CN108411333A - 一种利用乙炔黑疏水阴极还原氧气制备过氧化氢的方法 - Google Patents

一种利用乙炔黑疏水阴极还原氧气制备过氧化氢的方法 Download PDF

Info

Publication number
CN108411333A
CN108411333A CN201810282734.1A CN201810282734A CN108411333A CN 108411333 A CN108411333 A CN 108411333A CN 201810282734 A CN201810282734 A CN 201810282734A CN 108411333 A CN108411333 A CN 108411333A
Authority
CN
China
Prior art keywords
cathode
acetylene black
hydrophobic
hydrogen peroxide
cathodic reduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810282734.1A
Other languages
English (en)
Inventor
胡会利
李林超
于元春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology Weihai
Original Assignee
Harbin Institute of Technology Weihai
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology Weihai filed Critical Harbin Institute of Technology Weihai
Priority to CN201810282734.1A priority Critical patent/CN108411333A/zh
Publication of CN108411333A publication Critical patent/CN108411333A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/28Per-compounds
    • C25B1/30Peroxides
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • C25B11/03Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form perforated or foraminous
    • C25B11/031Porous electrodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • C25B11/095Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds at least one of the compounds being organic

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

本发明公开了一种在中性条件下,利用乙炔黑疏水阴极还原氧气制备过氧化氢的方法,解决了过氧化氢在生产、运输、储存等环节中带来的安全和环境问题。该方法先将聚四氟乙烯(PTFE)与乙醇水溶液混合均匀,后加入乙炔黑搅拌混合成膏状物,分两次在泡沫镍上涂覆一定厚度的涂层,经过鼓风干燥后,将电极用防水胶带封装,即可得到多孔性疏水阴极。本发明的阴极与水滴的接触角超过138°,有良好的疏水性,且具有良好的氧还原催化性能。与涂层钛阳极组装成电解池后,电流效率最高能达到109%,当阴极电流密度为800 mA/cm2时电流效率仍达到73%。本方法还具有操作简单,成本低廉等优点。

Description

一种利用乙炔黑疏水阴极还原氧气制备过氧化氢的方法
技术领域
本发明涉及原位制备过氧化氢领域,具体是关于一种利用疏水阴极还原氧气制备过氧化氢和阴极制造技术及使用方法。
背景技术
过氧化氢是一种绿色的氧化剂,反应的过程中转化成水和氧气,不会对环境产生任何污染。传统的过氧化氢生产一般采用化学转化法,包括蒽醌法、异丙醇氧化法、氢氧直接化合法等。这些方法都需要经过较多的工序,操作困难且环境污染严重,有的还具有一定的危险性。而且高浓度的过氧化氢在储存和运输的过程中也会带来很多安全问题。所以需要开发更加绿色、安全、便捷的过氧化氢制造技术。
氧阴极还原法是近年来兴起的一种绿色的过氧化氢制备技术,能够原位高效便捷的获得过氧化氢,解决过氧化氢的运输和储存问题。工业生产中运用的电芬顿和光电芬顿等技术也需要在阴极还原产生过氧化氢,来让反应得以进行。在医疗卫生行业中,氧阴极还原制备的过氧化氢被用于杀菌或者消毒。在饮用水净化领域,电生过氧化氢技术也被用来预氧化原水中的杂质成分。
催化氧还原的电极分为两类,第一类是能通过四电子还原机理,将氧直接还原成H2O或者OH-的电极,这类电极的材料主要是贵重金属如铂、钯等;第二类是通过两电子还原机理,将氧还原为H2O2或者HO2 -的电极,这类电极的材料主要是碳,如碳毡、碳纤维、炭黑等或者过渡金属如镍。其中,在中性条件下碳黑优异的催化性能被较多人所关注(R.Babaei-Sati et al.Journal of Industrial & Engineering Chemistry, 52 (2017) 270-276.)。
气体发生电化学氧化反应主要发生在三相界面处,三相反应界面越多反应就越容易进行,这就需要电极具备较好的疏水性。一般在制备电极的过程中都使用疏水性粘结剂如PTFE等,以保证电极不被润湿。主要的电极种类有二维多孔电极和三维气体扩散电极,其中由于气体扩散电极制备工艺繁琐,且电极质量不好把握,气体的扩散也存在较大的阻力,不适于在工业生产中应用。二维多孔电极可以凭借表面的孔洞和裂纹可以储存大量的气体,也能提供较多的反应位点,被广泛地用于氧还原电生过氧化氢。且二维电极制备工艺简单,成本低廉。中国专利201110100499.X“一种饮用水电化学预氧化装置及方法”,公布了以石墨毡电极为阴极、网状钛镀钌铱电极为阳极的电生过氧化氢装置,从装置底部通入空气被电解生成过氧化氢。该装置不能在阴极界面生成稳定的三相反应界面,因而催化效率低,能耗较高。相比而言,从内部导气的二维多孔电极能提供更多稳定的反应活性位点,能极大地提高电流效率和电极允许的上限电流密度。
发明内容
本发明选用了比表面积较大的乙炔黑作为催化剂,以保证阴极还原氧生成过氧化氢的催化效率。为了调节电极的疏水性,选用了PTFE作为电极材料的疏水性粘结剂,分散在乙醇水溶液中搅拌成膏状物。和膏所用的乙醇溶液为体积分数为50%的乙醇水溶液,PTFE与乙醇溶液的质量体积比为0.4~0.2,乙炔黑与PTFE的质量比为0.1~0.2,在室温下和膏。
本发明在阴极制造的过程中,选用了泡沫镍为阴极的集流体。在室温下,将电极膏涂覆在泡沫镍表面。均匀涂覆两层,经过250~340℃鼓风干燥后,保证涂层的厚度能维持在0.2~1 mm之间,表面能形成均匀分布的裂纹。这些裂纹宽度维持在0.1~0.4 mm之间,深度直达泡沫镍基体。用防水胶将电极封装,只暴露出有涂层的部分。当电极浸泡在溶液中时能够在电极表面形成较多的三相反应界面。
本发明将疏水阴极倾斜安装在电解池中,在阴极底部导入空气或者氧气,保证气体能通过电极表面的裂纹进入电极内部,裂纹能将气体和液体分隔开来。同时进入电极内部的气体可以通过泡沫镍的大量孔隙导出。阳极采用涂层钛阳极,以一定的极间距平行置于阴极下面。电解液使用0.1 mol/L的Na2SO4溶液,电解过程中不断搅拌溶液,以达到均匀混合电解液的目的。
本发明在室温下,采用恒流电解的方式制备过氧化氢,阴极电流密度为50~800mA/cm2。阴极的倾斜角度控制在30°,阴阳极极间距为4 cm,面积比为0.5,阴极气体的流量为20~100 mL/min。当阴极电流密度适当时,电生H2O2的电流效率可以超过100%,其原因是阳极使用的是涂层钛阳极,在阳极氧化的过程中也能产生部分H2O2
附图说明
图1为疏水阴极及电解装置的示意图。
图2为实施例1的疏水阴极的形貌图。
图3为实施例1的疏水阴极涂层的接触角测试图。
图4为实施例2的疏水阴极的线性极化图。
图5为实施例3的疏水阴极的电位时间曲线。
图6为实施例4所得的,电生过氧化氢浓度和电流效率曲线图。
图7为实施例5的疏水阴极涂层的接触角测试图。
图8为实施例7的疏水阴极涂层的接触角测试图。
具体实施方式
下述说明仅仅是示例性的,其作用是为进一步阐述该发明而非限定本发明。
实施例1
在室温下,将1 g的PTFE分散液,分散在2.5 mL的50%乙醇水溶液中,加入0.1 g的乙炔黑,混合成膏状物。然后先取约1 g电极膏放在乙醇清洗过的泡沫镍上并刮平,再取约1 g电极膏用玻璃棒轻轻碾平。风干后放在鼓风干燥箱中250℃干燥40 min。然后用防水胶带封装,只暴露出涂层部分。所制备的电极的涂层厚度为0.48 mm,表面裂纹的宽度在0.2 mm左右。做疏水性测试时,与水滴的接触角为144.78°。
实施例2
将例1制备好的阴极安装在电解池中,分别在不导气和导气的情况下进行线性极化测试。扫描速率为50 mV/s,电位区间为0~-1 V (vs SCE),电解液为0.1 mol/L的Na2SO4溶液。发现导气时的极化曲线和不导气时一样平稳,说明阴极表面三相界面很稳定,不被气流影响。
实施例3
在室温下,将1 g的聚四氟乙烯分散液,分散在5 mL的50%乙醇水溶液中,加入0.2 g的乙炔黑,混合成膏状物。然后先取约1 g电极膏放在乙醇清洗过的泡沫镍上并刮平,再取约1g电极膏用玻璃棒轻轻碾平。风干后放在鼓风干燥箱中340℃干燥40 min。所得涂层厚度为0.54 mm,表面裂纹宽度为0.12 mm左右,与水滴的接触角为135.34°。将制备好的阴极以40mL/min的氧气流量,100 mA/cm2的阴极电流密度的进行恒流电解1 h。阴阳极面积比为0.5,电解液为0.1 mol/L的Na2SO4溶液。电解完成后制得过氧化氢10.1 mmol/L。
实施例4
使用例3所制备的阴极,以阴阳极面积比为0.5,电解液为0.1 mol/L的Na2SO4溶液,40mL/min的氧气流量,在不同电流密度下恒流电解1 h。电解的电流效率均在85%以上,其中当阴极电流密度为100 mA/cm2时,电流效率能达到109%。
实施例5
在室温下,将1 g的聚四氟乙烯分散液,分散在5 mL的50%乙醇水溶液中,加入0.15 g的乙炔黑,混合成膏状物。然后先取约1 g电极膏放在乙醇清洗过的泡沫镍上并刮平,再取约1g电极膏用玻璃棒轻轻碾平。风干后放在鼓风干燥箱中300℃干燥40 min。所得涂层厚度为0.54 mm,表面裂纹宽度为0.31 mm左右,与水滴的接触角为140.68°。将封装后的电极以阴阳极面积比为0.5,电解液为0.1 mol/L的Na2SO4溶液,60 mL/min的氧气流量。在阴极电流密度为400 mA/cm2下电解30 min,制得的H2O2浓度为15.5 mmol/L,电流效率为83%。
实施例6
使用例5所制备的阴极,以阴阳极面积比为0.5,电解液为0.1 mol/L的Na2SO4溶液,100mL/min的氧气流量,在阴极电流密度为800 mA/cm2下恒流电解30 min。制得的H2O2浓度为27.2 mmol/L,电流效率为73%。
实施例7
在室温下,将1 g的聚四氟乙烯分散液,分散在4 mL的50%乙醇水溶液中,加入0.125 g的乙炔黑,混合成膏状物。然后先取约1 g电极膏放在乙醇清洗过的泡沫镍上并刮平,再取约1 g电极膏用玻璃棒轻轻碾平。风干后放在鼓风干燥箱中280℃干燥40 min。所得涂层厚度为0.81 mm,表面裂纹宽度为0.4 mm左右,与水滴的接触角为138.30°。将封装后的电极以阴阳极面积比为0.5,电解液为0.1 mol/L的Na2SO4溶液,20 mL/min的氧气流量。在阴极电流密度为600 mA/cm2下电解30 min,制得的H2O2浓度为23.0 mmol/L,电流效率为82%。
实施例8
使用例5所制备的阴极,以阴阳极面积比为0.5,电解液为0.1 mol/L的Na2SO4溶液,40mL/min的氧气流量,在阴极电流密度为50 mA/cm2下恒流电解30 min。制得的H2O2浓度为2.4mmol/L,电流效率为101%。

Claims (6)

1.一种利用乙炔黑疏水阴极还原氧气制备过氧化氢的方法,其特征在于该方法包括以下步骤及工艺条件:
①和膏:将聚四氟乙烯分散在乙醇溶液中,后加入乙炔黑,在室温下混合成膏状物;
②制备阴极:将①所制得的膏状物涂覆在无水乙醇清洗过的泡沫镍上,经干燥、封装即可得到疏水性阴极;
③电解:将疏水阴极倾斜安装在电解池中,在阴极底部导入空气或者氧气,采用涂层钛电极为阳极,电解液为Na2SO4溶液,在室温下控制阴极电流密度恒流电解。
2.根据权利要求1所述的利用乙炔黑疏水阴极还原氧气制备过氧化氢的方法,其特征在于:和膏所用的乙醇溶液为体积分数为50%的乙醇水溶液,PTFE与乙醇溶液的质量体积比为0.4~0.2,乙炔黑与PTFE的质量比为0.1~0.2,在室温下和膏。
3.根据权利要求1所述的利用乙炔黑疏水阴极还原氧气制备过氧化氢的方法,其特征在于:所述的阴极其涂层干燥后的厚度在0.2~1 mm之间,干燥温度为250~340℃,干燥后的电极表面的裂纹宽度在0.1~0.4 mm之间,封装时使用防水胶带,只暴露出有涂层的部位。
4.根据权利要求1所述的利用乙炔黑疏水阴极还原氧气制备过氧化氢的方法,其特征在于:电解时阴阳极面积比为0.5,阴阳极平行放置,阴极在上且与竖直方向呈30°,极间距为4 cm,电解液Na2SO4浓度为0.1 mol/L。
5.根据权利要求1所述的利用乙炔黑疏水阴极还原氧气制备过氧化氢的方法,其特征在于:在室温下电解,气体流量为20~100 mL/min,阴极电流密度为50~800 mA/cm2
6.根据权利要求1所述的利用乙炔黑疏水阴极还原氧制备过氧化氢的方法,其特征在于:所述的阴极导电剂和催化剂是乙炔黑,疏水剂是PTFE,集流体是泡沫镍,阳极是涂层钛阳极。
CN201810282734.1A 2018-04-02 2018-04-02 一种利用乙炔黑疏水阴极还原氧气制备过氧化氢的方法 Pending CN108411333A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810282734.1A CN108411333A (zh) 2018-04-02 2018-04-02 一种利用乙炔黑疏水阴极还原氧气制备过氧化氢的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810282734.1A CN108411333A (zh) 2018-04-02 2018-04-02 一种利用乙炔黑疏水阴极还原氧气制备过氧化氢的方法

Publications (1)

Publication Number Publication Date
CN108411333A true CN108411333A (zh) 2018-08-17

Family

ID=63134023

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810282734.1A Pending CN108411333A (zh) 2018-04-02 2018-04-02 一种利用乙炔黑疏水阴极还原氧气制备过氧化氢的方法

Country Status (1)

Country Link
CN (1) CN108411333A (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109498825A (zh) * 2019-01-04 2019-03-22 厦门理工学院 一种家用消毒装置
CN110565112A (zh) * 2019-08-19 2019-12-13 天津大学 一种通过调控亲疏水性改变阴极氧还原活性的方法
CN110629251A (zh) * 2019-11-08 2019-12-31 南京信息工程大学 一种一体式氧还原产双氧水阴极及其制备方法
CN112760675A (zh) * 2020-12-22 2021-05-07 哈尔滨工业大学 一种利用活性焦基气体扩散电极电合成过氧化氢的方法
CN113363498A (zh) * 2021-05-26 2021-09-07 哈尔滨工业大学(威海) 基于海洋浮台用双多孔碳阴极镁合金溶解氧海水电池装置
CN114318388A (zh) * 2022-01-25 2022-04-12 山西大学 一种光电催化烯烃加氢装置及其应用
CN114481187A (zh) * 2022-02-15 2022-05-13 中国科学院赣江创新研究院 一种电芬顿阴极材料及其制备方法与应用

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109498825A (zh) * 2019-01-04 2019-03-22 厦门理工学院 一种家用消毒装置
CN110565112A (zh) * 2019-08-19 2019-12-13 天津大学 一种通过调控亲疏水性改变阴极氧还原活性的方法
CN110565112B (zh) * 2019-08-19 2021-10-26 天津大学 一种通过调控亲疏水性改变阴极氧还原活性的方法
CN110629251A (zh) * 2019-11-08 2019-12-31 南京信息工程大学 一种一体式氧还原产双氧水阴极及其制备方法
CN112760675A (zh) * 2020-12-22 2021-05-07 哈尔滨工业大学 一种利用活性焦基气体扩散电极电合成过氧化氢的方法
CN113363498A (zh) * 2021-05-26 2021-09-07 哈尔滨工业大学(威海) 基于海洋浮台用双多孔碳阴极镁合金溶解氧海水电池装置
CN114318388A (zh) * 2022-01-25 2022-04-12 山西大学 一种光电催化烯烃加氢装置及其应用
CN114318388B (zh) * 2022-01-25 2023-12-26 山西大学 一种光电催化烯烃加氢装置及其应用
CN114481187A (zh) * 2022-02-15 2022-05-13 中国科学院赣江创新研究院 一种电芬顿阴极材料及其制备方法与应用
CN114481187B (zh) * 2022-02-15 2024-01-19 中国科学院赣江创新研究院 一种电芬顿阴极材料及其制备方法与应用

Similar Documents

Publication Publication Date Title
CN108411333A (zh) 一种利用乙炔黑疏水阴极还原氧气制备过氧化氢的方法
CN107904614B (zh) 一种Ni3S2@Ni-Fe LDH析氧电催化电极及其制备方法与应用
Lu et al. An investigation of electrode materials for the anodic oxidation of sulfur dioxide in concentrated sulfuric acid
CN106868563B (zh) 一种硒化物薄膜修饰泡沫镍电极的制备方法及其应用
Stoll et al. Solar fuel production in a novel polymeric electrolyte membrane photoelectrochemical (PEM-PEC) cell with a web of titania nanotube arrays as photoanode and gaseous reactants
Holze et al. The kinetics of oxygen reduction at Porous Teflon‐Bonded fuel cell electrodes
CN106939427A (zh) 一种利用自供氧双阴极装置同时产生双氧水和氢气的方法
CN110205636A (zh) 一种自支撑型三维多孔结构双功能催化电极的制备方法
Han et al. Copper nanowire with enriched high‐index facets for highly selective CO2 reduction
CN109576730A (zh) 一种铁修饰的四氧化三钴纳米片阵列电极的制备方法及应用
Alcaide et al. Oxygen reduction on uncatalyzed carbon-PTFE gas diffusion cathode in alkaline medium
He et al. Advances in electrolyzer design and development for electrochemical CO2 reduction
Zhao et al. Regulation of three-dimensional hydrophobic state of copper dendrite adjusts the distribution of liquid products from electrochemical reduction of CO2
CN107328835B (zh) 还原石墨烯修饰镍铁羟基氧化物电极及其制备方法、应用
Ranganathan et al. Evaluation of anode electrode materials for Cu-Cl/HCl electrolyzers for hydrogen production
CN110137523B (zh) 一种制氢水合肼燃料电池装置
CN110195234A (zh) 一种铜-氧化亚铜-氧化铜核壳结构析氧电极的电氧化制备方法
CN106987859B (zh) 温和条件下电解水制氢Ag基析氧催化剂膜材料的制备方法
CN109097788A (zh) 一种双碳耦合过渡金属镍基量子点电催化剂及其制备方法
EP4129469A1 (en) Cobalt catalyst and preparation method therefor
EP3656892B1 (en) Method for co2 reduction into hydrocarbons
Xu et al. Self-supporting hierarchical Co3O4-nanowires@ NiO-nanosheets core-shell nanostructure on carbon foam to form efficient bifunctional electrocatalyst for overall water splitting
CN109852990A (zh) 一种co2电化学还原用电极及其制备和应用
CN113174602A (zh) 三维共连续大孔异质结构硫化物全解水催化剂的制备方法
CN112850860A (zh) 一种氮掺杂有序介孔碳电极的制备方法及应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20180817