CN108425028B - 一种无Al3Ti相Al-Ti-C中间合金的制备方法 - Google Patents

一种无Al3Ti相Al-Ti-C中间合金的制备方法 Download PDF

Info

Publication number
CN108425028B
CN108425028B CN201810628700.3A CN201810628700A CN108425028B CN 108425028 B CN108425028 B CN 108425028B CN 201810628700 A CN201810628700 A CN 201810628700A CN 108425028 B CN108425028 B CN 108425028B
Authority
CN
China
Prior art keywords
intermediate alloy
powder
phase
preparation
obtains
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810628700.3A
Other languages
English (en)
Other versions
CN108425028A (zh
Inventor
戚继球
刘晓锋
隋艳伟
委福祥
孟庆坤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China University of Mining and Technology CUMT
Original Assignee
China University of Mining and Technology CUMT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China University of Mining and Technology CUMT filed Critical China University of Mining and Technology CUMT
Priority to CN201810628700.3A priority Critical patent/CN108425028B/zh
Publication of CN108425028A publication Critical patent/CN108425028A/zh
Application granted granted Critical
Publication of CN108425028B publication Critical patent/CN108425028B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1036Alloys containing non-metals starting from a melt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1036Alloys containing non-metals starting from a melt
    • C22C1/1047Alloys containing non-metals starting from a melt by mixing and casting liquid metal matrix composites
    • C22C1/1052Alloys containing non-metals starting from a melt by mixing and casting liquid metal matrix composites by mixing and casting metal matrix composites with reaction
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/003Alloys based on aluminium containing at least 2.6% of one or more of the elements: tin, lead, antimony, bismuth, cadmium, and titanium

Abstract

一种无Al3Ti相Al‑Ti‑C中间合金的制备方法,包括以下步骤:(1)称取微米级的Al粉,C粉和Ti粉,采用球磨混粉工艺对三种粉体进行混合;(2)将制备好的所述预制块压入到纯铝锭熔体中,机械搅拌,得到中间合金溶体;(3)将中间合金熔体浇注到金属型腔中,凝固后得到夹杂Al3Ti的Al‑Ti‑C中间合金;(4)将步骤(3)中的所述夹杂Al3Ti的Al‑Ti‑C中间合金铸锭重熔处理,经熔炼、保温,随后再次浇注到金属型腔中,得到成品。本发明的制备方法成本得到了降低,并且具有更好的细化效果。

Description

一种无Al3Ti相Al-Ti-C中间合金的制备方法
技术领域
本发明涉及一种铝基中间合金的制备方法,具体是一种无Al3Ti相Al-Ti-C中间合金的制备方法。
背景技术
在铝及铝合金的凝固过程中,添加铝基中间合金细化剂可以获得细小的等轴晶组织,从而提高铝合金强度、韧度以及抗热裂性等诸多性能,是最为经济和有效的工艺方法。
长期以来,工业生产中使用最广泛的细化剂为Al-Ti-B中间合金。然而,但是由于Al-Ti-B合金中TiB2粒子容易聚集,降低了细化效果,也致使处理后的加工制品存在一些难以解决的质量问题如箔材表面出现条纹缺陷等,当用Al-Ti-B晶粒细化剂细化含有Zr、Cr、Mn等元素的铝合金时,这些元素会使TiB2粒子出现“中毒”现象,致使其细化效果衰退,造成晶粒组织不均匀。
研究证明,Al-Ti-C合金细化剂是目前代替Al-Ti-B细化剂的最佳选择,其TiC相粒子的聚集倾向性比TiB2粒子小,具有更好的细化效果。当前,采用熔体反应法来制备Al-Ti-C 中间合金是主要研究方向,需要指出的是Al-Ti-C中间合金中容易析出Al3Ti相,致使TiC相含量较低,这不利于其发挥细化效果。开发无Al3Ti相且TiC相可达纳米尺度的Al-Ti-C中间合金对提高铝合金的力学性能和将具有重要的工程价值。
发明内容
针对上述现有技术存在的问题,本发明的目的是提供一种无Al3Ti相Al-Ti-C中间合金的制备方法,以克服当前Al-Ti-C中间合金的不足,进一步提高Al-Ti-C中间合金的细化能力和使用性能,且工艺简单、成本低的Al-Ti-C中间合金的制备方法。
为实现上述目的,本发明采用的技术方案是:一种无Al3Ti相Al-Ti-C中间合金的制备方法,包括以下步骤:
(1)称取微米级的Al粉,C粉和Ti粉,采用球磨混粉工艺对三种粉体进行混合,球磨工艺为转速为200r/h,球磨时间为2h,随后将混合均匀的粉体压制成预制块,压制压力为20MPa;
(2)利用中频炉将纯铝锭熔化,并将温度提高到750℃,利用石墨钟罩将步骤(1)中制备好的所述预制块压入到纯铝锭熔体中,并在750℃保温15min,保温过程中进行机械搅拌,得到中间合金溶体,此过程中Al粉,C粉和Ti粉发生放热反应,生成Al3Ti相和TiC;
(3)将步骤(2)中的所述中间合金熔体浇注到金属型腔中,凝固后得到夹杂Al3Ti的 Al-Ti-C中间合金;
(4)将步骤(3)中的所述夹杂Al3Ti的Al-Ti-C中间合金铸锭重熔处理,熔炼温度范围为710-850℃,保温时间为15min,经熔炼、保温,随后再次浇注到金属型腔中,得到无Al3Ti 相且TiC相为纳米尺度的Al-Ti-C中间合金成品。
优选的,步骤(1)中的所述Al粉粒径为70μm~200μm,C粉粒径为50μm~300μm,Ti粉粒径为100μm-500μm。
优选的,步骤(1)中所述Al粉、C粉和Ti粉的混合质量比例为1:1:0.12。
优选的,步骤(4)中的重熔处理,熔炼温度范围为710-850℃。
优选的,步骤(4)中的重熔处理,保温时间为15min。
相比于现有技术,本发明的有益效果为:制备方法得到了有效简化,成本得到了降低,并且得到无Al3Ti相且TiC相可达纳米尺度的Al-Ti-C中间合金,晶体更加均匀,且TiC相粒子的聚集倾向性小,所以得到的Al-Ti-C中间合金具有更好的细化效果。
附图说明
图1是步骤(3)得到的夹杂Al3Ti的Al-Ti-C中间合金的扫描照片,
图2是步骤(4)得到的Al-Ti-C中间合金成品的扫描照片,
图3是步骤(4)得到的Al-Ti-C中间合金成品的X射线衍射图谱,
图4是重熔处理时熔炼温度为710℃得到的Al-Ti-C中间合金成品的组织形貌,
图5是重熔处理时熔炼温度为850℃得到的Al-Ti-C中间合金成品的组织形貌;
具体实施方式
下面结合附图对本发明作进一步详细说明。
实施例1:
一种无Al3Ti相Al-Ti-C中间合金的制备方法,包括以下步骤:
(1)称取微米级的粒径为70μm~200μm的Al粉,粒径为50μm~300μm的C粉和粒径为100μm-500μmTi粉,采用球磨混粉工艺对三种粉体进行混合,其中Al粉、C粉和Ti粉的混合质量比例为1:1:0.12。球磨工艺为转速为200r/h,球磨时间为2h,随后将混合均匀的粉体压制成预制块,压制压力为20MPa;
(2)利用中频炉将纯铝锭熔化,并将温度提高到750℃,利用石墨钟罩将步骤(1)中制备好的所述预制块压入到纯铝锭熔体中,并在750℃保温15min,保温过程中进行机械搅拌,得到中间合金溶体,此过程中Al粉,C粉和Ti粉发生放热反应,生成Al3Ti相和TiC;
(3)将步骤(2)中的所述中间合金熔体浇注到金属型腔中,凝固后得到夹杂Al3Ti的 Al-Ti-C中间合金;
(4)将步骤(3)中的所述夹杂Al3Ti的Al-Ti-C中间合金铸锭重熔处理,经710℃温度下熔炼和保温15min,随后再次浇注到金属型腔中,得到无Al3Ti相且TiC相为纳米尺度的Al-Ti-C中间合金成品。
实施例2:
一种无Al3Ti相Al-Ti-C中间合金的制备方法,包括以下步骤:
(1)称取微米级的粒径为70μm~200μm的Al粉,粒径为50μm~300μm的C粉和粒径为100μm-500μmTi粉,采用球磨混粉工艺对三种粉体进行混合,其中Al粉、C粉和Ti粉的混合质量比例为1:1:0.12。球磨工艺为转速为200r/h,球磨时间为2h,随后将混合均匀的粉体压制成预制块,压制压力为20MPa;
(2)利用中频炉将纯铝锭熔化,并将温度提高到750℃,利用石墨钟罩将步骤(1)中制备好的所述预制块压入到纯铝锭熔体中,并在750℃保温15min,保温过程中进行机械搅拌,得到中间合金溶体,此过程中Al粉,C粉和Ti粉发生放热反应,生成Al3Ti相和TiC;
(3)将步骤(2)中的所述中间合金熔体浇注到金属型腔中,凝固后得到夹杂Al3Ti的 Al-Ti-C中间合金;
(4)将步骤(3)中的所述夹杂Al3Ti的Al-Ti-C中间合金铸锭重熔处理,经750℃温度下熔炼和保温15min,随后再次浇注到金属型腔中,得到无Al3Ti相且TiC相为纳米尺度的Al-Ti-C中间合金成品。
实施例3:
一种无Al3Ti相Al-Ti-C中间合金的制备方法,包括以下步骤:
(1)称取微米级的粒径为70μm~200μm的Al粉,粒径为50μm~300μm的C粉和粒径为100μm-500μmTi粉,采用球磨混粉工艺对三种粉体进行混合,其中Al粉、C粉和Ti粉的混合质量比例为1:1:0.12。球磨工艺为转速为200r/h,球磨时间为2h,随后将混合均匀的粉体压制成预制块,压制压力为20MPa;
(2)利用中频炉将纯铝锭熔化,并将温度提高到750℃,利用石墨钟罩将步骤(1)中制备好的所述预制块压入到纯铝锭熔体中,并在750℃保温15min,保温过程中进行机械搅拌,得到中间合金溶体,此过程中Al粉,C粉和Ti粉发生放热反应,生成Al3Ti相和TiC;
(3)将步骤(2)中的所述中间合金熔体浇注到金属型腔中,凝固后得到夹杂Al3Ti的 Al-Ti-C中间合金;
(4)将步骤(3)中的所述夹杂Al3Ti的Al-Ti-C中间合金铸锭重熔处理,经850℃温度下熔炼和保温15min,随后再次浇注到金属型腔中,得到无Al3Ti相且TiC相为纳米尺度的Al-Ti-C中间合金成品。
图1是步骤(3)得到的夹杂Al3Ti的Al-Ti-C中间合金的扫描照片,从图中可以观察到大量长条状Al3Ti相,其宽约为18μm,长可达到50μm。此时Al-Ti-C中间合金中夹杂Al3Ti相,因此仍需重熔处理将Al3Ti相去除。图2是步骤(4)得到的Al-Ti-C中间合金成品的扫描照片,从图中可以观察到大量细小的晶粒,晶界由TiC构成,高倍下观察到纳米级TiC 颗粒,其尺寸大约400nm-1000nm,经重熔处理后的Al-Ti-C中间合金中的Al3Ti相已经得到消除,留有TiC相,细化能力更强。图3是步骤(4)得到的Al-Ti-C中间合金成品的X 射线衍射图谱,可以观察到第一次浇注后除了铝基体的峰,还有Al3Ti和TiC的衍射峰,重熔处理后,Al3Ti峰消失,只有TiC的衍射峰。
图4是重熔处理时熔炼温度为710℃得到的Al-Ti-C中间合金成品的组织形貌,组织中有纳米尺度的TiC颗粒。图5是重熔处理时熔炼温度为850℃得到的Al-Ti-C中间合金成品的组织形貌,组织中有纳米尺度的TiC颗粒,且颗粒的总体尺寸较750℃重熔的有所增大。因此,经本发明的制备方法制得的Al-Ti-C中间合金不仅制备成本低,而且得到的成品因无Al3Ti相存在所以可得到更好的细化效果。

Claims (3)

1.一种无Al3Ti相Al-Ti-C中间合金的制备方法,其特征在于,包括以下步骤:
(1)称取微米级的Al粉,C粉和Ti粉,采用球磨混粉工艺对三种粉体进行混合,球磨工艺为转速为200r/h,球磨时间为2h,随后将混合均匀的粉体压制成预制块,压制压力为20MPa;
(2)利用中频炉将纯铝锭熔化,并将温度提高到750℃,利用石墨钟罩将步骤(1)中制备好的所述预制块压入到纯铝锭熔体中,并在750℃保温15min,保温过程中进行机械搅拌,得到中间合金溶体;
(3)将步骤(2)中的所述中间合金熔体浇注到金属型腔中,凝固后得到夹杂Al3Ti的Al-Ti-C中间合金;
(4)将步骤(3)中的所述夹杂Al3Ti的Al-Ti-C中间合金铸锭重熔处理,熔炼温度范围为710-850℃,保温时间为15min,经熔炼、保温,随后再次浇注到金属型腔中,得到无Al3Ti相且TiC相为纳米尺度的Al-Ti-C中间合金成品。
2.根据权利要求1所述的一种无Al3Ti相Al-Ti-C中间合金的制备方法,其特征在于,步骤(1)中的所述Al粉粒径为70μm~200μm,C粉粒径为50μm~300μm,Ti粉粒径为100μm-500μm。
3.根据权利要求2所述的一种无Al3Ti相Al-Ti-C中间合金的制备方法,其特征在于,步骤(1)中所述Al粉、C粉和Ti粉的混合质量比例为1:1:0.12。
CN201810628700.3A 2018-06-19 2018-06-19 一种无Al3Ti相Al-Ti-C中间合金的制备方法 Active CN108425028B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810628700.3A CN108425028B (zh) 2018-06-19 2018-06-19 一种无Al3Ti相Al-Ti-C中间合金的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810628700.3A CN108425028B (zh) 2018-06-19 2018-06-19 一种无Al3Ti相Al-Ti-C中间合金的制备方法

Publications (2)

Publication Number Publication Date
CN108425028A CN108425028A (zh) 2018-08-21
CN108425028B true CN108425028B (zh) 2019-08-02

Family

ID=63164613

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810628700.3A Active CN108425028B (zh) 2018-06-19 2018-06-19 一种无Al3Ti相Al-Ti-C中间合金的制备方法

Country Status (1)

Country Link
CN (1) CN108425028B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112267036B (zh) * 2020-09-09 2021-12-03 宁波悦威液压科技有限公司 一种液压缸缸盖及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1152969C (zh) * 2002-01-27 2004-06-09 吉林大学 重熔增强相载体制备颗粒增强镁基复合材料的方法
JP4691735B2 (ja) * 2004-05-20 2011-06-01 国立大学法人 名古屋工業大学 鋳造用結晶粒微細化剤及びその製造方法
CN101608270B (zh) * 2009-07-27 2011-01-05 福州大学 一种高效低成本的铝及铝合金细化剂及其制备方法
CN103831421A (zh) * 2014-03-26 2014-06-04 铜仁学院 一种制备局部增强铝基复合材料的方法
CN105568074A (zh) * 2016-03-09 2016-05-11 哈尔滨工业大学(威海) 一种原位铝基复合材料制备方法

Also Published As

Publication number Publication date
CN108425028A (zh) 2018-08-21

Similar Documents

Publication Publication Date Title
CN101608270B (zh) 一种高效低成本的铝及铝合金细化剂及其制备方法
KR101364472B1 (ko) 제강용 결정립 미세화 복합물 및 사용
CN101787454B (zh) 一种多组元增强铝基复合材料的制备方法
CN100383268C (zh) 用于铝及铝合金的Al-Ti-C系复合晶粒细化剂的制备方法
CN101823141B (zh) 一种晶粒细化的高温合金铸造工艺
CN102086023A (zh) 溶胶-凝胶结合铝热反应原位合成方法及用该方法合成的FeNiCrTi/NiAl-Al2O3纳米复合材料
CN102703738A (zh) Al-Ti-B-C四元晶粒细化剂的制备方法
CN104532044A (zh) 一种低成本高效Al-Ti-C-Ce细化剂及其制备方法
CN105385863A (zh) 一种超声处理制备镁锆中间合金的方法
CN109518027A (zh) 一种细晶Mg-Al-Ti-C中间合金的制备方法和应用
CN102409188A (zh) 离心激冷制备半固态合金的方法
CN106048302B (zh) 一种应用于核电和风电的铸造材料及其制作方法
CN108425028B (zh) 一种无Al3Ti相Al-Ti-C中间合金的制备方法
CN101696479A (zh) 一种铅钙合金的生产方法
CN102268563B (zh) 铸造高温合金细化剂及使用它的高温合金铸造方法
CN107400808B (zh) 一种Al-Ti-C-Nd中间合金及其制备方法和应用
CN108396171A (zh) 一种合金晶粒细化的蓄电池板栅及其制备方法
CN102266940B (zh) 一种细化钢中氧化铝夹杂物的中间体及制备和使用方法
CN109518040B (zh) 利用超声处理连续制备Al-Ti-B晶粒细化剂的方法
CN106498201B (zh) 铝及其合金用Al-Nb-Cr-B晶粒细化剂的制备方法
CN108384972B (zh) 一种联合细化变质剂的制造方法
CN114875276B (zh) 嵌合式复合粒子增强铝基复合材料及其制备方法
CN114277277B (zh) 一种AlN/Al颗粒增强镁铝稀土基复合材料及其制备方法
CN102000808A (zh) 镁合金晶粒细化剂与晶粒细化型镁合金及其制备方法
CN106244838B (zh) 铌钛碳复合铝合金变质剂及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant