CN108385010B - A cobalt-based superalloy with low density and high microstructure stability and preparation method thereof - Google Patents
A cobalt-based superalloy with low density and high microstructure stability and preparation method thereof Download PDFInfo
- Publication number
- CN108385010B CN108385010B CN201810301030.4A CN201810301030A CN108385010B CN 108385010 B CN108385010 B CN 108385010B CN 201810301030 A CN201810301030 A CN 201810301030A CN 108385010 B CN108385010 B CN 108385010B
- Authority
- CN
- China
- Prior art keywords
- alloy
- cobalt
- temperature
- elements
- phase
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000010941 cobalt Substances 0.000 title claims abstract description 47
- 229910017052 cobalt Inorganic materials 0.000 title claims abstract description 47
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 title claims abstract description 47
- 238000002360 preparation method Methods 0.000 title claims abstract description 9
- 229910000601 superalloy Inorganic materials 0.000 title claims description 53
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 94
- 239000000956 alloy Substances 0.000 claims abstract description 94
- 238000002844 melting Methods 0.000 claims abstract description 23
- 230000008018 melting Effects 0.000 claims abstract description 23
- 238000003723 Smelting Methods 0.000 claims abstract description 20
- 238000000034 method Methods 0.000 claims abstract description 19
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 12
- 229910052721 tungsten Inorganic materials 0.000 claims abstract description 9
- 229910052727 yttrium Inorganic materials 0.000 claims abstract description 8
- 239000000126 substance Substances 0.000 claims abstract description 6
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 28
- 229910052782 aluminium Inorganic materials 0.000 claims description 18
- 229910052719 titanium Inorganic materials 0.000 claims description 17
- 229910052759 nickel Inorganic materials 0.000 claims description 15
- 229910052735 hafnium Inorganic materials 0.000 claims description 10
- 229910052726 zirconium Inorganic materials 0.000 claims description 10
- 230000032683 aging Effects 0.000 claims description 9
- 229910052796 boron Inorganic materials 0.000 claims description 9
- 229910052799 carbon Inorganic materials 0.000 claims description 9
- 229910052804 chromium Inorganic materials 0.000 claims description 9
- 238000005728 strengthening Methods 0.000 claims description 7
- 238000010438 heat treatment Methods 0.000 claims description 6
- 239000002994 raw material Substances 0.000 claims description 6
- 230000006698 induction Effects 0.000 claims description 5
- 229910052742 iron Inorganic materials 0.000 claims description 5
- 229910052684 Cerium Inorganic materials 0.000 claims description 4
- 229910052746 lanthanum Inorganic materials 0.000 claims description 4
- 238000005275 alloying Methods 0.000 claims description 3
- 239000011159 matrix material Substances 0.000 claims description 2
- 229910000531 Co alloy Inorganic materials 0.000 claims 1
- 230000005540 biological transmission Effects 0.000 claims 1
- 239000000463 material Substances 0.000 abstract description 11
- 229910052750 molybdenum Inorganic materials 0.000 abstract description 8
- 238000011161 development Methods 0.000 abstract description 3
- 239000010936 titanium Substances 0.000 description 17
- 239000010955 niobium Substances 0.000 description 15
- 239000011651 chromium Substances 0.000 description 12
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 9
- 239000000203 mixture Substances 0.000 description 9
- 230000015572 biosynthetic process Effects 0.000 description 5
- 238000011160 research Methods 0.000 description 5
- 229910011212 Ti—Fe Inorganic materials 0.000 description 4
- 238000005485 electric heating Methods 0.000 description 4
- 229910052758 niobium Inorganic materials 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 229910052715 tantalum Inorganic materials 0.000 description 4
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 3
- 102100038225 Lysosome-associated membrane glycoprotein 2 Human genes 0.000 description 3
- 101710116771 Lysosome-associated membrane glycoprotein 2 Proteins 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910020630 Co Ni Inorganic materials 0.000 description 1
- 229910002440 Co–Ni Inorganic materials 0.000 description 1
- 102100035133 Lysosome-associated membrane glycoprotein 1 Human genes 0.000 description 1
- 101710116782 Lysosome-associated membrane glycoprotein 1 Proteins 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000003064 anti-oxidating effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 238000004663 powder metallurgy Methods 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C30/00—Alloys containing less than 50% by weight of each constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/02—Making non-ferrous alloys by melting
- C22C1/03—Making non-ferrous alloys by melting using master alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/07—Alloys based on nickel or cobalt based on cobalt
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Powder Metallurgy (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
- Manufacture And Refinement Of Metals (AREA)
Abstract
Description
技术领域:Technical field:
本发明属于新材料设计与开发领域,特别是提供了一种低密度、高组织稳定性γ′相强化钴基高温合金的成分及其制备方法。The invention belongs to the field of new material design and development, and particularly provides a low-density, high-structure-stability γ' phase-strengthened cobalt-based superalloy composition and a preparation method thereof.
背景技术:Background technique:
钴基高温合金与镍基高温合金相比具有优异的耐热腐蚀性、耐热疲劳性与焊接性能,是航空、火箭发动机燃烧室和导向叶片等热端部件上具有重要应用前景的材料。特别是,γ′相强化Co-Al-W基合金的发现为发展新型钴基高温合金开辟了新的道路[Sato J,Omori T,Oikawa K,et al.Cobalt-base high-temperature alloys[J].Science,2006,312(5770):90-1]。Compared with nickel-based superalloys, cobalt-based superalloys have excellent thermal corrosion resistance, thermal fatigue resistance and welding performance. In particular, the discovery of γ′ phase-strengthened Co-Al-W-based alloys opens a new path for the development of new cobalt-based superalloys [Sato J, Omori T, Oikawa K, et al. Cobalt-base high-temperature alloys[J ]. Science, 2006, 312(5770):90-1].
有关新型γ′相强化钴基高温合金的研发时间较短,相关研究还非常有限,研究主要集中在合金元素对钴基高温合金组织性能的影响上,并未形成系列的合金牌号,特别是形变钴基高温合金,迄今仅有德国Neumeier课题组以及英国Dye课题组进行了相关研究。Neumeier等人采用铸-轧法制备了高性能的新型形变钴基高温合金,该合金与难变形镍基高温合金U720Li相比有着更大的热加工区间,屈服强度在温度800℃以上时高于U720Li合金[Neumeier S,Freund L P,M.Novel wroughtγ/γ′cobalt base superalloyswith high strength and improved oxidation resistance[J].Scripta Materialia,2015,109:104-107];Dye等人采用粉末冶金的方法制备了新型形变钴基高温合金,该合金与MarM247有着相似的屈服强度,在温度高于750℃后甚至有着更高的强度[Knop M,MulveyP,Ismail F,et al.A New Polycrystalline Co-Ni Superalloy[J].JOM,2014,66(12):2495-2501.]。The research and development time of new γ' phase-strengthened cobalt-based superalloys is relatively short, and the relevant research is still very limited. Cobalt-based superalloys, so far only the German Neumeier research group and the British Dye research group have carried out related research. Neumeier et al. prepared a new high-performance deformed cobalt-based superalloy by the casting-rolling method. Compared with the refractory nickel-based superalloy U720Li, the alloy has a larger hot working range, and the yield strength is higher than that at temperatures above 800 °C. U720Li alloy [Neumeier S, Freund LP, M.Novel wroughtγ/γ′cobalt base superalloys with high strength and improved oxidation resistance[J].Scripta Materialia, 2015, 109:104-107]; Dye et al. prepared a new type of deformed cobalt-based superalloy by powder metallurgy. The alloy has a similar yield strength to MarM247, and even higher strength at temperatures higher than 750 °C [Knop M, MulveyP, Ismail F, et al.A New Polycrystalline Co-Ni Superalloy[J].JOM,2014,66 (12):2495-2501.].
然而,目前开发的新型Co-Al-W基合金由于含有5at%~10at%W元素使得合金密度偏高,甚至高于9.0g/cm3,而传统的形变镍基高温合金Wasploy的密度仅为8.2g/cm3。新型钴基高温合金的密度偏高的缺点将成为限制其在航空、火箭发动机热端部件上应用的重要因素之一。因此,降低新型钴基高温合金的密度是实现该类合金实际应用的关键之一。在保证合金组织性能稳定的前提下,合理替代W元素是降低钴基高温合金密度的最有效途径。However, the currently developed new Co-Al-W-based alloys contain 5 at% to 10 at% of W elements, resulting in a high alloy density, even higher than 9.0 g/cm 3 , while the density of the traditional deformed nickel-based superalloy Wasploy is only 8.2 g/cm 3 . The high density of the new cobalt-based superalloy will become one of the important factors limiting its application in the hot-end components of aviation and rocket engines. Therefore, reducing the density of new cobalt-based superalloys is one of the keys to realize the practical application of such alloys. Under the premise of ensuring the stability of the alloy structure and properties, reasonable substitution of W element is the most effective way to reduce the density of cobalt-based superalloys.
发明内容:Invention content:
本发明以降低新型钴基高温合金密度为目的,通过合金元素选择优化以及合理的制备工艺制定,开发一种低密度、高组织性能稳定性的新型γ′相形变钴基高温合金。The invention aims to reduce the density of a new type of cobalt-based superalloy, and develops a new type of γ' phase deformation cobalt-based superalloy with low density and high stability of microstructure and performance through the selection and optimization of alloy elements and the formulation of a reasonable preparation process.
本发明的技术方案为:The technical scheme of the present invention is:
一种低密度、高组织稳定性的钴基高温合金,其化学成分按原子百分数为:5-11%Al,0.01-3%W,20-35%Ni,8-18%Cr,1-6%Mo,0.01-1%(Y/Ce/La任选一种),0.01-1%Si,0.01-1%B,0.01-1%C,0.01-1%Zr,0.01-1%Hf,0-2%Ta,0-4%Ti,0-4%Fe,0-4%Nb,余量为Co。A cobalt-based superalloy with low density and high microstructure stability, its chemical composition in atomic percentage is: 5-11% Al, 0.01-3% W, 20-35% Ni, 8-18% Cr, 1-6% %Mo, 0.01-1% (any one of Y/Ce/La), 0.01-1% Si, 0.01-1% B, 0.01-1% C, 0.01-1% Zr, 0.01-1% Hf, 0 -2% Ta, 0-4% Ti, 0-4% Fe, 0-4% Nb, balance Co.
如上所述低密度、高组织稳定性的钴基高温合金的制备工艺,包括中间合金熔炼和合金熔炼过程,主要步骤如下:The preparation process of the cobalt-based superalloy with low density and high microstructure stability as mentioned above includes the process of master alloy melting and alloy melting, and the main steps are as follows:
(1)考虑到W、Mo、Ta、Nb等高熔点元素,首先熔炼Co-Mo-W-Ta-Nb中间合金,降低合金熔点,防止熔炼过程中出现高熔点合金熔化不充分的现象。同时将含量较少的合金元素,如:Si、B、C、Zr、Hf、Y/Ce/La等,一起加入中间合金,以增加这些低含量元素的均匀性。(1) Considering the high melting point elements such as W, Mo, Ta, Nb, etc., the Co-Mo-W-Ta-Nb master alloy is first smelted to reduce the melting point of the alloy and prevent the phenomenon of insufficient melting of the high melting point alloy during the smelting process. At the same time, alloy elements with less content, such as: Si, B, C, Zr, Hf, Y/Ce/La, etc., are added to the master alloy together to increase the uniformity of these low-content elements.
(2)将除Al、Ti元素以外的合金元素单质包括Ni、Cr、Fe等,与中间合金一起放入坩埚中,而将易氧化的Al、Ti元素放入料斗中,以便在熔炼过程中加入。(2) Alloy elements other than Al and Ti elements, including Ni, Cr, Fe, etc., are put into the crucible together with the master alloy, and the easily oxidizable Al and Ti elements are put into the hopper, so that in the smelting process join in.
(3)采用真空感应炉进行熔炼,当炉内真空度低于5×10-2Pa时,开始小功率送电加热排除原料上的附着气体,继续抽真空到1×10-2Pa时,进行大功率快速升温到1500℃-1600℃,保温10分钟,然后降低温度至1300℃-1400℃,保温5分钟,加入料斗中的Al、Ti元素,接着立刻快速升温到1500℃-1600℃,保温10-15分钟后浇注,制备成钴基高温合金铸锭。(3) Use a vacuum induction furnace for smelting. When the vacuum degree in the furnace is lower than 5×10 -2 Pa, start low-power electric heating to remove the adhering gas on the raw material, and continue to evacuate to 1×10 -2 Pa. Carry out high-power rapid heating to 1500℃-1600℃, hold for 10 minutes, then reduce the temperature to 1300℃-1400℃, hold for 5 minutes, add Al and Ti elements in the hopper, and then quickly heat up to 1500℃-1600℃ immediately, Pouring after 10-15 minutes of heat preservation to prepare a cobalt-based superalloy ingot.
本发明的优点:Advantages of the present invention:
(1)本发明在成分设计时综合考虑了各个元素对新型钴基高温合金成本、密度、组织性能的综合影响,特别是对W、Mo、Si和Y/La/Ce元素的精心选择与优化,对合金密度的降低和高温性能的提升起到了显著地作用。具体考虑因素如下:(1) In the composition design of the present invention, the comprehensive influence of each element on the cost, density, microstructure and properties of the new cobalt-based superalloy, especially the careful selection and optimization of W, Mo, Si and Y/La/Ce elements , played a significant role in the reduction of alloy density and the improvement of high temperature performance. Specific considerations are as follows:
铝:Al元素是γ′相形成元素,由于Al的密度较低,Al的加入可以显著降低合金密度。过高的Al元素容易导致β相形成,因此Al元素的含量为5-11at%。Aluminum: Al element is a γ' phase forming element. Due to the low density of Al, the addition of Al can significantly reduce the alloy density. Too high Al element easily leads to the formation of β phase, so the content of Al element is 5-11 at%.
钨:W元素是γ′相形成元素和固溶强化元素,由于W(ρ=19.3g/cm3)的密度较大,W元素的加入会极大增加合金密度,因此W元素的含量为0.01-3at%。Tungsten: W element is a γ' phase forming element and a solid solution strengthening element. Due to the high density of W (ρ=19.3g/cm 3 ), the addition of W element will greatly increase the alloy density, so the content of W element is 0.01 -3at%.
镍:Ni元素是γ′相形成元素,Ni元素的加入有利于扩大γ/γ′两相区,大幅度提高钴基高温合金的组织稳定性,因此Ni元素的含量为20-35at%。Nickel: Ni element is a γ' phase forming element. The addition of Ni element is beneficial to expand the γ/γ' two-phase region and greatly improve the microstructure stability of cobalt-based superalloy. Therefore, the content of Ni element is 20-35at%.
铬:Cr元素是重要的抗氧化与抗腐蚀合金元素,Cr元素的加入可以使材料在服役条件下表面形成致密富铬氧化膜,阻止材料进一步氧化。过量的Cr元素会导致γ/γ′两相组织不稳定,并容易在晶界析出σ相,因此Cr元素的含量为8-18at%。Chromium: Cr element is an important anti-oxidation and anti-corrosion alloy element. The addition of Cr element can form a dense chromium-rich oxide film on the surface of the material under service conditions, preventing further oxidation of the material. Excessive Cr element will lead to instability of the γ/γ' two-phase structure, and it is easy to precipitate the σ phase at the grain boundary, so the content of Cr element is 8-18 at%.
钼:Mo元素是重要的固溶强化元素和γ′相稳定元素,过高的Mo元素会导致有害TCP相的形成,因此Mo元素的含量为1-6at%。Molybdenum: Mo element is an important solid solution strengthening element and γ' phase stabilizing element. Too high Mo element will lead to the formation of harmful TCP phase, so the content of Mo element is 1-6at%.
钇/镧/铈:Y/La/Ce元素可净化基体与晶界,显著提高合金力学与抗氧化性能,过高添加上述元素会形成有害相进而恶化性能,因此Y、La、Ce元素选其中一种添加,含量为0.01-1at%。Yttrium/Lanthanum/Cerium: Y/La/Ce elements can purify the matrix and grain boundaries, and significantly improve the mechanical and oxidation resistance of the alloy. Excessive addition of the above elements will form harmful phases and deteriorate the performance, so Y, La, Ce elements are selected among them An addition, the content is 0.01-1at%.
硅:Si元素的加入可降低氧化层的厚度,促进富铬氧化膜的形成,提高抗氧化性能,大量Si元素的加入会降低合金γ/γ′两相组织稳定性,因此Si元素的含量为0.01-1at%。Silicon: The addition of Si element can reduce the thickness of the oxide layer, promote the formation of chromium-rich oxide film, and improve the oxidation resistance. The addition of a large amount of Si element will reduce the stability of the alloy γ/γ′ two-phase structure, so the content of Si element is 0.01-1at%.
硼:B元素是重要的晶界强化元素,偏聚于晶界增强晶界强度,但是过量的B元素会形成过量硼化物,反而削弱晶界的结合力,因此B元素的含量为0.01-1at%。Boron: B element is an important grain boundary strengthening element, segregating at the grain boundary to enhance the grain boundary strength, but excessive B element will form excess borides, which will weaken the bonding force of the grain boundary, so the content of B element is 0.01-1at %.
碳:C元素同样是重要的晶界强化元素,过量的C元素会导致晶界形成薄膜状的碳化物,恶化其力学性能,因此C元素的含量为0.01-1at%。Carbon: C element is also an important grain boundary strengthening element. Excessive C element will lead to the formation of film-like carbides at the grain boundary and deteriorate its mechanical properties, so the content of C element is 0.01-1at%.
锆:Zr元素是重要的晶界强化元素,对于去除有害杂质硫、磷有着重要的作用,但过量的Zr元素会恶化其力学性能,因此Zr元素的含量为0.01-1at%。Zirconium: Zr element is an important grain boundary strengthening element, which plays an important role in removing harmful impurities such as sulfur and phosphorus, but excessive Zr element will deteriorate its mechanical properties, so the content of Zr element is 0.01-1at%.
铪:Hf元素是γ′相形成元素,Hf对净化晶界也可起到重要的作用,但Hf元素价格昂贵,因此Hf元素的含量为0.01-1at%。Hafnium: Hf element is a γ' phase forming element. Hf can also play an important role in purifying grain boundaries, but Hf element is expensive, so the content of Hf element is 0.01-1at%.
钽:Ta元素是重要的γ′相形成元素,可以有效的提高钴基高温合金的力学性能。综合考虑密度、成本等因素,Ta元素的含量为0-2at%。Tantalum: Ta element is an important γ' phase forming element, which can effectively improve the mechanical properties of cobalt-based superalloys. Considering factors such as density and cost comprehensively, the content of Ta element is 0-2at%.
钛:Ti元素是重要的γ′相形成元素,可以有效的提高钴基高温合金的力学性能。过高的Ti元素会导致β相形成以及热加工区间显著减小,恶化热加工性能。因此Ti元素的含量为0-4at%。Titanium: Ti element is an important γ' phase forming element, which can effectively improve the mechanical properties of cobalt-based superalloys. Too high Ti element will lead to the formation of β phase and the significant reduction of the hot working range, which will deteriorate the hot working performance. Therefore, the content of Ti element is 0-4 at%.
铁:Fe元素的加入可以有效的降低合金成本和密度,但过量的Fe元素会降低γ/γ′两相组织的稳定性和TCP相的析出,因此Fe元素的含量为0-4at%。Iron: The addition of Fe element can effectively reduce the cost and density of the alloy, but excessive Fe element will reduce the stability of the γ/γ' two-phase structure and the precipitation of TCP phase, so the content of Fe element is 0-4at%.
铌:Nb元素是γ′相形成元素,Nb元素的加入可以降低密度,但过量的Nb元素会导致TCP相的析出,因此Nb元素的含量为0-4at%。Niobium: Nb element is a γ' phase forming element. The addition of Nb element can reduce the density, but excessive Nb element will lead to the precipitation of TCP phase, so the content of Nb element is 0-4at%.
(2)本发明的熔炼工艺原料按照熔点顺序熔化,能够避免低熔点金属的烧损以及高熔点元素的熔化不充分等问题,且可有效避免钴基高温合金铸锭中出现成分不均匀、宏观偏析严重等缺陷,提高了铸锭化学成分的准确性和均匀性。(2) The smelting process raw materials of the present invention are melted according to the melting point sequence, which can avoid problems such as burning loss of low-melting-point metals and insufficient melting of high-melting-point elements, and can effectively avoid the occurrence of uneven composition and macroscopic appearance in cobalt-based superalloy ingots. Serious segregation and other defects improve the accuracy and uniformity of the chemical composition of the ingot.
(3)与近期报道的同类γ′相强化形变钴基/镍基高温合金相比,本发明合金的密度降低了0.2-0.5g/cm3,热加工区间提高了100-150℃,并在700-900℃时效1000-3000h后仍然保持稳定的γ/γ′两相组织。可见,所发明合金与同类形变钴基高温合金相比,具有更低的密度和更高的中温组织性能稳定性,是一种优异的形变钴基高温结构材料。(3) Compared with the similar γ' phase strengthened deformed cobalt-based/nickel-based superalloys reported recently, the density of the alloy of the present invention is reduced by 0.2-0.5 g/cm 3 , the hot working range is increased by 100-150° C. After aging at 700-900℃ for 1000-3000h, it still maintains a stable γ/γ′ two-phase structure. It can be seen that compared with similar deformed cobalt-based superalloys, the invented alloy has lower density and higher stability of microstructure and properties at medium temperature, and is an excellent deformed cobalt-based high-temperature structural material.
附图说明:Description of drawings:
图1为本发明LAMP-2钴基形变高温合金经固溶-时效处理后的γ/γ′两相组织Figure 1 shows the γ/γ' two-phase structure of the LAMP-2 cobalt-based deformed superalloy of the present invention after solution-aging treatment
图2为本发明LAMP-2钴基形变高温合金固溶-时效处理后,750℃热暴露2000h后的γ/γ′两相组织Figure 2 shows the γ/γ' two-phase structure of the LAMP-2 cobalt-based deformed superalloy of the present invention after solution-aging treatment and thermal exposure at 750°C for 2000 hours
具体实施方式Detailed ways
下面结合附图和实施例对本发明的技术方案做进一步说明。The technical solutions of the present invention will be further described below with reference to the accompanying drawings and embodiments.
实施例1:Co-Ni-Cr-Al-W-Mo-Ti-Ta基形变高温合金Example 1: Co-Ni-Cr-Al-W-Mo-Ti-Ta-based deformed superalloy
参考各元素对新型γ′相强化钴基高温合金组织性能的影响规律,本文开发了新型Co-Ni-Cr-Al-W-Mo-Ti-Ta基形变高温合金,具体成分如表1所示。除表中的成分外,LAMP-1、LAMP-2两种合金中还包含Y:0.05at%、Si:0.2at%、Zr:0.06at%、Hf:0.1at%。Referring to the influence of various elements on the microstructure and properties of the new γ' phase-strengthened cobalt-based superalloy, a new Co-Ni-Cr-Al-W-Mo-Ti-Ta-based deformed superalloy was developed in this paper. The specific components are shown in Table 1. . In addition to the components in the table, the two alloys of LAMP-1 and LAMP-2 also contain Y: 0.05 at%, Si: 0.2 at%, Zr: 0.06 at%, and Hf: 0.1 at%.
Co-Ni-Cr-Al-W-Mo-Ti-Ta基形变高温合金的制备工艺如下:The preparation process of Co-Ni-Cr-Al-W-Mo-Ti-Ta based deformed superalloy is as follows:
(1)考虑到W、Mo、Ta等高熔点元素,首先熔炼Co-Mo-W-Ta中间合金,降低合金熔点,防止熔炼过程中出现高熔点合金熔化不均匀的现象,同时将含量较少的合金元素,如:Si、B、C、Zr、Hf、Y等,一起加入中间合金,以增加这些低含量元素的均匀性。(1) Considering the high melting point elements such as W, Mo, Ta, etc., the Co-Mo-W-Ta master alloy is first smelted to reduce the melting point of the alloy and prevent uneven melting of the high melting point alloy during the smelting process. The alloying elements, such as: Si, B, C, Zr, Hf, Y, etc., are added to the master alloy together to increase the uniformity of these low-content elements.
(2)将除Al、Ti元素以外的合金元素单质包括Ni、Cr等,与中间合金一起放入坩埚中,而将易氧化的Al、Ti元素放入料斗中,以便在熔炼过程中加入。(2) Alloy elements other than Al and Ti elements, including Ni, Cr, etc., are put into the crucible together with the master alloy, and the easily oxidizable Al and Ti elements are put into the hopper so as to be added during the smelting process.
(3)采用真空感应炉进行熔炼,当炉内真空度低于5×10-2Pa时,开始小功率送电加热排除原料上的附着气体,继续抽真空到1×10-2Pa时,进行大功率快速升温到1600℃,保温10分钟,然后降低温度至1400℃,保温5分钟,加入料斗中的Al、Ti元素,接着立刻快速升温到1600℃,保温10分钟后浇注,制备成钴基高温合金铸锭。(3) Use a vacuum induction furnace for smelting. When the vacuum degree in the furnace is lower than 5×10 -2 Pa, start low-power electric heating to remove the adhering gas on the raw material, and continue to evacuate to 1×10 -2 Pa. Carry out high-power rapid heating to 1600 °C, hold for 10 minutes, then reduce the temperature to 1400 °C, hold for 5 minutes, add Al and Ti elements in the hopper, then immediately heat up to 1600 °C rapidly, hold for 10 minutes, pour, and prepare cobalt Base superalloy ingots.
该合金经过1230℃保温24h后空冷的固溶处理,900℃保温8h一级时效+750℃保温12h二级时效处理后,可获得稳定的γ/γ′两相组织,γ′相的体积分数约为55%~65%(如图1所示),均为立方状或者近立方状,均匀的分布于γ相中。合金经750℃热暴露2000h后,仍保持稳定的γ/γ′两相组织(如图2所示)。该合金与近期报道的同类γ′相强化形变钴基高温合金(CoWAlloy2)相比,密度降低了0.2-0.5g/cm3,热加工区间与难变形镍基高温合金(U720Li)相比提高了110-150℃,室温硬度与U720Li合金相当(如表2所示),是一种优异的形变钴基高温结构材料。The alloy was solution treated at 1230°C for 24h and then air-cooled, and after 8h primary aging at 900°C and 12h secondary ageing at 750°C, a stable γ/γ' two-phase structure was obtained, and the volume fraction of γ' phase was About 55% to 65% (as shown in Figure 1), all of which are cubic or nearly cubic, and are uniformly distributed in the γ phase. After the alloy was exposed to heat at 750℃ for 2000h, it still maintained a stable γ/γ′ two-phase structure (as shown in Figure 2). Compared with the recently reported γ' phase-strengthened deformed cobalt-based superalloy (CoWAlloy2), the density of the alloy is reduced by 0.2-0.5 g/cm 3 , and the hot working range is increased compared with that of the hard-to-deform nickel-based superalloy (U720Li). At 110-150℃, the room temperature hardness is comparable to that of U720Li alloy (as shown in Table 2), and it is an excellent deformed cobalt-based high-temperature structural material.
表1 Co-Ni-Cr-Al-W-Mo-Ti-Ta基合金各元素原子百分比与密度Table 1 Atomic percentage and density of each element in Co-Ni-Cr-Al-W-Mo-Ti-Ta based alloy
[CoWAlloy2合金数据来自:Freund L P,Giese S,Schwimmer D,et al.Hightemperature properties and fatigue strength of novel wroughtγ/γ′Co-basesuperalloys[J].Journal of Materials Research,2017:1-8.][Data from CoWAlloy2 alloy: Freund L P, Giese S, Schwimmer D, et al. High temperature properties and fatigue strength of novel wroughtγ/γ′Co-base superalloys [J]. Journal of Materials Research, 2017: 1-8.]
表2 Co-Ni-Cr-Al-W-Mo-Ti-Ta基合金室温硬度与热加工区间Table 2 Room temperature hardness and hot working range of Co-Ni-Cr-Al-W-Mo-Ti-Ta based alloys
[U720Li合金数据来自:Zhou L Z,Lupinc V,Guo J T.Evolution ofMicrostructure and Mechanical Property during Long-Term Aging in Udimet720Li[J].Journal of Materials Science&Technology,2001,17(6):633-637.][U720Li alloy data from: Zhou L Z, Lupinc V, Guo J T.Evolution of Microstructure and Mechanical Property during Long-Term Aging in Udimet720Li[J].Journal of Materials Science&Technology,2001,17(6):633-637.]
实施例2:Co-Ni-Cr-Al-W-Mo-Ti-Nb基形变高温合金Example 2: Co-Ni-Cr-Al-W-Mo-Ti-Nb-based deformed superalloy
参考各元素对新型钴基高温合金组织性能的影响规律,本文开发了新型Co-Ni-Cr-Al-W-Mo-Nb基形变高温合金,具体合金成分如表3所示。除表中的成分外,3#、4#两种合金中还包含La:0.05at%、Si:0.2at%、B:0.04at%、C:0.05at%、Zr:0.06at%、Hf:0.1at%。Referring to the influence of various elements on the microstructure and properties of the new cobalt-based superalloy, a new Co-Ni-Cr-Al-W-Mo-Nb-based deformation superalloy was developed in this paper. The specific alloy composition is shown in Table 3. In addition to the composition in the table, the 3# and 4# alloys also contain La: 0.05at%, Si: 0.2at%, B: 0.04at%, C: 0.05at%, Zr: 0.06at%, Hf: 0.1at%.
新型Co-Ni-Cr-Al-W-Mo-Ti-Nb基形变高温合金的制备工艺如下:The preparation process of the new Co-Ni-Cr-Al-W-Mo-Ti-Nb-based deformation superalloy is as follows:
(1)考虑到W、Mo、Nb等高熔点元素,首先熔炼Co-Mo-W-Nb中间合金,降低合金熔点,防止熔炼过程中出现高熔点合金熔化不均匀的现象,同时将含量较少的合金元素,如:Si、B、C、Zr、Hf、La等,一起加入中间合金,以增加这些低含量元素的均匀性。(1) Considering the high melting point elements such as W, Mo and Nb, the Co-Mo-W-Nb master alloy is first smelted to reduce the melting point of the alloy and prevent uneven melting of the high melting point alloy during the smelting process. The alloying elements, such as: Si, B, C, Zr, Hf, La, etc., are added to the master alloy together to increase the uniformity of these low-content elements.
(2)将除Al、Ti元素以外的合金元素单质包括Ni、Cr等,与中间合金一起放入坩埚中,而将易氧化的Al、Ti元素放入料斗中,以便在熔炼过程中加入。(2) Alloy elements other than Al and Ti elements, including Ni, Cr, etc., are put into the crucible together with the master alloy, and the easily oxidizable Al and Ti elements are put into the hopper so as to be added during the smelting process.
(3)采用真空感应炉进行熔炼,当炉内真空度低于5×10-2Pa时,开始小功率送电加热排除原料上的附着气体,继续抽真空到1×10-2Pa时,进行大功率快速升温到1550℃,保温10分钟,然后降低温度至1350℃,保温5分钟,加入料斗中的Al、Ti元素,接着立刻快速升温到1550℃,保温(3) Use a vacuum induction furnace for smelting. When the vacuum degree in the furnace is lower than 5×10 -2 Pa, start low-power electric heating to remove the adhering gas on the raw material, and continue to evacuate to 1×10 -2 Pa. Carry out high-power rapid heating to 1550 °C, hold for 10 minutes, then reduce the temperature to 1350 °C, hold for 5 minutes, add Al and Ti elements in the hopper, and then quickly heat up to 1550 °C immediately, keep warm
10分钟后浇注,制备成钴基高温合金铸锭。Pouring after 10 minutes to prepare a cobalt-based superalloy ingot.
该合金经过1230℃保温12h后空冷的固溶处理,900℃保温4h一级时效+700℃保温12h二级时效处理后,可获得稳定的γ/γ′两相组织,γ′相的体积分数约为40%-50%,均为立方状或者近立方状,均匀的分布于γ相中。合金经700℃热暴露2000h后,仍保持稳定的γ/γ′两相组织。该合金与近期报道的同类γ′相强化形变钴基高温合金(CoWAlloy2)相比,密度降低了0.3-0.5g/cm3,热加工区间与难变形镍基高温合金(U720Li)相比提高了120-140℃,室温硬度与U720Li合金相当(如表4所示),是一种优异的形变钴基高温结构材料。The alloy was solution treated at 1230°C for 12 hours and then air-cooled, and after 4 hours of primary aging at 900°C and 12 hours of secondary aging at 700°C, a stable γ/γ' two-phase structure can be obtained, and the volume fraction of γ' phase can be obtained. About 40%-50%, all of which are cubic or nearly cubic, and are uniformly distributed in the γ phase. After the alloy was exposed to heat at 700℃ for 2000h, it still maintained a stable γ/γ′ two-phase structure. Compared with the recently reported similar γ' phase-strengthened deformed cobalt-based superalloy (CoWAlloy2), the density of the alloy is reduced by 0.3-0.5g/cm 3 , and the hot working range is improved compared with the refractory nickel-based superalloy (U720Li). At 120-140°C, the room temperature hardness is comparable to that of U720Li alloy (as shown in Table 4), and it is an excellent deformed cobalt-based high-temperature structural material.
表3 Co-Ni-Cr-Al-W-Mo-Ti-Nb基合金各元素原子百分比与密度Table 3 Atomic percentage and density of each element in Co-Ni-Cr-Al-W-Mo-Ti-Nb-based alloy
表4 Co-Ni-Cr-Al-W-Mo-Ti-Nb基合金室温硬度与热加工区间Table 4 Room temperature hardness and hot working range of Co-Ni-Cr-Al-W-Mo-Ti-Nb based alloys
实施例3:Co-Ni-Cr-Al-W-Mo-Ti-Fe基形变高温合金Example 3: Co-Ni-Cr-Al-W-Mo-Ti-Fe-based deformed superalloy
参考各元素对新型钴基高温合金组织性能的影响规律,本文开发了新型Co-Ni-Cr-Al-W-Mo-Fe基形变高温合金,具体合金成分如表5所示。除表中的成分外,合金中还包含Ce:0.05at%、Si:0.25at%、B:0.06at%、C:0.05at%、Zr:0.04at%、Hf:0.05at%。Referring to the influence of various elements on the microstructure and properties of the new cobalt-based superalloy, a new Co-Ni-Cr-Al-W-Mo-Fe-based deformation superalloy was developed in this paper. The specific alloy composition is shown in Table 5. In addition to the components in the table, the alloy contains Ce: 0.05at%, Si: 0.25at%, B: 0.06at%, C: 0.05at%, Zr: 0.04at%, and Hf: 0.05at%.
Co-Ni-Cr-Al-W-Mo-Ti-Fe基形变高温合金的制备工艺如下:The preparation process of Co-Ni-Cr-Al-W-Mo-Ti-Fe based deformed superalloy is as follows:
(1)考虑到W、Mo等高熔点元素,首先熔炼Co-Mo-W中间合金,降低合金熔点,防止熔炼过程中出现高熔点合金熔化不均匀的现象,同时将含量较少的合金元素,如:Si、B、C、Zr、Hf、Ce等,一起加入中间合金,以增加这些低含量元素的均匀性。(1) Considering the high melting point elements such as W and Mo, the Co-Mo-W master alloy is first smelted to reduce the melting point of the alloy and prevent uneven melting of the high melting point alloy during the smelting process. Such as: Si, B, C, Zr, Hf, Ce, etc., are added to the master alloy together to increase the uniformity of these low-content elements.
(2)将除Al、Ti元素以外的合金元素单质包括Ni、Cr、Fe等,与中间合金一起放入坩埚中,而将易氧化的Al、Ti元素放入料斗中,以便在熔炼过程中加入。(2) Alloy elements other than Al and Ti elements, including Ni, Cr, Fe, etc., are put into the crucible together with the master alloy, and the easily oxidizable Al and Ti elements are put into the hopper, so that in the smelting process join in.
(3)采用真空感应炉进行熔炼,当炉内真空度低于5×10-2Pa时,开始小功率送电加热排除原料上的附着气体,继续抽真空到1×10-2Pa时,进行大功率快速升温到1500℃,保温10分钟,然后降低温度至1300℃,保温5分钟,加入料斗中的Al、Ti元素,接着立刻快速升温到1500℃,保温15分钟后浇注,制备成钴基高温合金铸锭。(3) Use a vacuum induction furnace for smelting. When the vacuum degree in the furnace is lower than 5×10 -2 Pa, start low-power electric heating to remove the adhering gas on the raw material, and continue to evacuate to 1×10 -2 Pa. Carry out high-power rapid heating to 1500 °C, hold for 10 minutes, then reduce the temperature to 1300 °C, hold for 5 minutes, add Al and Ti elements in the hopper, then quickly heat up to 1500 °C immediately, hold for 15 minutes and then pour to prepare cobalt Base superalloy ingots.
该合金经过1220℃保温12h后空冷的固溶处理,900℃保温4h一级时效+700℃保温12h二级时效处理后,可获得稳定的γ/γ′两相组织,γ′相的体积分数约为35%~45%,均为球状或者近立方状,均匀的分布于γ相中。合金经700℃热暴露2000h后,仍保持稳定的γ/γ′两相组织。该合金与近期报道的同类γ′相强化形变钴基高温合金(CoWAlloy2)相比,密度降低了约0.4g/cm3,热加工区间与难变形镍基高温合金(U720Li)相比提高了120-140℃,室温硬度与U720Li合金相当(如表6所示),是一种优异的形变钴基高温结构材料。The alloy was solution treated at 1220°C for 12 hours and then air-cooled, and after 4 hours of primary aging at 900°C and 12 hours of secondary aging at 700°C, a stable γ/γ' two-phase structure can be obtained, and the volume fraction of γ' phase can be obtained. About 35% to 45%, all of which are spherical or nearly cubic, and are uniformly distributed in the γ phase. After the alloy was exposed to heat at 700℃ for 2000h, it still maintained a stable γ/γ′ two-phase structure. Compared with the recently reported similar γ' phase-strengthened deformed cobalt-based superalloy (CoWAlloy2), the density of the alloy is reduced by about 0.4 g/cm 3 , and the hot working range is increased by 120 compared with the refractory nickel-based superalloy (U720Li). -140 °C, the room temperature hardness is comparable to that of U720Li alloy (as shown in Table 6), and it is an excellent deformed cobalt-based high-temperature structural material.
表5 Co-Ni-Cr-Al-W-Mo-Ti-Fe基合金各元素原子百分比与密度Table 5 Atomic percentage and density of each element in Co-Ni-Cr-Al-W-Mo-Ti-Fe based alloy
表6 Co-Ni-Cr-Al-W-Mo-Ti-Fe基合金室温硬度与热加工区间Table 6 Room temperature hardness and hot working range of Co-Ni-Cr-Al-W-Mo-Ti-Fe based alloys
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810301030.4A CN108385010B (en) | 2018-04-04 | 2018-04-04 | A cobalt-based superalloy with low density and high microstructure stability and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810301030.4A CN108385010B (en) | 2018-04-04 | 2018-04-04 | A cobalt-based superalloy with low density and high microstructure stability and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108385010A CN108385010A (en) | 2018-08-10 |
CN108385010B true CN108385010B (en) | 2020-10-02 |
Family
ID=63073610
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810301030.4A Active CN108385010B (en) | 2018-04-04 | 2018-04-04 | A cobalt-based superalloy with low density and high microstructure stability and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108385010B (en) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109321786B (en) * | 2018-12-14 | 2020-10-23 | 北京科技大学 | A kind of cobalt-based superalloy and preparation method thereof |
CN109576534B (en) * | 2019-01-25 | 2020-10-30 | 北京科技大学 | Gamma' phase reinforced cobalt-based high-temperature alloy with low tungsten content and preparation process thereof |
CN111014543B (en) * | 2019-11-25 | 2021-04-02 | 北京科技大学 | Method for preparing high-tungsten high-cobalt-nickel alloy shaped charge liner by hot die forging for reducing deformation dead zone |
CN111455221B (en) * | 2020-04-03 | 2022-01-21 | 钢铁研究总院 | Cobalt-based high-temperature alloy for additive manufacturing, preparation method and application thereof, and additive manufactured product |
CN111500917B (en) * | 2020-05-11 | 2021-06-01 | 北京科技大学 | High-strength and high-toughness medium-entropy high-temperature alloy and preparation method thereof |
CN112111672A (en) * | 2020-09-10 | 2020-12-22 | 沈阳中核舰航特材科技有限公司 | Medical cobalt-based alloy guide needle material and preparation method thereof |
CN112458351B (en) * | 2020-10-22 | 2021-10-15 | 中国人民解放军陆军装甲兵学院 | High compressive strength nickel-cobalt-based high temperature alloy |
CN112458326B (en) * | 2021-01-28 | 2021-04-16 | 北京科技大学 | A kind of deformed superalloy containing Zr-Ce and preparation method thereof |
CN115233074A (en) * | 2022-07-12 | 2022-10-25 | 北京科技大学 | Cobalt-nickel-based high-temperature alloy for gas turbine moving blade and preparation method thereof |
CN115478273A (en) * | 2022-09-30 | 2022-12-16 | 沈阳大陆激光工程技术有限公司 | A laser-manufactured high wear-resistant cobalt-based alloy material applied to the finish rolling side guide plate |
CN116356181A (en) * | 2023-03-31 | 2023-06-30 | 中国科学院金属研究所 | Cobalt-based deformation superalloy and preparation method thereof |
CN116990107B (en) * | 2023-06-08 | 2024-05-24 | 辽宁红银金属有限公司 | Cobalt-based superalloy standard sample and preparation method thereof |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6112842A (en) * | 1984-06-26 | 1986-01-21 | Mitsubishi Metal Corp | Co-base heat-resistant alloy for spinner manufacturing glass fiber |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4054723A (en) * | 1972-11-08 | 1977-10-18 | Rolls-Royce Limited | Composite articles |
US4078922A (en) * | 1975-12-08 | 1978-03-14 | United Technologies Corporation | Oxidation resistant cobalt base alloy |
US6921586B2 (en) * | 2002-02-05 | 2005-07-26 | General Electric Company | Ni-Base superalloy having a coating system containing a diffusion barrier layer |
CN103045910B (en) * | 2013-01-16 | 2015-01-28 | 北京科技大学 | High-temperature-stability gamma'-phase-reinforced cobalt-base high-temperature alloy and preparation method thereof |
-
2018
- 2018-04-04 CN CN201810301030.4A patent/CN108385010B/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6112842A (en) * | 1984-06-26 | 1986-01-21 | Mitsubishi Metal Corp | Co-base heat-resistant alloy for spinner manufacturing glass fiber |
Also Published As
Publication number | Publication date |
---|---|
CN108385010A (en) | 2018-08-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108385010B (en) | A cobalt-based superalloy with low density and high microstructure stability and preparation method thereof | |
CN111187946B (en) | Nickel-based wrought superalloy with high aluminum content and preparation method thereof | |
CN104120325B (en) | Low thermal expansion coefficient NaMxAlySiz high-entropy alloy and preparation method thereof | |
Xu et al. | Progress in application of rare metals in superalloys | |
CN103045910B (en) | High-temperature-stability gamma'-phase-reinforced cobalt-base high-temperature alloy and preparation method thereof | |
CN111500917A (en) | High-strength and high-toughness medium-entropy high-temperature alloy and preparation method thereof | |
CN100460543C (en) | A high-strength hot-corrosion-resistant low-segregation oriented superalloy | |
CN109321786B (en) | A kind of cobalt-based superalloy and preparation method thereof | |
CN109576534B (en) | Gamma' phase reinforced cobalt-based high-temperature alloy with low tungsten content and preparation process thereof | |
CN106636759B (en) | A kind of high thermal stability high-strength nickel based single-crystal high-temperature alloy that platinum family element is strengthened | |
CN104328501B (en) | TiAl single crystal alloy with fully controllable lamellar orientation and preparation method thereof | |
CN108441741B (en) | High-strength corrosion-resistant nickel-based high-temperature alloy for aerospace and manufacturing method thereof | |
CN104818418B (en) | A kind of many pivot Laves base intermetallic compounds and preparation method thereof | |
CN106435282B (en) | A kind of cobalt base superalloy and preparation method thereof | |
CN105296809B (en) | A kind of high intensity precipitation strength cobalt-based single crystal super alloy and preparation method thereof | |
CN103173865B (en) | A kind of Low-cost nickel-base single crystal high-temperature alloy and preparation method thereof | |
CN102808111B (en) | Preparation method for nickel-based superalloy for exhaust valve | |
CN111455221B (en) | Cobalt-based high-temperature alloy for additive manufacturing, preparation method and application thereof, and additive manufactured product | |
CN106480344A (en) | A kind of vacuum pump rotor rare-earth containing aluminium alloy and preparation method thereof | |
CN108165780B (en) | Preparation method of Ni-Cr-Al-Fe high-temperature alloy | |
CN114164356B (en) | High-strength nickel-based single crystal superalloy | |
CN112063885B (en) | Ruthenium-containing multi-component TiAl alloy suitable for 800 DEG C | |
CN108070742A (en) | A kind of gas turbine guide vane cobalt base superalloy and its preparation method and application | |
CN103132148A (en) | Nickel base single crystal superalloy with low density, low cost and high strength | |
CN107119242B (en) | The heat treatment method of Cu-Fe-Ni-Al-Cr multicomponent alloy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |