CN108411213A - 一种提高FeMnAl合金形状记忆性能的方法 - Google Patents

一种提高FeMnAl合金形状记忆性能的方法 Download PDF

Info

Publication number
CN108411213A
CN108411213A CN201810280667.XA CN201810280667A CN108411213A CN 108411213 A CN108411213 A CN 108411213A CN 201810280667 A CN201810280667 A CN 201810280667A CN 108411213 A CN108411213 A CN 108411213A
Authority
CN
China
Prior art keywords
femnal
alloys
shape memory
alloy
handled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810280667.XA
Other languages
English (en)
Other versions
CN108411213B (zh
Inventor
彭华备
文玉华
王勇宁
王珊玲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan University
Original Assignee
Sichuan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan University filed Critical Sichuan University
Priority to CN201810280667.XA priority Critical patent/CN108411213B/zh
Publication of CN108411213A publication Critical patent/CN108411213A/zh
Application granted granted Critical
Publication of CN108411213B publication Critical patent/CN108411213B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/78Combined heat-treatments not provided for above
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/002Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working by rapid cooling or quenching; cooling agents used therefor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

本发明公开了一种提高FeMnAl合金形状记忆性能的方法,属形状记忆合金领域。所述FeMnAl合金的原子百分比含量为:Mn 27~41%,Al 14~17.5%,余为Fe和不可避免的杂质,所述方法具体步骤如下:(1)将FeMnAl合金在1150℃至1300℃处理10分钟至10小时,随后水冷或油冷;(2)将步骤(1)处理后的合金在300℃至550℃处理10分钟至24小时。经上述方法处理后,FeMnAl合金的形状记忆性能得到显著提高。

Description

一种提高FeMnAl合金形状记忆性能的方法
技术领域
本发明涉及形状记忆合金领域,具体涉及一种提高FeMnAl合金形状记忆性能的方法。经过该方法处理后,仅有微弱形状记忆性能的FeMnAl合金获得了优良的形状记忆性能。
背景技术
形状记忆合金(Shape memory alloys,SMAs)因其特殊的形状记忆效应(Shapememory effect,SME)和超弹性(Super-elasticity,SE),不仅可以实现普通合金不具有的反常的热缩冷胀,以及百分之几的超弹性,而且还具有输出的位移和力大的优点。因而形状记忆合金在航空航天、生物医学、机械、化工和人们的日常生活中有着广阔的应用前景。形状记忆合金中Fe基形状记忆合金拥有材料成本低,加工相对容易等优点,非常适合大规模工业应用。因此,研究开发形状记忆性能优良的Fe基合金具有重要的科学意义和工程价值。
2009年,Ishida等在Fe-36Mn-15Al(数字代表原子百分比,下同)合金发现了α→γ′马氏体相变(Appl. Phys. Lett., 2009, 95: 212504)。但该合金的γ′马氏体在加热至500℃时也不能逆转变为α母相,所以该合金仅表现出微弱的形状记忆性能(形状记忆效应和超弹性)。然而,在2011年Ishida等通过添加Ni元素在Fe-34Mn-15Al-7.5Ni合金中时效析出与α母相共格的B2型有序结构的纳米β相显著提高了γ′马氏体逆转变的能力,从而将α⇌ γ′马氏体相变从非热弹性诱发为热弹性,进而在多晶合金中获得了大于5%的超弹性(Science, 2011, 333: 68–71)。同年,他们就申请了关于拥有形状记忆效应和超弹性的FeMnAlNi基形状记忆合金的专利(专利号:US8815027B2)。
在FeMnAl合金中加入Ni元素虽然获得了拥有优良形状记忆性能的FeMnAlNi合金,但是这也增加了材料的成本。因此,如何在FeMnAl三元合金中直接获得优良的形状记忆性能是亟待解决的问题。
发明内容
针对现有技术存在的问题,本发明提供一种提高FeMnAl合金形状记忆性能的方法。
与母相共格的纳米第二相能显著提高马氏体逆转变的能力,甚至将马氏体相变从非热弹性诱发为热弹性的关键在于马氏体相变后纳米第二相仍维持与马氏体共格。同时,纳米第二相能否保持与母相的马氏体共格均主要取决于纳米第二相的尺寸,只有当纳米第二相尺寸小于临界值时才能保持与马氏体共格。所以,只要我们在FeMnAl合金中析出与α母相共格的纳米第二相,并控制这些纳米第二相的尺寸来保持与γ′马氏体共格,就能将α⇌γ′马氏体相变从非热弹性诱发为热弹性,进而获得优良形状记忆性能。据此,我们通过控制热处理工艺在FeMnAl合金中成功析出了与α母相和γ′马氏体均共格的DO3型有序结构纳米(Fe,Mn)3Al相,进而获得了优良形状记忆性能。
本发明具体是一种提高FeMnAl合金形状记忆性能的方法,所述FeMnAl合金的原子百分比含量为:Mn 27~41%,Al 14~17.5%,余为Fe和不可避免的杂质,所述方法具体步骤如下:(1)将FeMnAl合金在1150℃至1300℃处理10分钟至10小时,随后水冷或油冷;(2)将步骤(1)处理后的合金在300℃至550℃处理10分钟至24小时。其中,步骤(2)中处理温度最好为400℃至520℃。经上述方法处理后FeMnAl合金中存在与α相共格且直径小于等于4nm的DO3型有序结构纳米(Fe,Mn)3Al相。此外,纳米(Fe,Mn)3Al相的直径最好小于等于2.5nm。
对于FeMnAl合金而言,步骤(2)中如果处理温度高于550℃将发生α→γ相变,这不利于合金获得优良的形状记忆性能;如果处理温度低于300℃,将很难析出纳米(Fe,Mn)3Al相。所以,步骤(2)中处理温度为300℃至550℃。当FeMnAl合金中纳米(Fe,Mn)3Al相小于等于4nm时,发生α→γ′马氏体相变后原本与α母相共格的纳米(Fe,Mn)3Al相仍保持与γ′马氏体共格,从而提高了γ′马氏体相逆转变的能力,进而将α⇌γ′马氏体相变从非热弹性诱发为热弹性。这就是经过本方法处理后FeMnAl合金获得优良形状记忆性能的原因。值得指出的是,当纳米(Fe,Mn)3Al相的直径大于4nm时,将不能保持与γ′马氏体共格,这将不能诱发α⇌γ′热弹性马氏体相变,并不能获得优良形状记忆性能。所以,纳米(Fe,Mn)3Al相的直径应保持小于等于4nm。
本发明有益效果是:在没有Ni元素的FeMnAl合金中直接获得了优良的形状记忆性能,与FeMnAlNi基合金相比节约了材料成本。
具体实施方式
下面结合实施例对本发明作进一步说明。值得指出的是,给出的实施例不能理解为对本发明保护范围的限制,该领域的技术熟练人员根据上述本发明的内容对本发明做出的一些非本质的改进和调整仍应属于本发明保护范围。
对比例1和实施例1至3选取的FeMnAl合金的各元素的原子百分比为:Mn 30.3%,Al14.2%,余为Fe和不可避免的杂质。对比例2和实施例4至6选取的FeMnAl合金的各元素的原子百分比为:Mn 34.1%,Al 15.6%,余为Fe和不可避免的杂质。对比例3和实施例7至9选取的FeMnAl合金的各元素的原子百分比为:Mn 38.2%,Al 16.7%,余为Fe和不可避免的杂质。对比例合金经过1180℃~1250℃处理2h~5h后水冷处理。而实施例1至9则先经过1180℃~1250℃处理0.5h~5h后水冷或油冷,然后再在320℃~510℃处理1h~20h。采用弯曲法表征合金的形状记忆性能,具体步骤为:首先将合金线切割为厚度为1mm、宽度为2mm、长为70mm的长条形试样;接着将长条形试样与直径为50mm的圆柱体形状的模具互相垂直,并以试样宽度为2mm的面与该模具的圆柱面相切,然后将试样在模具上弯曲变形90度后卸载;接下来将试样加热至300℃处理2min后测量角度θ;最终的形状记忆性能等于(θ-90°)×100%÷90°。表1的数据清楚地表明:经过本发明的方法处理后FeMnAl合金的形状记忆性能得到显著提高。此外,实施例1至3中与α相共格的DO3型有序结构纳米(Fe,Mn)3Al相的直径小于2.4nm;实施例4至6中与α相共格的DO3型有序结构纳米(Fe,Mn)3Al相的直径小于2.8nm;实施例7至9中与α相共格的DO3型有序结构纳米(Fe,Mn)3Al相的直径小于4nm。
表1 对比例1~3和实施例1~11的处理方法和形状记忆性能

Claims (4)

1.一种提高FeMnAl合金形状记忆性能的方法,所述FeMnAl合金的原子百分比含量为:Mn 27~41%,Al 14~17.5%,余为Fe和不可避免的杂质,其特征在于,所述方法具体步骤如下:(1)将FeMnAl合金在1150℃至1300℃处理10分钟至10小时,随后水冷或油冷;(2)将步骤(1)处理后的合金在300℃至550℃处理10分钟至24小时。
2.根据权利要求1所述的一种提高FeMnAl合金形状记忆性能的方法,其特征在于,步骤(2)中处理温度为400℃至520℃。
3.根据权利要求1所述的一种提高FeMnAl合金形状记忆性能的方法,其特征在于,经所述方法处理后FeMnAl合金中存在与α相共格且直径小于等于4nm的DO3型有序结构纳米(Fe,Mn)3Al相。
4.根据权利要求3所述的一种提高FeMnAl合金形状记忆性能的方法,其特征在于,纳米(Fe,Mn)3Al相的直径小于等于2.5nm。
CN201810280667.XA 2018-04-02 2018-04-02 一种提高FeMnAl合金形状记忆性能的方法 Expired - Fee Related CN108411213B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810280667.XA CN108411213B (zh) 2018-04-02 2018-04-02 一种提高FeMnAl合金形状记忆性能的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810280667.XA CN108411213B (zh) 2018-04-02 2018-04-02 一种提高FeMnAl合金形状记忆性能的方法

Publications (2)

Publication Number Publication Date
CN108411213A true CN108411213A (zh) 2018-08-17
CN108411213B CN108411213B (zh) 2019-11-15

Family

ID=63133887

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810280667.XA Expired - Fee Related CN108411213B (zh) 2018-04-02 2018-04-02 一种提高FeMnAl合金形状记忆性能的方法

Country Status (1)

Country Link
CN (1) CN108411213B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59150069A (ja) * 1983-02-15 1984-08-28 Hitachi Metals Ltd 形状記憶合金製造方法
JPS6237353A (ja) * 1986-06-13 1987-02-18 Hitachi Metals Ltd 形状記憶合金の製造方法
US20040187980A1 (en) * 2003-03-25 2004-09-30 Questek Innovations Llc Coherent nanodispersion-strengthened shape-memory alloys
CN101215678A (zh) * 2008-01-17 2008-07-09 四川大学 含高温铁素体的免训练铸造铁基形状记忆合金
WO2013022490A2 (en) * 2011-03-23 2013-02-14 Spokane Industries Ballistic applications of composite materials
CN103773933A (zh) * 2014-01-21 2014-05-07 四川大学 一种提高亚稳奥氏体不锈钢形状记忆效应的方法
CN103866211A (zh) * 2014-03-19 2014-06-18 四川大学 一种制备免训练铁锰硅基形状记忆合金的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59150069A (ja) * 1983-02-15 1984-08-28 Hitachi Metals Ltd 形状記憶合金製造方法
JPS6237353A (ja) * 1986-06-13 1987-02-18 Hitachi Metals Ltd 形状記憶合金の製造方法
US20040187980A1 (en) * 2003-03-25 2004-09-30 Questek Innovations Llc Coherent nanodispersion-strengthened shape-memory alloys
CN101215678A (zh) * 2008-01-17 2008-07-09 四川大学 含高温铁素体的免训练铸造铁基形状记忆合金
WO2013022490A2 (en) * 2011-03-23 2013-02-14 Spokane Industries Ballistic applications of composite materials
CN103773933A (zh) * 2014-01-21 2014-05-07 四川大学 一种提高亚稳奥氏体不锈钢形状记忆效应的方法
CN103866211A (zh) * 2014-03-19 2014-06-18 四川大学 一种制备免训练铁锰硅基形状记忆合金的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
K. ANDO ET AL.: ""Ferromagnetic to weak-magnetic transition accompanied by bcc to fee transformation in Fe-Mn-Al alloy"", 《AMERICAN INSTITUTE OF PHYSICS》 *

Also Published As

Publication number Publication date
CN108411213B (zh) 2019-11-15

Similar Documents

Publication Publication Date Title
Saghaian et al. High strength NiTiHf shape memory alloys with tailorable properties
Canbay et al. Thermal and structural characterization of Cu–Al–Mn–X (Ti, Ni) shape memory alloys
Luo et al. A comparison of methods for the training of NiTi two-way shape memory alloy
Wieczorek et al. Optimizing Ni–Ti-based shape memory alloys for ferroic cooling
Liu Detwinning process and its anisotropy in shape memory alloys
WO2014201239A2 (en) Systems and methods for tailoring coefficients of thermal expansion between extreme positive and extreme negative values
Wang et al. Effect of thermomechanical treatment on the two-way shape memory effect of NiTi alloy spring
CN109913764A (zh) 一种提高铁锰铝镍合金记忆性能稳定性的方法
Pushin et al. Design and development of high-strength and ductile ternary and multicomponent eutectoid Cu-based shape memory alloys: Problems and perspectives
Škorvánek et al. Nanocrystalline Cu‐free HITPERM alloys with improved soft magnetic properties
CN108411213B (zh) 一种提高FeMnAl合金形状记忆性能的方法
Abbasi-Chianeh et al. The effect of post-deformation aging on superelastic properties of Ni50. 9Ti thin wires attaining micro and nano-substructure
Xia et al. Effect of Al content on abnormal grain growth and superelasticity in Fe–Mn–Al–Cr–Ni shape memory alloys with near-zero temperature-dependence of transformation stress
CN108359875A (zh) 低镍型FeMnAlNi基形状记忆合金及其处理方法
Yamazaki et al. Tuning the temperature range of superelastic Ni-Ti alloys for elastocaloric cooling via thermal processing
JP3950963B2 (ja) NbC添加Fe−Mn−Si系形状記憶合金の加工熱処理法
Pushin et al. Mechanical behavior and structural characterization of a Cu-Al-Ni-based shape-memory alloy subjected to isothermal uniaxial megaplastic compression
Yuan et al. Transformation behaviors and superelasticity of Ti 50 Ni 48 Fe 2 shape memory alloy subjected to cold-rolling and subsequent annealing
Zhan et al. The Effect of Ageing Treatment on Shape‐Setting and Shape Memory Effect of a NiTi SMA Corrugated Structure
Chen et al. Influence of thermomechanical training deformations on TWSME in TiNiCu alloy spring
Wang et al. The Superelastic Stability of Nanocrystalline Ni-51 At.% Ti Shape Memory Alloy
Tagiltsev et al. Two-way shape memory effect and viscoelastic properties in NiTiHf polycrystals containing nanosized particles
Tatar et al. The effect of pressure on transformation temperatures and some physical parameters of Fe–32Mn–6Si–3Cr shape memory alloy
Bouraoui et al. Tensile properties of a Fe-32Mn-6Si shape memory alloy
Nafari Q et al. Influence of composition and thermomechanical training process on the transformation behavior and shape memory properties of NiTi based alloys

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20191115