CN108409306B - 一种氧化锌压敏陶瓷材料及其制备方法 - Google Patents

一种氧化锌压敏陶瓷材料及其制备方法 Download PDF

Info

Publication number
CN108409306B
CN108409306B CN201810238077.0A CN201810238077A CN108409306B CN 108409306 B CN108409306 B CN 108409306B CN 201810238077 A CN201810238077 A CN 201810238077A CN 108409306 B CN108409306 B CN 108409306B
Authority
CN
China
Prior art keywords
zinc oxide
ceramic material
voltage
mol
sensitive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810238077.0A
Other languages
English (en)
Other versions
CN108409306A (zh
Inventor
王瀛洲
卢振亚
陈志武
王歆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN201810238077.0A priority Critical patent/CN108409306B/zh
Publication of CN108409306A publication Critical patent/CN108409306A/zh
Application granted granted Critical
Publication of CN108409306B publication Critical patent/CN108409306B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/10Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material voltage responsive, i.e. varistors
    • H01C7/105Varistor cores
    • H01C7/108Metal oxide
    • H01C7/112ZnO type
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3294Antimony oxides, antimonates, antimonites or oxide forming salts thereof, indium antimonate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/444Halide containing anions, e.g. bromide, iodate, chlorite

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Thermistors And Varistors (AREA)

Abstract

本发明涉及一种氧化锌压敏陶瓷材料及其制备方法。该ZnO压敏陶瓷材料的ZnO含量为97.24~97.26mol%,添加剂含量为2.74~2.76mol%;所述添加剂包括0.5mol%Bi2O3、0.5mol%Co2O3、0.72mol%Sb2O3、0.5mol%MnCO3、0.5mol%Ni203和0.02~0.04mol%的ZnCl2。本发明采用的半导化施主添加剂为ZnCl2,而不是采用常用的Al(N03)3.9H20,获得的氧化锌压敏电阻材料压敏电压在150V~260V/mm,非线性系数(I‑V非线性系数)a≥45,漏电流IL≦1uA,耐脉冲电流特性良好。

Description

一种氧化锌压敏陶瓷材料及其制备方法
技术领域
本发明涉及压敏陶瓷材料技术,特别涉及一种不添加Al元素的压敏陶瓷材料及其制备方法。
背景技术
氧化锌压敏陶瓷材料凭借优异的非线性特性及耐浪涌电流能力,广泛应用在电力、通信、电子、交通及其他各种电力电子设备中,保护电力电子线路免遭过电压破坏。
ZnO压敏电阻的电性能主要取决于添加剂的种类及其在晶界的分布。1968年日本松下公司发明多元氧化锌基压敏陶瓷材料,此后人们通过调节配方组成及制造技术,使得氧化锌压敏陶瓷材料性能不断提高,应用越来越广泛。目前,工业上使用的氧化锌压敏陶瓷材料是以ZnO基为主体,添加少量Bi2O3、Sb2O3、Co3O4、Cr2O3、MnO2等金属氧化物,并且常在这一配方体系中添加Al(NO3)3.9H2O。Al3+的加入可以作为施主杂质提高氧化锌晶粒载流子浓度,降低电阻率,同时提高晶界势垒高度,改善非线性系数。此外Al3+的引入,利于尖晶石相的富集,抑制晶粒长大,因此提高压敏电位梯度。
一般来说,引入的Al3+大部分进入陶瓷中的尖晶石相,少部分进入ZnO晶粒内部。并且,添加Al3+易于在ZnO晶体结构中形成填隙锌离子,Al3+添加量控制不当,会使产品漏电流增大,长期负荷易于失效。
发明内容
为了解决现有技术所存在的技术问题,本发明提供一种氧化锌压敏陶瓷材料及其制备方法,不需要添加Al元素,而采用ZnCl2作为施主添加剂,氧化锌压敏陶瓷材料的漏电流较低,残压比和压敏电压变化率较小,具有良好的稳定性。
本发明的氧化锌压敏陶瓷材料,ZnO含量为97.24~97.26mol%,添加剂含量为2.74~2.76mol%;所述添加剂包括0.5mol%Bi2O3、0.5mol%Co2O3、0.72mol%Sb2O3、0.5mol%MnCO3、0.5mol%Ni2O3和0.02~0.04mol%的ZnCl2
在一个优选的实施例中,所述ZnO含量为97.24mol%,ZnCl2含量为0.04mol%。
在另一优选的实施例中,所述ZnO含量为97.26mol%,ZnCl2含量为0.02mol%。
在另一优选的实施例中,所述ZnO含量为97.25mol%,ZnCl2含量为0.03mol%。
本发明氧化锌压敏陶瓷材料的制备方法,包括以下步骤:
1)制备粉料:按上述氧化锌压敏陶瓷材料各组分的比例称量ZnO和添加剂各原料,加入纯水,混合球磨;球磨后,将浆料烘干;
2)成型:将烘干后的浆料研磨后得到多组分粉体;粉体加入PVA胶水溶液,人工造粒,通过筛网得到粒径均匀的粉体,然后干压制成生坯片;
3)排胶:将干压成型的生坯片放入非密闭的箱式电阻炉中,排除PVA胶;
4)烧结:将排胶后的生坯片放入高温箱式电阻炉进行烧结,烧结气氛为空气;烧结后保温,保温后随炉冷却,得到黑色氧化锌压敏陶瓷片。
在制备的氧化锌压敏陶瓷材料两面制备银电极后,可测试本发明氧化锌压敏陶瓷材料的压敏电压、电压非线性系数和漏电流等小电流特性参数;在制备有银电极的氧化锌压敏陶瓷片上焊接金属导线,并进行绝缘包封后,可测试本发明氧化锌压敏陶瓷材料的脉冲电流特性。本发明获得的氧化锌压敏电阻材料压敏电压在150V~260V/mm,非线性系数(I-V非线性系数)a≥45,漏电流IL≦1uA,耐脉冲电流特性良好。
与现有技术相比,本发明具有如下有益效果:不需要添加Al元素,而采用ZnCl2作为施主添加剂,氧化锌压敏陶瓷材料的漏电流较低,残压比和压敏电压变化率较小,具有良好的稳定性。
附图说明
图1是本发明掺杂不同含量的ZnCl2的非线性系数曲线图,其中(a)图的ZnCl2含量为0-0.04mol%,(b)图的ZnCl2含量为0.04-0.07mol%;
图2是本发明掺杂不同含量的ZnCl2的压敏电位梯度曲线图,其中(a)图的ZnCl2含量为0-0.04mol%,(b)图的ZnCl2含量为0.04-0.07mol%;
图3是本发明掺杂不同含量的ZnCl2在不同大电流下的残压比曲线图。
具体实施方式
以下结合实施例和附图进一步说明本发明;应理解,下列实施方式和附图仅仅是本发明的一部分实施例而不是全部,仅用于说明本发明,而不是限制本发明。
本发明氧化锌压敏陶瓷材料由氧化锌和改性添加剂组成。其中氧化锌的含量为97.24~97.26mol%,改性添加剂含量为2.74~2.76mol%;所述改性添加剂包括0.5mol%Bi2O3、0.5mol%Co2O3、0.72mol%Sb2O3、0.5mol%MnCO3、0.5mol%Ni2O3和0.02~0.04mol%的ZnCl2,其中ZnCl2作为施主添加剂。将上述组成的氧化锌和添加剂材料加纯水球磨均匀,烘干,加入聚乙烯醇水溶液造粒、压制成型、排胶、高温烧结即可得到所述的氧化锌压敏陶瓷材料。
在本实施例中,氧化锌压敏陶瓷材料的制备过程,包括如下步骤:
1)制备粉料:按上述组成比例称量各原料,加入纯水,混合球磨。原料、球、纯水的比例为1:2:1,球磨机的转速为250r/min,球磨时间1小时。球磨后,将浆料在150℃烘干。
2)成型:将烘干后的浆料研磨后得到多组分粉体;粉体加入10%的PVA粘结剂(即PVA胶水溶液),人工造粒,通过80目筛网得到粒径均匀的粉体,然后以80Mpa的压力干压制成直径14mm的生坯片。
3)排胶:将干压成型的生坯片放入非密闭的箱式电阻炉中,以1℃/min速率升温至450℃,排除PVA胶。
4)烧结:将排胶后的生坯片放入高温箱式电阻炉,升温速率为5℃/min,烧结温度为1200℃。保温时间2小时。烧结气氛为空气。保温后随炉冷却,得到黑色氧化锌压敏陶瓷片。该黑色氧化锌压敏陶瓷片的直径约为12mm,厚度约为1.1mm。
5)制备电极:在烧结好的黑色氧化锌压敏陶瓷片两面印刷银电极浆料,在箱式炉中加热至580℃,保温20分钟,冷却后得到压敏电阻银片。该压敏电阻银片已经具有电压非线性特性,可用于测试压敏电压、非线性系数、漏电流等小电流特性参数。
6)焊接引线、封装:为了测试样品的脉冲电流特性,将上述制备好的压敏电阻银片两个银电极面焊接镀锡铜线作为引出线,用环氧树脂包封压敏电阻银片本体,即制备出可用于测试脉冲电流特性的氧化锌压敏电阻。
该氧化锌压敏陶瓷材料的压敏电压为150V~260V之间(例如160V~200V);非线性系数a≥40,优选a≥45,甚至a≥50以上;漏电流IL≦1uA,优选IL≦0.5uA,性能良好,耐电流脉冲特性良好。
本发明所述的压敏电压,又称电位梯度,指流经样品的电流密度为1mA/cm2时,单位厚度样品两端的电压值。本发明的氧化锌压敏陶瓷材料的压敏电压为150V~260V,不同的压敏电压可以适用不同的应用范围。所述的非线性系数是指在给定的外加电压下,I-V曲线上压敏电压附近某点的静态电阻器Rs与动态电阻器Rd之比,Rs=V/I,Rd=dV/dI。本发明的氧化锌压敏陶瓷材料的非线性系数a≥40甚至高达50以上,表明其具有优良的非线性。所述的漏电流是指在应用压敏电阻器的线路正常工作时,流过压敏电阻器的电流。残压比K是指大电流冲击时,压敏电阻器两端测得的电压峰值与压敏电压的比值。本发明的氧化锌压敏陶瓷材料的漏电流较低,残压比和压敏电压变化率较小,表明其该样品的能量损耗小,具有良好的稳定性。
本实施例中ZnO组分和改性添加剂中Bi2O3、Sb2O3、Co3O4、Cr2O3、MnO2、ZnCl2都采用市售分析纯试剂,ZnCl2事先配制成水溶液。对所制备的氧化锌压敏电阻,测试方法如下:
一般以流经样品的电流密度为1mA/cm2时,样品两端的电压值V1mA来表示压敏电压(也叫击穿电压):
I-V非线性系数a按下式计算:
Figure BDA0001604417760000051
其中V1和V2是相应于电流I1=0.1mA和I2=1mA的电压值;
漏电流IL:压敏陶瓷材料进入击穿区前在正常工作电压下所流过的电流。在实际应用中,一般取工作电压为75%V1mA时的电流。
大电流测试过程中,每组不同ZnCl2含量的压敏电阻选取4只,中间值作为图表的记录值。4只压敏电阻中超过半数出现穿孔,炸裂判定为失效。首先施加200A电流,如果试样没有破坏,增加脉冲电流直到达到装置的极限4kA。测试耐大电流结果见表1。
表1 ZnO压敏电阻大电流冲击结果(×:失效√:有效)
Figure BDA0001604417760000052
Figure BDA0001604417760000061
ZnO压敏电阻的残压VR(Residual Voltage)定义为施加相应脉冲电流时,ZnO压敏电阻两端的脉冲残压波峰值,残压比K可由下式计算:K=VR/V1mA
实施例1
本实施例的配方如下:氧化锌含量为97.26mol%;改性添加剂含量为2.74mol%,包括0.5mol%Bi2O3、0.5mol%Co2O3、0.72mol%Sb2O3、0.5mol%MnCO3、0.5mol%Ni2O3和0.02mol%的ZnCl2
将上述物料放到聚氨酯球磨罐里,采用氧化锆球在行星球磨机上,以水为研磨介质湿磨1小时。球磨机的转速250r/min,上述物料、球、水的比例为1:2:1;将球磨后获得的浆料在150℃下烘干4小时。将烘干后的浆料研磨后得到多组分粉体;粉体加入10%PVA粘结剂,人工造粒,过80目筛网得到粒径均匀的粉体,然后压制成直径14mm的生坯;成型后排胶,排胶后在高温烧结炉以5℃/min升高至1200℃,保温2小时后随炉冷却,得到烧结致密的ZnO压敏陶瓷材料。
可以获得压敏电压为166.7V/mm,非线性系数为48.4,漏电流为0.5uA的新型氧化锌压敏陶瓷材料。
实施例2
本实施例的配方如下:氧化锌含量为97.24mol%;改性添加剂含量为2.76mol%,包括0.5mol%Bi2O3、0.5mol%Co2O3、0.72mol%Sb2O3、0.5mol%MnCO3、0.5mol%Ni2O3和0.04mol%的ZnCl2
制备条件如实施例1中所述,可以获得压敏电压为181.3V/mm,非线性系数为52.8,漏电流为0.4uA的新型氧化锌压敏陶瓷材料。
图1是氧化锌压敏陶瓷材料掺杂不同含量的ZnCl2的非线性系数曲线,其中(a)图的ZnCl2含量分别为0mol%,0.01mol%,0.02mol%,0.04mol%;(b)图的ZnCl2含量分别为0.04mol%,0.05mol%,0.06mol%,0.07mol%,横坐标为ZnCl2含量,纵坐标为非线性系数。可以看出随着掺杂量增加,非线性系数先增加,然后在0.05mol%时有最大值56.6,之后有降低的趋势。
图2是掺杂不同含量的ZnCl2的压敏电位梯度曲线图,其中(a)图的ZnCl2含量分别为0mol%,0.01mol%,0.02mol%,0.04mol%;(b)图的ZnCl2含量分别为0.04mol%,0.05mol%,0.06mol%,0.07mol%),横坐标为ZnCl2含量,纵坐标为压敏电压。可以看出随着掺杂量增加,压敏电压先增大后略有减少。
图3是掺杂不同含量的ZnCl2的氧化锌压敏陶瓷材料,在不同大电流下的残压比(ZnCl2含量分别为0mol%,0.02mol%,0.04mol%)其中横坐标为承受脉冲电流的对数logI,纵坐标为残压比。可以看出在所选取范围内,曲线上升速率逐渐减小,残压比也随之减小,到达0.04mol%大电流区的非线性变化小,耐冲击能力最强,之后耐受大电流性能急剧下降,如表1所示2kA时已遭破坏。
表1是ZnO压敏电阻大电流冲击结果,表明添加ZnCl2后压敏电阻的抗失效能力可以得到增强,在所选取范围内,当取值为0.04mol%含量时这一性能最优。当然,本发明的ZnCl2含量也可取0.03mol%,相应地氧化锌含量为97.25mol%。
上述实施例为本发明最佳的实施方式,但本发明的实施方式并不受所述实施例限制,其他的任何未背离本发明的精神实质与原理下的所作的改变、修改、替代、组合、简化均应等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

1.一种氧化锌压敏陶瓷材料,其特征在于,ZnO含量为97.24~97.26mol%,添加剂含量为2.74~2.76mol%;所述添加剂包括0.5mol%Bi2O3、0.5mol%Co2O3、0.72mol%Sb2O3、0.5mol%MnCO3、0.5mol%Ni203和0.02~0.04mol%的ZnCl2
所述添加剂不添加Al元素。
2.根据权利要求1所述的氧化锌压敏陶瓷材料,其特征在于,所述ZnO含量为97.24mol%,ZnCl2含量为0.04mol%。
3.根据权利要求1所述的氧化锌压敏陶瓷材料,其特征在于,所述ZnO含量为97.26mol%,ZnCl2含量为0.02mol%。
4.根据权利要求1所述的氧化锌压敏陶瓷材料,其特征在于,所述ZnO含量为97.25mol%,ZnCl2含量为0.03mol%。
5.一种氧化锌压敏陶瓷材料的制备方法,其特征在于,包括以下步骤:
1)制备粉料:按权利要求1-4中任一项中所述的比例称量ZnO和添加剂各原料,加入纯水,混合球磨;球磨后,将浆料烘干;
2)成型:将烘干后的浆料研磨后得到多组分粉体;粉体加入PVA胶水溶液,人工造粒,通过筛网得到粒径均匀的粉体,然后干压制成生坯片;
3)排胶:将干压成型的生坯片放入非密闭的箱式电阻炉中,排除PVA胶;
4)烧结:将排胶后的生坯片放入高温箱式电阻炉进行烧结,烧结气氛为空气;烧结后保温,保温后随炉冷却,得到黑色氧化锌压敏陶瓷片。
6.根据权利要求5所述的氧化锌压敏陶瓷材料的制备方法,其特征在于,步骤1)中,原料、球、纯水的比例为1:2:1,球磨机的转速为250r/min,球磨时间1小时。
7.根据权利要求5所述的氧化锌压敏陶瓷材料的制备方法,其特征在于,步骤3)的箱式电阻炉以1℃/min速率升温至450℃,排除PVA胶。
8.根据权利要求5所述的氧化锌压敏陶瓷材料的制备方法,其特征在于,步骤4)中高温箱式电阻炉的升温速率为5℃/min,烧结温度为1200℃,保温时间2小时。
9.根据权利要求5所述的氧化锌压敏陶瓷材料的制备方法,其特征在于,所述制备方法还包括步骤:
5)制备电极:在烧结好的黑色氧化锌压敏陶瓷片两面印刷银电极浆料,在箱式炉中加热,然后保温,冷却后得到压敏电阻银片;
6)焊接引线、封装:将压敏电阻银片的两个银电极面焊接镀锡铜线作为引出线,用环氧树脂包封压敏电阻银片本体,制备出用于测试脉冲电流特性的氧化锌压敏电阻。
10.根据权利要求9所述的氧化锌压敏陶瓷材料的制备方法,其特征在于, 步骤5)中在箱式炉中加热至580℃,然后保温20分钟。
CN201810238077.0A 2018-03-22 2018-03-22 一种氧化锌压敏陶瓷材料及其制备方法 Active CN108409306B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810238077.0A CN108409306B (zh) 2018-03-22 2018-03-22 一种氧化锌压敏陶瓷材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810238077.0A CN108409306B (zh) 2018-03-22 2018-03-22 一种氧化锌压敏陶瓷材料及其制备方法

Publications (2)

Publication Number Publication Date
CN108409306A CN108409306A (zh) 2018-08-17
CN108409306B true CN108409306B (zh) 2020-10-13

Family

ID=63132319

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810238077.0A Active CN108409306B (zh) 2018-03-22 2018-03-22 一种氧化锌压敏陶瓷材料及其制备方法

Country Status (1)

Country Link
CN (1) CN108409306B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109192420B (zh) * 2018-08-22 2020-09-29 国家电网公司 一种高性能氧化锌电阻片的制备方法
CN109265161A (zh) * 2018-10-29 2019-01-25 惠州嘉科实业有限公司 中压压敏电阻及其制备方法
CN110563457B (zh) * 2019-09-05 2021-09-21 华南理工大学 一种氮离子掺杂的氧化锌基压敏电阻器及其制备方法
CN112662175B (zh) * 2021-01-19 2022-07-12 福州大学 一种压敏复合材料制备方法
CN114360829A (zh) * 2021-11-30 2022-04-15 南京先正电子股份有限公司 一种大通流容量耐潮湿电表压敏电阻器及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6225627B2 (zh) * 1979-12-12 1987-06-04 Matsushita Electric Ind Co Ltd
CN102260073A (zh) * 2011-04-28 2011-11-30 江苏大学 氧化锌基低压压敏陶瓷薄膜材料及制备方法
CN104193320A (zh) * 2014-09-03 2014-12-10 中国科学院新疆理化技术研究所 一种纳米氧化锌压敏电阻复合粉体材料及其制备方法
CN104944935A (zh) * 2015-06-08 2015-09-30 华中科技大学 一种氧化锌压敏电阻陶瓷及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU335217A1 (zh) * 1970-08-31 1972-06-08 И. Г. Хизанишвили , М. И.г идзе
RU2023706C1 (ru) * 1991-07-04 1994-11-30 Витебское производственное объединение "Монолит" Керамический материал преимущественно для низкочастотных конденсаторов и способ его получения

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6225627B2 (zh) * 1979-12-12 1987-06-04 Matsushita Electric Ind Co Ltd
CN102260073A (zh) * 2011-04-28 2011-11-30 江苏大学 氧化锌基低压压敏陶瓷薄膜材料及制备方法
CN104193320A (zh) * 2014-09-03 2014-12-10 中国科学院新疆理化技术研究所 一种纳米氧化锌压敏电阻复合粉体材料及其制备方法
CN104944935A (zh) * 2015-06-08 2015-09-30 华中科技大学 一种氧化锌压敏电阻陶瓷及其制备方法

Also Published As

Publication number Publication date
CN108409306A (zh) 2018-08-17

Similar Documents

Publication Publication Date Title
CN108409306B (zh) 一种氧化锌压敏陶瓷材料及其制备方法
EP1150306B1 (en) Current/voltage non-linear resistor and sintered body therefor
CN100412029C (zh) 氧化锌基高电位梯度压敏陶瓷材料及其制备方法与应用
US8535575B2 (en) Current-voltage non-linear resistor and method of manufacture thereof
CN105016721A (zh) 采用铝、镓和钇离子共同掺杂制备ZnO压敏电阻陶瓷的方法
US9601244B2 (en) Zinc oxide based varistor and fabrication method
Nahm Nonlinear behavior of Tb4O7-modified ZnO-Pr6O11-based ceramics with high breakdown field
CN116031033A (zh) 一种直流低残压型压敏电阻及其制备方法
CN109704752A (zh) 一种SnO2压敏电阻及其制备方法
KR101397499B1 (ko) 바나듐계 산화아연 바리스터 및 그 제조방법
KR101441237B1 (ko) 바나듐계 산화아연 바리스터 및 그 제조방법
JP4282243B2 (ja) 非直線抵抗体
CN106946561B (zh) Y3+、Nb5+复合施主掺杂ZnO压敏陶瓷及制备方法
EP2144256A1 (en) Current/voltage nonlinear resistor
CN110563457B (zh) 一种氮离子掺杂的氧化锌基压敏电阻器及其制备方法
KR102615494B1 (ko) ZnO계 바리스터 조성물과, 그 바리스터 및 이의 제조 방법
CN116936207A (zh) 一种高电位梯度高非线性系数氧化锌压敏电阻器介质及其制备方法
CN118538494A (zh) 压敏电阻制备方法
Kang et al. Study on the electrical and physical characteristics of ZnO varistor according to the sintering temperature
CN114933469A (zh) 一种压敏电阻器介质材料及其制备方法
JP2020047685A (ja) 酸化亜鉛素子
WO2024056557A1 (en) Ceramic materials including core-shell particles and varistors including the same
KR100676725B1 (ko) 송변전급 피뢰기용 산화아연 조성물의 제조방법
CN115959899A (zh) 一种Ga掺杂氧化锌复合功能陶瓷、制备方法及其应用
Nahm Effect of Er 2 O 3 Content on Nonlinear Properties and Impulse Clamping Characteristics of Pr/Co/Cr/Al Co-doped Zinc Oxide Ceramics

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant