of rock evolution ultrasonic monitor device of multi- scenarios method effect according to claim 1, it is characterised in that: Having heaters, wind turbine and several gas blow pipes, wind turbine are set in bubbling heater and are connected with air inlet pipeline and air supply pipeline, is entered the wind The end of pipeline is located at chemical solution ullage, and wind turbine connects several gas blow pipes through air supply pipeline, and computer distinguishes signal Connect heater and wind turbine.
3. the lower damage of rock evolution ultrasonic monitor device of multi- scenarios method effect according to claim 1, it is characterised in that: The other end of air inlet pipeline connects the lower end of transparent enclosed hood, and the other end of return line connects the upper end of transparent enclosed hood.
4. the lower damage of rock evolution ultrasonic monitor device of multi- scenarios method effect according to claim 1, it is characterised in that: Ultrasonic wave transmitting probe is embedded in the lower surface of rigid seaming chuck, and ultrasonic wave receiving transducer is embedded in the upper table of rigid push-down head Face.
5. the lower damage of rock evolution ultrasonic monitor device of multi- scenarios method effect according to claim 1, it is characterised in that: Transparent enclosed hood is made of transparent corrosion-resistant and high-temperature resistant glass material, and installation opening is arranged in the lower end of transparent enclosed hood, transparent closed Cover is detachably connected push-down head pedestal through installation opening.
6. the lower damage of rock evolution ultrasonic monitor device of multi- scenarios method effect according to claim 1, it is characterised in that: Clear solution bottle is made of transparent corrosion-resistant and high-temperature resistant glass material.
7. the lower damage of rock evolution ultrasonic monitor device of multi- scenarios method effect according to claim 1, it is characterised in that: Air inlet pipeline, return line are made of transparent corrosion-resistant and high-temperature resistant material.
8. the lower damage of rock evolution ultrasonic monitor device of multi- scenarios method effect according to claim 1, it is characterised in that: Both sides above clear solution bottle are respectively arranged with inlet pipe connection and return-air connecting tube, and inlet pipe connection connects air inlet pipeline One end, return-air connecting tube connect one end of return line.
CN201810160510.3A 2018-02-27 2018-02-27 The lower damage of rock evolution ultrasonic monitor device of multi- scenarios method effect Pending CN108426782A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201810160510.3A CN108426782A (en) 2018-02-27 2018-02-27 The lower damage of rock evolution ultrasonic monitor device of multi- scenarios method effect
PCT/CN2018/125976 WO2019165846A1 (en) 2018-02-27 2018-12-30 Ultrasound monitoring device for rock fracture evolution under multi-field coupling effects

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810160510.3A CN108426782A (en) 2018-02-27 2018-02-27 The lower damage of rock evolution ultrasonic monitor device of multi- scenarios method effect

Publications (1)

Publication Number Publication Date
CN108426782A true CN108426782A (en) 2018-08-21

Family

ID=63157266

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810160510.3A Pending CN108426782A (en) 2018-02-27 2018-02-27 The lower damage of rock evolution ultrasonic monitor device of multi- scenarios method effect

Country Status (2)

Country Link
CN (1) CN108426782A (en)
WO (1) WO2019165846A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109001812A (en) * 2018-09-12 2018-12-14 中国矿业大学 A kind of true triaxial gas-liquid-solid coupling coal sample Wave Velocity Anisotropy detection device and method
CN109187195A (en) * 2018-10-30 2019-01-11 河南理工大学 Rock mechanics experiment auxiliary device when a kind of controllable temperature gas-liquid dynamic ringing
CN109269878A (en) * 2018-11-09 2019-01-25 山东科技大学 Temperature and humidity control device and its application method in Rock Mechanics Test loading procedure
CN109781509A (en) * 2019-03-14 2019-05-21 吉林大学 A kind of geostress survey device and measurement method considering temperature effect
CN110186643A (en) * 2019-05-10 2019-08-30 中国地质大学(武汉) A method of monitoring crack rock unsaturation is with vapor transport rule
WO2019165846A1 (en) * 2018-02-27 2019-09-06 山东科技大学 Ultrasound monitoring device for rock fracture evolution under multi-field coupling effects
CN111413230A (en) * 2020-05-12 2020-07-14 燕山大学 High-voltage pulse water injection excited sandstone micro-damage detection experimental device and method
CN113008671A (en) * 2021-02-23 2021-06-22 大连海事大学 High-temperature rock creep test device with sound wave test and test method

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05223713A (en) * 1992-02-18 1993-08-31 Nippon Steel Corp Material testing device
US5669554A (en) * 1994-11-21 1997-09-23 Seiko Instruments, Inc. Humidity control thermal analyzer
CN102944478A (en) * 2012-11-13 2013-02-27 河海大学 Temperature-humidity-stress-chemical coupling test platform for porous dielectric material
CN103558136A (en) * 2013-11-07 2014-02-05 大连海事大学 System and method for testing rock damage and permeability under coupling effect of temperature stress and circumferential seepage
CN203502388U (en) * 2013-10-08 2014-03-26 大连海事大学 Rock damage and penetration testing device
CN104237305A (en) * 2014-10-20 2014-12-24 中国矿业大学 Testing device and testing system for rock-mass thermal conductivity
US9134222B1 (en) * 2013-03-25 2015-09-15 The Boeing Company System and method for stress corrosion testing
CN106442736A (en) * 2016-12-06 2017-02-22 河南理工大学 Test apparatus, test system and test method for measuring impact orientation indexes and acoustics features of gas-containing coal by use of uniaxial compression
CN206339523U (en) * 2016-12-09 2017-07-18 北京科技大学 The experimental rig of concrete three-dimensional stress thermal chemical damage coupling
WO2017152473A1 (en) * 2016-03-08 2017-09-14 中国科学院南海海洋研究所 System and method for testing thermophysical properties of rock under high pressure condition
CN207832584U (en) * 2018-02-27 2018-09-07 山东科技大学 The lower damage of rock evolution ultrasonic monitor device of multi- scenarios method effect

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108426782A (en) * 2018-02-27 2018-08-21 山东科技大学 The lower damage of rock evolution ultrasonic monitor device of multi- scenarios method effect

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05223713A (en) * 1992-02-18 1993-08-31 Nippon Steel Corp Material testing device
US5669554A (en) * 1994-11-21 1997-09-23 Seiko Instruments, Inc. Humidity control thermal analyzer
CN102944478A (en) * 2012-11-13 2013-02-27 河海大学 Temperature-humidity-stress-chemical coupling test platform for porous dielectric material
US9134222B1 (en) * 2013-03-25 2015-09-15 The Boeing Company System and method for stress corrosion testing
CN203502388U (en) * 2013-10-08 2014-03-26 大连海事大学 Rock damage and penetration testing device
CN103558136A (en) * 2013-11-07 2014-02-05 大连海事大学 System and method for testing rock damage and permeability under coupling effect of temperature stress and circumferential seepage
CN104237305A (en) * 2014-10-20 2014-12-24 中国矿业大学 Testing device and testing system for rock-mass thermal conductivity
WO2017152473A1 (en) * 2016-03-08 2017-09-14 中国科学院南海海洋研究所 System and method for testing thermophysical properties of rock under high pressure condition
CN106442736A (en) * 2016-12-06 2017-02-22 河南理工大学 Test apparatus, test system and test method for measuring impact orientation indexes and acoustics features of gas-containing coal by use of uniaxial compression
CN206339523U (en) * 2016-12-09 2017-07-18 北京科技大学 The experimental rig of concrete three-dimensional stress thermal chemical damage coupling
CN207832584U (en) * 2018-02-27 2018-09-07 山东科技大学 The lower damage of rock evolution ultrasonic monitor device of multi- scenarios method effect

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019165846A1 (en) * 2018-02-27 2019-09-06 山东科技大学 Ultrasound monitoring device for rock fracture evolution under multi-field coupling effects
CN109001812A (en) * 2018-09-12 2018-12-14 中国矿业大学 A kind of true triaxial gas-liquid-solid coupling coal sample Wave Velocity Anisotropy detection device and method
CN109187195A (en) * 2018-10-30 2019-01-11 河南理工大学 Rock mechanics experiment auxiliary device when a kind of controllable temperature gas-liquid dynamic ringing
CN109269878A (en) * 2018-11-09 2019-01-25 山东科技大学 Temperature and humidity control device and its application method in Rock Mechanics Test loading procedure
CN109781509A (en) * 2019-03-14 2019-05-21 吉林大学 A kind of geostress survey device and measurement method considering temperature effect
CN109781509B (en) * 2019-03-14 2023-11-03 吉林大学 Ground stress measuring device and method considering temperature effect
CN110186643A (en) * 2019-05-10 2019-08-30 中国地质大学(武汉) A method of monitoring crack rock unsaturation is with vapor transport rule
CN111413230A (en) * 2020-05-12 2020-07-14 燕山大学 High-voltage pulse water injection excited sandstone micro-damage detection experimental device and method
CN111413230B (en) * 2020-05-12 2021-03-16 燕山大学 High-voltage pulse water injection excited sandstone micro-damage detection experimental device and method
CN113008671A (en) * 2021-02-23 2021-06-22 大连海事大学 High-temperature rock creep test device with sound wave test and test method
CN113008671B (en) * 2021-02-23 2022-12-16 大连海事大学 High-temperature rock creep test device with sound wave test and test method

Also Published As

Publication number Publication date
WO2019165846A1 (en) 2019-09-06

Similar Documents

Publication Publication Date Title
CN108426782A (en) The lower damage of rock evolution ultrasonic monitor device of multi- scenarios method effect
CN207832584U (en) The lower damage of rock evolution ultrasonic monitor device of multi- scenarios method effect
CN111220452B (en) True triaxial pressure chamber for coal rock simulation test and test method thereof
CN104502264B (en) Top-corrosion electrochemical testing device in high-temperature and high-pressure environments
CN203502388U (en) Rock damage and penetration testing device
CN204594788U (en) A kind of temperature-controllable Damage Detection of Rock Materials device
CN105675434A (en) System and method for measuring gas content
CN103247358B (en) Nuclear power station high energy pipeline local leakage monitoring test stand
CN101718725A (en) Device for measuring sample thermo-physical property in situ
CN106525710A (en) Electrochemical testing device for acoustic-emission-testing-material corrosion performance and application method thereof
CN103411879A (en) High temperature and high pressure dynamic electrochemical test and pH in situ monitoring experimental device
CN106525709A (en) Electrochemical corrosion test apparatus and application method thereof
CN109632868A (en) A kind of closed system hydrocarbon thermal simulation experiment device and its application method
CN103674679A (en) Device and method for testing mechanical properties of fracture-vug type carbonate rock reservoir environment
CN111215002B (en) High-temperature high-pressure supercritical carbon dioxide reaction kettle
CN109323662B (en) Device for controlling temperature of inner surface and outer surface of annular cladding and measuring deformation of annular cladding in high-temperature environment
CN107991224A (en) A kind of metal bellows corrosion resistance experimental method
CN206330874U (en) A kind of electrochemical testing device of acoustic emission detection material corrosion performance
CN106404239A (en) Liquefied natural gas storage tank inner tank precooling temperature and stress test system
CN106567998A (en) Gas pipeline leakage detection simulation experiment platform based on optical fiber temperature sensor
CN108007822A (en) A kind of high temperature high shear dynamic viscosity assay method and analyzer
CN107290499A (en) Device for simulating closed system water-rock interaction
CN206311482U (en) For the sample clamp of electrochemical corrosion test
CN106525711A (en) Clamp for acoustic emission testing of material corrosion property and using method thereof
CN104931561B (en) It is a kind of to realize the electrochemical test experiment device of acoustic emission monitor(ing) under HTHP water environment

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20180821

RJ01 Rejection of invention patent application after publication