CN108389937A - 一种基于三维径向结纳米结构高功率质量比柔性太阳能电池的制备方法 - Google Patents

一种基于三维径向结纳米结构高功率质量比柔性太阳能电池的制备方法 Download PDF

Info

Publication number
CN108389937A
CN108389937A CN201810106419.3A CN201810106419A CN108389937A CN 108389937 A CN108389937 A CN 108389937A CN 201810106419 A CN201810106419 A CN 201810106419A CN 108389937 A CN108389937 A CN 108389937A
Authority
CN
China
Prior art keywords
silicon
high power
preparation
dimensional radial
solar battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810106419.3A
Other languages
English (en)
Inventor
余林蔚
孙肖林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University
Original Assignee
Nanjing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University filed Critical Nanjing University
Priority to CN201810106419.3A priority Critical patent/CN108389937A/zh
Publication of CN108389937A publication Critical patent/CN108389937A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/202Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials including only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03921Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03926Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate comprising a flexible substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/056Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means the light-reflecting means being of the back surface reflector [BSR] type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种柔性的、自掺杂、高功率质量比的太阳能电池制备方法,对未来的手提设备及可穿戴应用具有很重要的意义。该电池采用一种成本低廉的铝箔衬底且制备工艺成熟的非晶硅(a‑Si:H),就可以获得较高性能的三维纳米结构径向结太阳能电池,且机械弯曲性能很好,经过多次弯曲仍然能够保持稳定的电池性能。该技术将柔性衬底与三维纳米结构相结合,将铝箔衬底与非人为性的铝扩散形成P型掺杂相结合,利用PECVD薄膜淀积技术在低熔点金属(Sn或In等)诱导生长的竖直硅纳米线上包裹非晶硅形成p‑i‑n结构,并用氧化铟锡(ITO)作为透明电极,实现完整的、柔性的及较高性能的太阳能电池。

Description

一种基于三维径向结纳米结构高功率质量比柔性太阳能电池 的制备方法
技术领域
本发明涉及一种基于三维径向结纳米结构高功率质量比柔性太阳能电池的制备方法。
背景技术
进入21世纪,随着人类越来越关注全球气候变暖的问题,太阳能产业逐渐在全球各地蓬勃发展。中国作为全球最大的太阳能电池生产国,不但致力于为世界提供更廉价的太阳能电池,同时希望提升自身太阳能电池制备技术,实现经济增长方式的转变。柔性太阳能电池是近年来世界太阳能产业的一颗新星,随着现代电子技术的飞速发展,人们对柔性可穿戴新能源器件的需求越来越高,其中柔性器件的机械稳定性及功率重量比特性在其中都起着至关重要的作用。与晶体硅太阳能电池和非柔性衬底(如玻璃)薄膜太阳能电池相比,柔性薄膜太阳能电池具有机械性能稳定、寿命长、质量轻等特点,更适合于民生应用。
为实现卷对卷大批量、低成本制造,柔性薄膜太阳能电池采用的柔性衬底材料应具有以下特点:
(1)足够的强度,能够承受制备及应用过程中的张拉应力。
(2)良好的热稳定性,制备过程中衬底保温度的稳定及均匀性。
(3)热膨胀系数与p-n结光电转换材料相匹配。
(4)成本尽量减少。
目前柔性薄膜太阳能电池所用的衬底材料主要分为2大类:金属及其合金和聚合物。
1、金属与合金柔性材料,可使用较高的温度淀积电池薄膜材料。金属类衬底主要有不锈钢、钛、铝、镍、锌、钼、铬等,不锈钢具有耐高温、耐腐蚀、导电性能优越、延展性好及成本低廉等优点,成为薄膜太阳能电池柔性衬底的首选材料。但是不锈钢衬底杂质离子在制备过程中很容易扩散至电池材料,所以在制备电池之前需要在不锈钢衬底上淀积适当的阻挡层以阻止杂质离子的扩散,增加了工艺复杂性,再者不锈钢衬底硬度大,不能完全满足柔性电池的需求。
2、有机材料衬底,但其不耐高温,因此要求较低的成膜温度,并且有机衬底需要淀积阻挡层及背电极,工艺相对付赞。相对玻璃衬底而言,有机柔性衬底由于其柔韧性释放应变,在薄膜制备过程中呈现小的应变。
发明内容
针对上述问题,本发明提供一种成本低廉且制备工艺简易的基于三维径向结纳米结构高功率质量比柔性太阳能电池的制备方法。
实现本发明的技术方案如下:
一种基于三维径向结纳米结构高功率质量比柔性太阳能电池的制备方法,以铝箔为衬底,在铝箔柔性衬底上生长三维径向硅纳米线结构,覆盖非晶硅,形成PIN结构。
铝离子在200℃以上扩散至硅纳米线,使得硅纳米形成自然的P型掺杂。
所述硅纳米线结构的形貌是纳米线或纳米柱或纳米棒或纳米金字塔结构中的一种或几种的组合。
所述三维径向硅纳米线结构由一个或多个纳米线阵列结构构成,纳米线阵列结构由自下而上的诱导方式生长而成,或使用自上而下的刻蚀方式形成纳米线阵列,刻蚀方式包括溶液法湿法刻蚀或者RIE干法刻蚀。
采用金属Sn或In或Au或Fe或Ni或Ga或Al作为催化剂诱导硅纳米线结构生长。
纳米线阵列结构由自下而上的诱导方式生长为纳米结构,并采用等离子化学气相沉积、低压气相沉积、化学气相沉积、激光烧蚀沉积、热蒸发、电子束蒸发、磁控溅射、溶胶-凝胶法中的一种或几种的组合进行薄膜制备。
作为三维构架的硅纳线结构和外层薄膜的掺杂技术是在生长过程或者薄膜沉积过程中通入掺杂气体PH3或者B2H6从而实现N型或P型掺杂;利用扩散或离子注入方法获得不同掺杂类型的薄膜。
所述硅纳米线结构和薄膜制备的方法:采用等离子化学气相沉积、低压气相沉积、化学气相沉积、激光烧蚀沉积、电子束蒸发或磁控溅射,溶胶-凝胶法中的一种或多种组合;多层薄膜的掺杂方式可以是淀积过程中通入PH3或B2H6掺杂气源,也可以是沉积后利用扩散或离子注入方式实现掺杂分别生长N型非晶硅或P型非晶硅。
制备方法的步骤包括:
1)衬底采用型号8011-O,厚度为9μm~250μm的铝箔;
2)将铝箔包裹在玻璃或硅片上用以固定衬底;
3)在基底表面蒸镀一层1nm~2nm的金属层作为催化剂;
4)在PECVD中氢气plasma处理从而形成直径约20nm~40nm的金属颗粒;采用VLS模式生长;在380℃~420℃下通入硅烷和硼烷生长直径20nm~40nm,长度800nm~1000nm的P型硅纳米线阵列;
5)在PECVD中140℃~180℃依次沉积80nm~100nm的本征氢化非晶硅和8nm~10nm的N型非晶硅构成PIN结构;然后磁控溅射溅射一层80nm~100nm厚的ITO作为顶电极;
6)最后再用shadow mask蒸镀Ag作为栅线。
本发明主要采用铝箔作为柔性衬底,具有柔韧性好,导电性好,反射率高,价格便宜等优势,不仅实现柔性需求,而且可以作为底电极和背反射层,简化工艺,降低成本。结合竖直生长的径向结结构,具有优异的机械稳定性。所用铝箔衬底价格低廉且容易购买;衬底轻薄,光反射性好且导电性好,可同时作为底电极和背反射层;三维径向结构在铝箔上机械性能温度;硅纳米线制备过程中,铝离子扩散,纳米线形成p型自掺杂;电池性能较好,功率质量比高。
本发明有益效果:本发明结构仅需要一种成本低廉且制备工艺成熟的制备半导体材料非晶硅(a-Si:H)的结构,就可以实现机械性能稳定、功率质量比高的三维柔性太阳能电池。采用市场通用的价格低廉的铝箔作为衬底,在PECVD硅烷和掺杂气体氛围下,用低熔点金属(Sn 或In等)在廉价衬底上诱导生长大规模的竖直硅纳米线阵列,并包裹多层不同掺杂类型的非晶硅形成叠层的p-i-n结构,并用氧化铟锡(ITO)作为透明电极,实现柔性三维径向结太阳能电池的制备。由于该结构竖直纳米线可以牢牢地矗立在铝箔衬底,整个电池的机械性能稳定。
本制备方法对未来的手提设备及可穿戴应用具有很重要的意义。该电池采用一种成本低廉的铝箔衬底且制备工艺成熟的非晶硅(a-Si:H),就可以获得较高性能的三维纳米结构径向结太阳能电池,其功率质量比高(>1300),机械弯曲性能好,经过多次弯曲仍然能够保持稳定的电池性能。该技术将柔性衬底与三维纳米结构相结合,将铝箔衬底与非人为性的铝扩散形成P型掺杂相结合,利用PECVD薄膜淀积技术在低熔点金属(Sn或In等)诱导生长的竖直硅纳米线上包裹非晶硅形成p-i-n结构,并用氧化铟锡(ITO)作为透明电极,实现完整的、柔性的及较高性能的太阳能电池。
附图说明
图1为本发明基于铝箔衬底的柔性太阳能电池的实现过程示意图;
图2为传统的非晶硅太阳能电池制备工艺及材料配置图;
图3为本发明所获得的太阳能电池与传统太阳能电池数据对比图;
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例,对本发明实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于所描述的本发明的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
一种基于柔性自掺杂三维径向结纳米结构太阳能电池的制备方法,以普通廉价的铝箔为衬底,其导电性能好,反射率高,在可见光波长范围内,反射率可达70%-80%,在红外线波长范围内反射率可达75%-100%;在铝箔柔性衬底上生长三维竖直/径向硅纳米线结构,覆盖非晶硅,形成PIN结构,具有很高的功率重量比;铝离子在200℃以上会扩散至硅纳米线,使得硅纳米线形成自然的P型掺杂;竖直生长的径向结结构,在柔性衬底上具有优异的机械稳定性;用铝箔衬底代替常规的硅衬底或导电玻璃衬底,不仅实现柔性需求,而且可以作为底电极和背反射层,精简工艺,降低成本。
柔韧性好,超轻超薄,价格低廉且易于购买,导电性好及反射率高。加上铝箔的高反射率,衬底上不需要再淀积背反射层就可以有效地收集光子。竖直生长的纳米线,可牢牢矗立在铝箔表面,在柔性衬底上具有优异的机械稳定性。
硅纳米线结构的形貌是纳米线或纳米柱或纳米棒或纳米金字塔结构中的一种或几种的组合。
三维径向硅纳米线结构由一个或多个纳米线阵列结构构成,纳米线阵列结构由自下而上的诱导方式生长而成,或使用自上而下的刻蚀方式形成纳米线阵列,刻蚀方式包括溶液法湿法刻蚀或者RIE干法刻蚀。
采用金属Sn或In或Au或Fe或Ni或Ga或Al作为催化剂诱导硅纳米线结构生长。
纳米线阵列结构由自下而上的诱导方式生长为纳米结构,并采用等离子化学气相沉积、低压气相沉积、化学气相沉积、激光烧蚀沉积、热蒸发、电子束蒸发、磁控溅射、溶胶-凝胶法中的一种或几种的组合进行薄膜制备。
作为三维构架的硅纳线结构和外层薄膜的掺杂技术是在生长过程或者薄膜沉积过程中通入掺杂气体PH3或者B2H6从而实现N型或P型掺杂;利用扩散或离子注入方法获得不同掺杂类型的薄膜。
硅纳米线结构和薄膜制备的方法:采用等离子化学气相沉积、低压气相沉积、化学气相沉积、激光烧蚀沉积、电子束蒸发或磁控溅射,溶胶-凝胶法中的一种或多种组合;多层薄膜的掺杂方式可以是淀积过程中通入PH3或B2H6掺杂气源,也可以是沉积后利用扩散或离子注入方式实现掺杂分别生长N型非晶硅或P型非晶硅。
太阳能电池的制备方法实施方式之一:步骤包括:
1)衬底采用型号8011-O,厚度为15μm的铝箔;
2)将铝箔包裹在2.5cm*2.5cm的玻璃或硅片上用以固定衬底;
3)在基底表面蒸镀一层2nm的Sn作为催化剂;
4)在PECVD中氢气plasma处理从而形成直径约30nm的Sn颗粒;采用VLS模式生长;在 440℃下通入硅烷和硼烷生长直径40nm,长度1微米的P型硅纳米线阵列;
5)在PECVD中150℃依次沉积100nm的本征氢化非晶硅和10nm的N型非晶硅构成PIN结构;然后磁控溅射溅射一层100nm厚的ITO作为顶电极;
6)最后再用shadow mask蒸镀Ag作为栅线。
上述列出了实施方式,但不仅仅包括这些;总而言之,本申请的太阳能电池的制备方法基于柔性太阳能电池的三维径向结纳米线结构,在铝箔衬底上热蒸发生长催化金属锡,PECVD 系统用VLS模式生长竖直硅纳米线,表面覆盖生长非晶硅,形成PIN结构电池;测试不同机械弯曲状态下柔性电池的I-V特性;用相同的工艺在AZO玻璃衬底上生长三维径向结太阳能电池,对比研究铝箔衬底的背反射作用;在铝箔衬底上生长二维平面结构非晶硅电池,对比研究二维和三维结构电池在柔性衬底上的机械稳定性;研究不锈钢衬底和有机衬底柔性电池文献,对比不同柔性太阳能电池的功率重量比。
附图1显示了基于铝箔衬底的柔性太阳能电池的基本结构和实现结果。我们采用市场上普通的铝箔,基于工艺成熟的低熔点金属诱导竖直硅纳米线生长技术和原位掺杂技术,在其表面覆盖非晶硅,形成由内而外的PIN结构,铝离子在200℃以上会扩散至硅纳米线,形成自然的P型掺杂。且三维PIN径向结构竖直线容易更稳固地矗立在在铝箔衬底上,表现出非常优异的机械稳定性,不仅实现柔性需求,而且铝箔衬底同时可以作为底电极和背反射层,精简工艺,降低成本,如图2所示:传统的非晶硅太阳能电池制备工艺及材料主要包括玻璃衬底、 TCO透明导电膜、制绒、Ag背反射膜及背电极、淀积非晶硅薄膜及封装等,本发明采用铝箔作为衬底,此材料具有柔韧性好,反射率高、导电性好的特性,在铝箔衬底上直接淀积三维径向结结构太阳能电池,不再需要玻璃衬底、TCO透明导电膜、Ag背反射膜及背电极等材料及工艺过程,并且三维径向结结构具有很强的陷光效应,完全可以替代制绒工艺,使整个非晶硅太阳能电池制备成本降低了46%,同时简化了工艺流程。
目前在相关参考文献中可以考察到的柔性非晶硅太阳能电池主要以不锈钢、有机聚合物以及铝箔为衬底。如图3所示,不锈钢衬底的柔性非晶硅电池效率较高,但是制备工艺复杂,需要增加制绒工艺、淀积背反射层及扩散阻挡层,并且由于不锈钢衬底重量较大,电池的功率质量比比较低。有机聚合物衬底的柔性非晶硅电池柔韧性比较好,但是制备工艺也比较复杂,需要增加制绒工艺、淀积背反射层及扩散阻挡层,工艺复杂电池的功率质量比比较低。图3中涉及到的其他铝箔衬底柔性非晶硅电池,铝箔厚250μm,采用复杂的AAO模具制绒工艺,并且需要淀积背反射层及扩散阻挡层,工艺复杂且电池的功率质量比比较低。本发明采用15 μm厚铝箔作为衬底,并将其跟三维径向结纳米线结构相结合,增强柔性电池的机械稳定性,简化工艺流程,最终获得性能较好,功率质量比很高(>1300)的柔性太阳能电池。
综上所述,该柔性三维径向结结构太阳能电池在节约成本,缩减工艺,性能优异,以及机械稳定性等方面展示出了极大的优势。

Claims (9)

1.一种基于三维径向结纳米结构高功率质量比柔性太阳能电池的制备方法,其特征在于,以铝箔为衬底,在衬底上生长三维径向硅纳米线结构,覆盖非晶硅,形成PIN结构。
2.如权利要求1所述的一种基于三维径向结纳米结构高功率质量比柔性太阳能电池的制备方法,其特征在于,铝离子在200℃以上扩散至硅纳米线,使得硅纳米形成自然的P型掺杂。
3.如权利要求2所述的一种基于三维径向结纳米结构高功率质量比柔性太阳能电池的制备方法,其特征在于,所述硅纳米线结构的形貌是纳米线或纳米柱或纳米棒或纳米金字塔结构中的一种或几种的组合。
4.如权利要求3所述的一种基于三维径向结纳米结构高功率质量比柔性太阳能电池的制备方法,其特征在于,所述三维径向硅纳米线结构由一个或多个纳米线阵列结构构成,纳米线阵列结构由自下而上的诱导方式生长而成,或使用自上而下的刻蚀方式形成纳米线阵列,刻蚀方式包括溶液法湿法刻蚀或者RIE干法刻蚀。
5.如权利要求4所述的一种基于三维径向结纳米结构高功率质量比柔性太阳能电池的制备方法,其特征在于,采用金属Sn或In或Au或Fe或Ni或Ga或Al作为催化剂诱导硅纳米线结构生长。
6.如权利要求4所述的一种基于三维径向结纳米结构高功率质量比柔性太阳能电池的制备方法,其特征在于,纳米线阵列结构由自下而上的诱导方式生长为纳米结构,并采用等离子化学气相沉积、低压气相沉积、化学气相沉积、激光烧蚀沉积、热蒸发、电子束蒸发、磁控溅射、溶胶-凝胶法中的一种或几种的组合进行薄膜制备。
7.如权利要求6所述的一种基于三维径向结纳米结构高功率质量比柔性太阳能电池的制备方法,其特征在于,作为三维构架的硅纳线结构和外层薄膜的掺杂技术是在生长过程或者薄膜沉积过程中通入掺杂气体PH3或者B2H6从而实现N型或P型掺杂;利用扩散或离子注入方法获得不同掺杂类型的薄膜。
8.如权利要求7所述的一种基于三维径向结纳米结构高功率质量比柔性太阳能电池的制备方法,其特征在于,所述硅纳米线结构和薄膜制备的方法:采用等离子化学气相沉积、低压气相沉积、化学气相沉积、激光烧蚀沉积、电子束蒸发或磁控溅射,溶胶-凝胶法中的一种或多种组合;多层薄膜的掺杂方式可以是淀积过程中通入PH3或B2H6掺杂气源,也可以是沉积后利用扩散或离子注入方式实现掺杂分别生长N型非晶硅或P型非晶硅。
9.如权利要求1—8中任一项所述的一种基于三维径向结纳米结构高功率质量比柔性太阳能电池的制备方法,其特征在于,步骤包括:
1)衬底采用型号8011-O,厚度为9μm~250μm的铝箔;
2)将铝箔包裹在玻璃或硅片上用以固定衬底;
3)在基底表面蒸镀一层1nm~2nm的金属层作为催化剂;
4)在PECVD中氢气plasma处理从而形成直径约20nm~40nm的金属颗粒;采用VLS模式生长;在380℃~420℃下通入硅烷和硼烷生长直径20nm~40nm,长度800nm~1000nm的P型硅纳米线阵列;
5)在PECVD中140℃~180℃依次沉积80nm~100nm的本征氢化非晶硅和8nm~10nm的N型非晶硅构成PIN结构;然后磁控溅射溅射一层80nm~100nm厚的ITO作为顶电极;
6)最后再用shadow mask蒸镀Ag作为栅线。
CN201810106419.3A 2018-02-02 2018-02-02 一种基于三维径向结纳米结构高功率质量比柔性太阳能电池的制备方法 Pending CN108389937A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810106419.3A CN108389937A (zh) 2018-02-02 2018-02-02 一种基于三维径向结纳米结构高功率质量比柔性太阳能电池的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810106419.3A CN108389937A (zh) 2018-02-02 2018-02-02 一种基于三维径向结纳米结构高功率质量比柔性太阳能电池的制备方法

Publications (1)

Publication Number Publication Date
CN108389937A true CN108389937A (zh) 2018-08-10

Family

ID=63074400

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810106419.3A Pending CN108389937A (zh) 2018-02-02 2018-02-02 一种基于三维径向结纳米结构高功率质量比柔性太阳能电池的制备方法

Country Status (1)

Country Link
CN (1) CN108389937A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109876297A (zh) * 2019-03-06 2019-06-14 南京大学 一种植入式光电心脏起搏器及其制备方法
CN112071935A (zh) * 2020-09-04 2020-12-11 复旦大学 一种基于太阳能的三维集成系统及制备方法
CN114256148A (zh) * 2020-09-22 2022-03-29 荣耀终端有限公司 半导体结构制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100243049A1 (en) * 2004-09-18 2010-09-30 Craig Leidholm Formation of solar cells with conductive barrier layers and foil substrates
CN103681965A (zh) * 2013-12-03 2014-03-26 常州大学 柔性基底硅纳米线异质结太阳电池的制备方法
CN104900746A (zh) * 2015-05-14 2015-09-09 南京大学 一种基于径向结叠层结构的三原色光电探测方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100243049A1 (en) * 2004-09-18 2010-09-30 Craig Leidholm Formation of solar cells with conductive barrier layers and foil substrates
CN103681965A (zh) * 2013-12-03 2014-03-26 常州大学 柔性基底硅纳米线异质结太阳电池的制备方法
CN104900746A (zh) * 2015-05-14 2015-09-09 南京大学 一种基于径向结叠层结构的三原色光电探测方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHIYONG FAN等: "Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates", 《NATURE MATERIALS》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109876297A (zh) * 2019-03-06 2019-06-14 南京大学 一种植入式光电心脏起搏器及其制备方法
CN112071935A (zh) * 2020-09-04 2020-12-11 复旦大学 一种基于太阳能的三维集成系统及制备方法
CN112071935B (zh) * 2020-09-04 2022-02-01 复旦大学 一种基于太阳能的三维集成系统及制备方法
CN114256148A (zh) * 2020-09-22 2022-03-29 荣耀终端有限公司 半导体结构制备方法

Similar Documents

Publication Publication Date Title
US7893348B2 (en) Nanowires in thin-film silicon solar cells
TWI409963B (zh) 同軸奈米線結構的太陽能電池
O'Donnell et al. Silicon nanowire solar cells grown by PECVD
CN108389937A (zh) 一种基于三维径向结纳米结构高功率质量比柔性太阳能电池的制备方法
CN205657066U (zh) 一种背面钝化接触电池电极结构
Hsueh et al. Crystalline-Si photovoltaic devices with ZnO nanowires
JP5656330B2 (ja) 光電変換装置の作製方法
CN103238218B (zh) 多结光电器件及其生产工艺
Zhang et al. Advanced radial junction thin film photovoltaics and detectors built on standing silicon nanowires
KR101164326B1 (ko) 불규칙적인 또는 규칙적인 배열의 금속 나노 입자 층을 이용한 실리콘 박막 태양 전지 및 그 제조 방법
CN102157617B (zh) 一种硅基纳米线太阳电池的制备方法
CN103367472B (zh) 一种t型顶电极背反射薄膜太阳电池
TW201208088A (en) Photoelectric conversion device and method for manufacturing the same
TWI466816B (zh) 筆直直立奈米線陣列結構及其製造方法
CN102270683A (zh) 柔性薄膜太阳电池集成组件及其制备方法
CN205564764U (zh) 一种背面钝化接触电池结构
CN104157714B (zh) 一种非晶/微晶硅叠层太阳能电池
CN105576054A (zh) 基于蝶形等离激元天线增强的纳米线中间带太阳能电池结构
CN102368506A (zh) 一种n-氧化锌/p-硅纳米线三维异质结太阳能转换装置
Mathieu-Pennober et al. Improvement of carrier collection in Si/a-Si: H nanowire solar cells by using hybrid ITO/silver nanowires contacts
JP2012023342A (ja) 光電変換装置及びその作製方法
CN1224111C (zh) 硅纳米线阵列太阳能转换装置
CN208954996U (zh) 太阳能电池
JP2002198551A (ja) 光電変換素子とそれを用いた光電変換装置及び光電変換素子の製造方法
Jia et al. Conductive white back reflector and scatter based on ZnO nanostructure arrays for harvesting solar energy

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20180810

WD01 Invention patent application deemed withdrawn after publication