CN108375200A - 太阳能收集的油田应用 - Google Patents

太阳能收集的油田应用 Download PDF

Info

Publication number
CN108375200A
CN108375200A CN201810071461.6A CN201810071461A CN108375200A CN 108375200 A CN108375200 A CN 108375200A CN 201810071461 A CN201810071461 A CN 201810071461A CN 108375200 A CN108375200 A CN 108375200A
Authority
CN
China
Prior art keywords
steam
solar energy
solar
energy
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810071461.6A
Other languages
English (en)
Inventor
约翰·塞特尔·奥唐纳
彼得·埃梅里·冯贝赫伦斯
斯图尔特·M·海斯勒
大卫·布鲁斯·杰克逊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Glasspoint Solar Inc
Original Assignee
Glasspoint Solar Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Glasspoint Solar Inc filed Critical Glasspoint Solar Inc
Publication of CN108375200A publication Critical patent/CN108375200A/zh
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S90/00Solar heat systems not otherwise provided for
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/24Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • F01K13/02Controlling, e.g. stopping or starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K17/00Using steam or condensate extracted or exhausted from steam engine plant
    • F01K17/04Using steam or condensate extracted or exhausted from steam engine plant for specific purposes other than heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/006Methods of steam generation characterised by form of heating method using solar heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B33/00Steam-generation plants, e.g. comprising steam boilers of different types in mutual association
    • F22B33/18Combinations of steam boilers with other apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/20Solar heat collectors for receiving concentrated solar energy, e.g. receivers for solar power plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/74Arrangements for concentrating solar-rays for solar heat collectors with reflectors with trough-shaped or cylindro-parabolic reflective surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S30/00Arrangements for moving or orienting solar heat collector modules
    • F24S30/40Arrangements for moving or orienting solar heat collector modules for rotary movement
    • F24S30/42Arrangements for moving or orienting solar heat collector modules for rotary movement with only one rotation axis
    • F24S30/425Horizontal axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/70Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S2023/83Other shapes
    • F24S2023/834Other shapes trough-shaped
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/20Climate change mitigation technologies for sector-wide applications using renewable energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Sustainable Development (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

太阳能被收集用于不同的工业生产程序,比如油田应用,如生成向下注入的蒸汽,提高石油开采。在太阳能集热器中使用载热流体间接收集太阳能,将热能传输到热交换器,该热交换器能可轮流将热能传输到油田供给水中,产生热水或蒸汽。通过太阳能集热器直接生成蒸汽来直接收集太阳能,然后将所述蒸汽向下注入。太阳能被收集来预热水,然后该水被送入燃料蒸汽发生器,该发生器在向下注入时轮流产生蒸汽。太阳能通过兰金循环涡轮机发生器(Rankine cycle)被收集来产生电能,且注入的热能为燃料蒸汽发生器加热供给水。太阳能被收集(直接或间接)来传输热能到加热处理器,额外生成选择性的燃料热能。

Description

太阳能收集的油田应用
本申请是2011年7月3日提交的、名称为“太阳能收集的油田应用”、申请号为201180042709.2的中国发明专利申请的分案申请。
对相关申请的交互引用
本申请要求的优先权如附录的申请日期表单,请求,或送达(视情况而定)。在本申请类型所允许的范围内,该申请以各种目的通过引用合并以下,在本发明被做出时本申请共同拥有的申请案:
2009年2月2日提交的,第一发明人为罗德·麦格雷戈,名称为“温室的聚光太阳能发电”的美国临时申请(案卷号:No.310618-2001和序列号为No.61/149,292);
2009年5月6日提交的,第一发明人为彼得·冯·贝伦斯,名称为“温室的聚光太阳能电池”的美国临时申请(案卷号:No.CLEN-002、00US和序列号为No.61/176,041);
2010年2月1日提交的,第一发明人为罗德里克·麦格雷戈,名称为“温室的聚光太阳能发电”的PCT申请(案卷号:No.GP-09-01PCT和序列号为No.PCT/US10/22780);
2010年7月5日提交的,第一发明人为彼得·冯·贝伦斯,名称为“温室的聚光太阳能发电”的美国临时申请(案卷号:No.GP-10-02和序列号为No.61/361,509)。
2010年7月5日提交的,第一发明人为约翰·赛特尔·奥唐纳,名称为“直接太阳能油田蒸汽生成”的美国临时申请(案卷号:No.GP-10-04和序列号为No.61/361,512);
2011年2月23日提交的,第一发明人为约翰·赛特尔·奥唐纳,名称为“直接太阳能油田蒸汽生成”的美国临时申请(案卷号:No.GP-10-04A和序列号为No.61/445,545);
2010年7月5日提交的,第一发明人为约翰·赛特尔·奥唐纳,名称为“太能收集的油田应用”的美国临时申请(案卷号:No.GP-10-08和序列号为No.61/361,507);
2011年7月2日提交的,第一发明人为彼得·冯·贝伦斯,名称为“温室的聚光太阳能电池”的PCT申请(案卷号:No.GP-10-02PCT和序列号为No.PCT/US11/42891)。
2011年7月3日提交的,第一发明人为约翰·赛特尔·奥唐纳,名称为“直接太阳能油田蒸汽生成”的PCT申请(案卷号:No.GP-10-04APCT和序列号为PCT/US11/42906)。
背景技术
技术领域:需要对太阳能收集及其利用进行改进以为其实施,效率和利用提供改善。
相关领域:除非明确被确认是公开或公知的,此处提及的技术和概念,包括内容,定义,或比较,不能解释为这些技术和概念之前就被公众所知或是在先技术的一部分。所有这里引用的参考文献(如果有的话),包括专利,专利申请,公开出版物,通过引用全部结合于此用于各种目的,无论是否特别地结合于此。
聚光太阳能发电系统使用反光镜(mirror),即聚光器(concentrator),在一大块空间上聚集太阳能并将太阳能对准和集中到接收器中,接收器将入射的太阳能转换为另一种形式,比如热能或电能。在一些应用范围内,聚光系统相比于直接使用入射的太阳能的简单系统有几点优势。一个优势就是,更多聚光的太阳能相比较较少聚光的太阳能能更有效转化成热能或电能。太阳热能和太阳能光伏接收器在太阳能入射率越高时效率越高。另一个优势就是,在一些应用范围内,非聚光太阳能接收器相比于聚光的反光镜系统的价格更昂贵。所以,构建具有反光镜的系统,在给定区域聚集光线以及将聚集的光线能降低转化成有用能源的总费用。
在某些情况下,聚光太阳能收集系统被分为四种类型:基于太阳能是聚光到线聚焦(1ine-focus)接收器还是点聚焦(point-focus)接收器,以及聚光器是单个单片反射镜(single monolithic reflector)还是以多个反射镜作为菲涅尔透镜以近似于单片反射镜。
线聚焦接收器是具有目标的接收器,该目标是像管一样相对长的直线。线聚焦聚光器是反射镜,该反射镜在二维空间接收日光并将日光聚光到一维(宽度)明显更小的焦点上,同时将没有聚光的日光反射到其他维度(长度)来产生焦线。具有线聚焦接收器的线聚焦聚光器在其焦线处是一个基本槽系统(basic trough system)。聚光器可选择地绕着它的焦线在一维空间旋转以追踪太阳的日常或季节性(表面的)运动来改进整个能量捕获和转换。
点聚焦接收器是一个接收器目标,其实质是一个点,但在不同方法中是一个面板,窗口,地点,球,或其他目标形状,通常相比于线聚焦接收器其长宽更接近。点聚焦聚光器是反射镜(由单个光滑反射的表面,多个固定侧面,或多个可移动的菲涅尔面组成),该反射镜在二维空间接收日光并将日光聚光到二维(宽度和长度)明显更小的焦点上。具有点聚焦接收器的单片点聚焦聚光器(monolithic point-focus concentrator)在其焦点上是一个基本碟式聚光的太阳能系统(basic dish concentrated solar)。单片聚光器可选择地绕着它的焦点使它的焦轴在二维空间旋转以追踪太阳的日常和季节性运动来改进整个能量捕获和转换。
抛物线型槽系统是使用形状像大半管的单片反射镜的线聚光系统(lineconcentrating system)。反射镜具有1-维曲面(curvature)将日光集中到线聚焦接收器或通过相对于彼此的固定的多个面以接近这样的曲面。
聚光的菲涅尔反射镜是类似于抛物线型槽的线聚光系统,用一系列反光镜代替了槽,接收器的每个长度都是平直的或者在横向上稍微弯曲。每个反光镜单独地绕长轴旋转将入射的日光照到线聚焦接收器上。
抛物线型碟式系统是使用形状像碗的单片反射镜的点聚光系统。反射镜具有2-维曲面将日光集中到点聚焦接收器或通过相互固定的多个平面或者曲面以接近这样的曲面。
太阳能发电塔是类似于抛物线型碟的点聚光系统,用2-维阵列反光镜代替了碟,反光镜都是平面或者曲面。每个反光镜(定日镜)单独地在二维空间旋转将入射的日光照到点聚焦接收器上。个别的反光镜和相关的控制系统包括一个其聚焦轴绕着它的焦点旋转的点聚焦聚光器。
在太阳热能系统中,接收器是加热传感器的光源。接收器吸收太阳能,将太阳能转化成热能并将热能传输到热传输介质,如水,蒸汽,油,或熔盐。接收器将太阳能转换成热能并最小化和/或减少由于热辐射对热能的损耗。
概要
本发明可以多种方式实现,包括作为一个过程,制造,装置,系统和组合物。在本说明书中,这些实施方式,或发明可采取的任何其他形式,可被称为技术。详细说明阐述了的本发明的一个或多个实施例,使得本发明在上文确定的领域内的使用性能,效率和使用效用得到了改善。详细说明,包括一个能更快速理解详细描述余下部分的简介。如在结论中更详细讨论,本发明包括已授权的权利要求书的范围内所有可能的修改和变化。
附图说明
图1说明了太阳能收集的油田应用的实施例的各种细节。
图2说明了通过太阳能天然气混合蒸汽的蒸汽注入的持续的恒定比率的各种细节。
图3说明了通过太阳能天然气混合蒸汽的蒸汽注入的持续的可变比率的各种细节。
图4说明了由太阳能加热的加热处理器实施例的各种细节。
具体实施方式
下面详细描述了一个或多个本发明的实施例以及描述本发明选定细节的附图。本发明和实施例相联系描述。此处本发明的实施例,应理解为仅仅是示例性的,本发明很明确并非限定为或通过此处任何或所有的实施例而限定,并且本发明包括了许多替代,修改和等同。为了避免千篇一律的阐述,各种各样的的文字标签(包括但不限于:第一,最后,肯定的,不同的,进一步,其他的,特别是,选择,一些,和显着的)可以应用到几组独立的实施例;正如此处所应用的这些标签不旨在表达质量,或任何形式的偏爱或偏见,但仅仅是为了便于区分独立的各组。公开的方法的一些操作顺序在本发明的范围内是可变的。无论系用于描述过程,方法和/或特征变化的多个实施例,根据预定义的或动态的标准,其他实施例动态和/或静态地选择了多个操作模式中的一种,其操作模式与多个多种实施例各自相应。下述描述阐述了很多特定细节使得能透彻理解本发明。细节的目的在于示例,而发明可能根据没有一些或所有细节的权利要求来实施。为了清楚的目的,和本发明相关的已知技术领域的技术材料未在此处详细描述,因此,本发明不是非必要地模棱两可的。
介绍
此介绍仅仅是为了能促进对详细描述的快速理解;本发明不限于介绍里提及的概念(包括如果有明确的示例),因为任何介绍的段落是整个客体的示意图,并不意味着是详尽的或限制性的描述。例如,下述介绍由于篇幅限制提供了综述信息和仅有某些实施例的结构。还有很多其他实施例,包括最终会撰写权利要求的实施例,在说明书全篇都有述及。
增加采油的热技术,能够改进当前和未来全世界范围内的石油开采例如,蒸汽注入提供了近一半的美国加利福尼亚州的石油开采,且对蒸汽驱(steamflood)技术和蒸汽吞吐系统持续扩展的改进,能供应更接近稳定的能源。
注入的蒸汽通过几种机制来扩大了石油开采。通过提高油和周围地层的温度,石油的粘度会降低,从而加快其流量。在一些实施例中,蒸汽流和由此产生的冷凝水流会朝着生产井清扫石油。其他特性,比如,地层压力和岩石可湿性,也受到蒸汽注入影响。
在一些实施例中,在油田操作中使用的蒸汽,在300华氏度到700或750华氏度的温度范围内注入,且每平方英尺达到1500或2500磅的压力,这里的特定温度和压力是由油层特性和生产方法所决定的。为油田注气的蒸汽由单程蒸汽发生器产生。在一些实施例中,蒸汽发生器通过燃料加热。燃料负担了很多费用,如燃料成本,遵守关于空气质量和燃烧产物处理的监管制度的成本,以及遵守将来对排放二氧化碳征收费用的制度的成本。在一些实施例中,太阳能加热的蒸汽发生器,用来为油田操作产生蒸汽。太阳能加热蒸汽发生器使用很少或根本没有使用燃料,因此很少或没有排放燃烧产物或二氧化碳。
在一些实施例中,基于太阳能装置系统的点聚焦“发电塔”蒸汽发生器,通过“重沸器”将蒸汽传送到油田,“重沸器”是浓缩太阳能装置所产生的高纯度,高压蒸汽的热交换器,并使用较低纯度的油田供给水加热给水或生成蒸汽。在一些实施例中,有限数量的太阳能蒸汽作为白天油田蒸汽的比例被使用;将能源注入大型蒸汽配汽系统的小型太阳能集热器在总流速上差别不大。在一些实施例和/或应用范围内,此处描述的一个或多个技术,比如太阳能蒸汽注入和自动控制系统,使得对太阳能蒸汽使用具有更高馏分。在一些情况下,在白天和年度蒸汽使用中都能扩展超过90%。在一些实施例和/或应用范围内,此处描述的一个或多个技术,使得线聚焦太阳能集热器在油田蒸汽生成时相比于基于应用的一些发电塔太阳能装置具有相对较低的成本。
太阳能在不同的油田应用中收集和使用。收集到的太阳能被用于生成蒸汽来供给工业生产,如向下注入,以提高石油采收。太阳能可选地由太阳能集热器中的载热流体间接收集。载热流体将热传输到热交换器(比如,套管式热交换器),该热交换器轮流将热传输到油天给水,产生更热的水或蒸汽。太阳能集热器可选地通过直接生成蒸汽,然后向下注入蒸汽,来直接收集太阳能。可选地收集太阳能并用来预加热水,该预加热的水然后注入到燃料蒸汽发生器,该发生器轮流为向下注入产生蒸汽。可选地收集太阳能并通过兰金循环涡轮机发生器(Rankine cycle turbine generator)用来生成电能,且废热为燃料蒸汽发生器加热给水。可选地收集太阳能并用来(直接或间接地)和可选的燃料额外热生成,将热传输到加热处理器。为增强的油田采收应用注入太阳能蒸汽
在一些实施例中,“蒸汽驱”操作涉及多个蒸汽注入井和多个油田开采井的结构,将他们进行布置使得注入的蒸汽在生产井能增产。虽然“五点”模式是常见的,对注入井和生产井的很多其他安排拟使用此处教导的技术。在一些实施例中,“蒸汽吞吐”(huff-and-puff)或“循环吞吐”蒸汽注入操作涉及在一天或几天的一段时间内周期性地将蒸汽注入到每个井,然后关闭对井的蒸汽供给并在一个或几个星期的一段时间内从井中产生石油。在一些实施例中,在蒸汽驱构造,循环吞吐构造,或其他合适的构造中,管和流量控制装置的蒸汽配汽系统将一个或多个蒸汽发生器互相连接到同时运作的多个蒸汽注入井。在一些实施例中,适用于“蒸汽驱”,“循环吞吐”,和其它合适的构造的油田蒸汽的多个聚光型太阳能集热器,收集太阳能以产生蒸汽。太阳能反射镜追踪太阳并将太阳能辐射指向热能接收器,该接收器直接或间接地加热水并生成蒸汽,将其注入到蒸汽配汽系统和向下注入。在一些实施例中,太阳能产生的蒸汽为注入提供了大量总的蒸汽供给,注入率基于当前可用的阳光而有所不同。在“太阳能多数”蒸汽注入的一些实施例中,燃料蒸汽发生器在夜晚和在低太阳辐射的其他时段运作,提供足够的蒸汽以维持蒸汽注入系统和井的温度高于环境温度,而没有将大量蒸汽注入到地层。在“太阳能多数”注入的一些实施例中,燃料蒸汽发生器持续运作,提供白天蒸汽注入的一部分,并在整夜以及低太阳辐射的时间段持续,以维持系统温度处于更低的流速。
图1说明了太阳能收集的油田应用的实施例的各种细节。在一些实施例中,太阳能蒸汽发生器38互相联系到蒸汽分配系统7,燃料蒸汽发生器9也向该蒸汽分配系统7供应蒸汽,且太阳能热能提供了一部分蒸汽供应。在一些实施例中,太阳能生成蒸汽提供了一个大部分的日间蒸汽。在一些实施例中,一个自动的控制系统(图中未示出),自动连通太阳能场控件(solar field controls)和控制燃料燃煤蒸汽发生器,使得太阳能热能提供大部分的日间蒸汽。
图2说明了一个持续的恒定比率的蒸汽注入实施例和/或自动控制系统的操作模式的各种细节。“平衡”控制单元(自动化控制系统的一部分)连通太阳能场能控制并向燃料蒸汽发生器单元发布指令,使太阳能蒸汽输出率10c上升时,燃料发生器中的燃烧率向下调节到低于燃料生成汽耗率12c,以维持所需要的总的注入率11c。在一些实施例中,所需的蒸汽注入率白天和黑夜几乎是恒定的,而流速变化大约是目标收益率的10%左右。
图3说明了持续的可变比率的蒸汽注入的实施例和/或自动化控制系统的操作模式的各种细节,该主动化控制系统控制燃料发生器使得总蒸汽注入率11v和“平均”蒸汽注入率13有50%差异。注意,在如图3所示的途中,整体蒸汽注入率11v能根据太阳能汽耗率10v以小时为单位变化;在这种模式下的运行,相比在如图2所示的恒定比率情况下,太阳能因此能传输更大部分的总的日常蒸汽产量。在某些应用场景,图中未示出,自动“下降”(turndown)燃料率以及产生不同燃料生成汽耗率的燃料发生器中的供给水率12v,能够使太阳能蒸汽10v在维持任何需要的总的蒸汽流量模式时传输达到100%的日常蒸汽流量。
在一些实施方案中,燃料发生器下降策略(turndown strategy)设计以最小化维持燃料燃烧器和证明符合适用的污染物排放标准的年度成本。太阳辐射不断变化,从黎明到中午平稳或间断地上升。在一些实施例中,油田蒸汽分配系统有多个互连到常见的蒸汽分配系统的燃料蒸汽发生器。在一些实施例中,通过监管机构测量和见证来减少或最小化燃烧器的操作要点的数量,控制系统定额减少燃烧器到两个或三个固定的着火点;“满的”和“最小的”,或“满的”“中等的”和“最小的”燃烧率具有大致恒定蒸汽流量的太阳能蒸汽生成系统的操作规程中,当太阳辐射和太阳能燃烧蒸汽生成变化时,个别燃料燃烧器能自动指令从“满的”移动到“最小的”,或者从“满的”到“中等的”,然后“中等的”到“最小的”。通过独立地自动控制多个燃料燃烧器,该控制系统提供大致恒定的蒸汽流速。在一些实施例中,油田控制系统改变命令,即当太阳辐射增加时燃料发生器机被指令减少,或当太阳辐射减少时燃料发生器被命令恢复到全产量的命令,以减少或最小化运营成本。在一些实施例和/或应用范围内,一些蒸汽发生器在燃料燃烧时相比于其他更有效,且一些蒸汽发生器需要更高的关联于不同燃料燃烧率的维护成本。该控制系统对发生器燃烧指令的命令需考虑特定蒸汽发生器的特性来实施。
为提高石油开采应用的间接蒸汽生成
在一些用于提高石油开采量的太阳能蒸汽生成实施例中,使用载热流体收集太阳热能,该载热流体在太阳能集热器中收集热能,并将热能传输到热交换器。该热交换器传输热能到油田供给水,产生更热的水或蒸汽,轮流被送入油田供给水或蒸汽分配系统。在间接蒸汽生成的一些实施例中,该载热流体是合成油,比如多氯联苯(Therminol)或道氏热载体(Dowtherm)。在间接蒸汽生成的一些实施例中,所述的载热流体是作为熔盐循环的无机盐混合体。在间接蒸汽生成的一些实施例中,该载热流体是高纯度的加压水,在太阳能场(solar field)循环和沸腾并在热交换器中冷凝。
间接太阳能蒸汽生成以提高石油开采应用的管中管式热交换器
在间接太阳能蒸汽生成的一些实施例中,热交换器被设计成一个“管中管”类型的交换器,其中的内部管传输给转换为蒸汽的高压油田供给水,外管通过太阳能集热器传输加热的载热流体。由于液体水流经蒸汽发生器管道系统时被蒸发,当液体流量减少时在供给水中传输(residual contaminants)残余污染物聚集,当液体转化成蒸汽相时渐渐增加。术语“蒸汽质量”是指已经被转化成蒸汽相的入口水的质量(mass)百分比;因此,70%的蒸汽质量,30%的初始供给水是液相,杂质浓度是初始水的三倍多。
在一些实施例中,理想的的油田蒸汽发生器为给定的供给水质量传输最高可能的蒸汽质量。更高的蒸汽质量在每磅的水注入时传输更多能量。然而,如果的蒸汽质量超过水污染物浓度的限度时,腐蚀和结垢开始高得令人无法接受,造成蒸汽发生器管道系统的结垢,堵塞,以及潜在的故障或烧毁。在一些实施例中,当蒸汽质量严格控制时就出现了经济运作,如在5%至10%的范围之内。在一些实施例和/或应用范围内,蜿蜒的水平排列的管中管式设备能够进行经济运作,部分是由于扩展的水平沸腾区限制了矿床(mineraldeposits),部分是由于定期清理内部有酸性物质和机械滤净器的“清管器”的接收管。
在一些实施例中,燃料蒸汽发生器通过测量入口空气和水的温度,并恰当控制燃料燃烧率和水供给率,将蒸汽质量维持在所需的范围内。在一些实施例中,间接太阳能蒸汽生成的管中管式热交换器测量传入的载热流体温度和流速。自动控制,通过调整供给水流量和载热流体的热能成比例的方式,调节入口阀和泵,以及出口阀来管理出口蒸汽质量。当太阳能场流动的热能不足以达到目标蒸汽质量时,自动控制器关闭蒸汽出口阀。管中管式热交换器的控制系统和主控制和/或直接和其他燃料蒸汽发生器(如上所述)的控制连通,以保持整体所需的蒸汽流速。
直接蒸汽生成以提高石油开采应用
在用于提高石油开采的太阳能蒸汽生成的一些实施例中,在燃料蒸汽发生器的供给水系统类似的安排中,油田供给水被直接送入太阳能集热器,且当太阳能热能收集时,所收集的太阳能热能直接产生蒸汽,轮流被送入油田供给水或蒸汽分配系统。在一些实施例和/或应用范围内,线聚焦太阳能集热器使得油田蒸汽发生器能经济运行,部分是由于扩展的水平沸腾区限制了矿床,部分是由于定期清理内部有酸性物质和机械滤净器的“清管器”的接收管。
太阳能水预热以提高石油产量应用
在用于提高石油开采的太阳能蒸汽生成的一些实施例中,油田供给水被直接送入太阳能集热器,且在没有沸腾的情况下由太阳能热能(无需从液体转换到汽相)升高温度。然后所述加热的水从太阳能集热器输送到一个或多个燃料蒸汽发生器。在一些实施例中,太阳能热的贡献增加恒定的燃料率的燃料的燃煤蒸汽发生器。在一些实施例中,通过燃料蒸汽发生器的恒定的燃料燃烧率,太阳能热能的产生增加了蒸汽生产比例。在一些实施例中,当太阳能热能的产生维持在恒定的蒸汽生产率时,要减少燃料蒸汽发生器的燃料燃烧率。
太阳能废热发电的热量和电能用于提高石油开采应用
太阳能水预热来提高石油产量的实施例中,油田水通过太阳能集热器的循环直接加热。在一些实施例中,油田水通过“太阳能废电发热”构造中的热交换器预热。在一些废电发热的实施例中,太阳能集热器收集驱动兰金循环涡轮机发生器的太阳能热能。兰金发生器的废热通过热交换器加热供给水,将所述热供给水供应到一个或多个燃料蒸汽发生器。在一些实施例中,载热流体流经的太阳能场,并在热交换器中生成高纯度高压蒸汽。在一些实施例中,太阳能场直接生成高纯度高压蒸汽来驱动涡轮机。高压蒸汽运行兰金循环涡轮机。涡轮排气在热交换器中冷凝,放弃流经热交换器的油田供给水汽化的潜伏热。在一些实施例中,在兰金循环涡轮机中的蒸汽/液体是蒸汽/水。在一些实施例中,在兰金循环涡轮机中的蒸汽/液体是有机流体,如甲苯或戊烷。在一些实施例中,流经太阳能场的载热流体是合成油,比如多氯联苯或道氏热载体。在一些实施例中,流经太阳能场的载热流体是熔盐混合物。在一些实施例和/或应用范围内,太阳能场直接生成流经汽轮机的高压高纯度蒸汽而产生电能的构造,相比于其他实施方式,能降低或最小化成本,且该汽轮机在加热蒸汽发生器供给水的热交换器中被冷凝。
太阳能加热用于生产油处理
在一些实施例中,油井流动的产品是石油,水,气体和各种污染物的混合物。在一些应用范围内,经济地分离油和水是理想的。在一些实施例中,如图4所示,“加热处理器”单元14使用化学物质的组合分离油16,水20和气体19,并加热来分离油水乳状液体。加热器处理器单元,在一些实施例中,包括一个或多个排水21,湿气提取器22,气体均衡器23,且在某些应用范围内的运行期间包括油/水界面24。在一些实施例中,水管加热器17被用于加热处理器,将燃料燃烧的热能传输到油-水-气体混合物中。在一些实施例中,多个聚光型太阳能热能收集器(例如,太阳能蒸汽发生器38)收集太阳能作为热能。太阳能反射器16追踪太阳并将太阳辐射指向热能接收器,该热能接收器直接或间接向一个或多个加热处理器单元提供热能。在一些实施例中,载热流体循环,在太阳能场收集热能,并通过热交换器的管元件18将收集的热能传输到加热处理器。在一些实施例中,载热流体是一种合成的油,比如多氯联苯或道氏热载体在一些实施例中,载热流体是熔盐混合物。在一些实施例中,加压的水在太阳能场被循环,传输作为蒸汽的热能耐,该蒸汽在加热处理器中在热交换器管中被冷凝。在一些实施例中,太阳油热处理选择性的间歇地操作,使用可用的太阳能辐射。在一些实施例中,加热处理器单元选择性地包括燃料器(如火管加热器17),以及一个太阳能热交换器,使加热处理器单元能连续操作,用太阳能提供的每年的能源的一部分。在一些实施例中(图中未示出),一个热的能量存储系统在白天收集太阳能热能,并延长时间或持续传输热能到加热处理器单元,使得在没有燃料燃烧时持续运作。
结论
说明书中的特定选择仅仅是为了在准备文本和附图时的方便,除非有相反的指示,否则该选择不应当解释本身作为传达所描述实施例结构或操作的额外信息。选择的示例包括:指定使用数字编号的特定组织或分配,和用于识别和引用的实施例中的特征和元件的元素标识符(如,插图编号或数字指示器)的特定的组织或分配。
单词“包括”明确地解释为描述开放式范围的逻辑组的抽象概念,且不是指物理包含除非明确使用单词“之内”。
尽管前述实施例出于清楚说明和理解目的已详细描述,但是本发明并不限于所提供的细节。本发明有很多实施例。公开的实施例只是列举并没有限制。
可以理解的是,和说明书一致的对构造,排列,和使用的许多变化是可能的,并在已授权专利的权利要求的范围之内。对元件的命名仅仅是示例性的,且不应当解释为限制了所描述的概念。另外,除非特别说明是与之相反的,则指定的取值范围,使用的最高值和最低值,或其他特定的规格,仅仅在所描述的实施例中,期望能在实施技术进行改进和变化,并且不应当解释为限制。
可使用本领域中已知的功能等同的技术,而不是描述的那些来实现它们的各种组件,子系统,操作,功能,或部分。
实施例已描述远超过所需的最小实现描述的实施例的许多方面的细节和上下文。本领域普通技术人员能认识到一些实施例省略了公开的组件或特征,而无需改变剩余元件之间的基本操作。因此,可以理解的是,公开的大部分细节并不需要实现描述的实施例的各个方面。在一定程度上,剩余元件对于在先技术,组件和特征是可区别的,被省略的这些内容不限于这里描述的概念。
设计中的所有变化是由所描述的实施例的教导所传递的非实质性的变化。还应当理解为,这里描述的实施例对其他应用具有广泛的适用性,且并不仅限于所描述实施例特定的应用或行业。因此,本发明解释为包括所有可能的在授权专利的权利要求范围内的修改和变化。

Claims (10)

1.一种系统,包括:
用于收集太阳能的装置;
从所述收集的太阳能产生太阳能-生成蒸汽的装置;
用一个或多个燃料的蒸汽发生器产生燃料-生成蒸汽的装置;以及
用于分配所述太阳能生成蒸汽和所述燃料-生成蒸汽的装置,以供给工业生产程序,其中所述太阳能-生成蒸汽提供一部分的蒸汽供应。
2.如权利要求1所述的系统,其特征在于,所述工业生产程序包括将所述太阳能生成蒸汽以及所述燃料生成蒸汽向下注入一个或多个注入井。
3.如权利要求2所述的系统,进一步包括至少部分通过分配装置以促进一个或多个重油和轻油的流量的装置。
4.如权利要求3所述的系统,其特征在于,所述一个或多个重油和轻油位于低渗透率地层。
5.如权利要求4所述的系统,其特征在于,所述低渗透率地层包括碳酸酯。
6.如权利要求4所述的系统,其特征在于,所述低渗透率地层包括硅藻土。
7.如权利要求1所述的系统,进一步包括控制至少部分基于所述太阳能生成蒸汽流水作业的至少一个所述燃料蒸汽发生器的装置,以维持一个相对恒定的蒸汽压力和蒸汽注入速率。
8.如权利要求7所述的系统,其特征在于,所述控制装置包括减少所述燃料生成蒸汽生产率的装置。
9.如权利要求1所述的系统,进一步包括控制至少部分基于所述太阳能生成蒸汽流水作业的至少一个所述燃料蒸汽发生器的装置,所述控制装置能将蒸汽压力维持在规定的日常方差量之内,运行所述控制装置使得蒸汽压力和流量在充满阳光的时候更高,并使得所述太阳能生成蒸汽提供更高比例的日常和粘度总的蒸汽注入。
10.如权利要求1所述的系统,进一步包括控制至少部分基于所述太阳能生成蒸汽流水作业的至少一个所述燃料蒸汽发生器的装置,所述控制装置能将蒸汽压力维持在规定的日常方差量之内。
CN201810071461.6A 2010-07-05 2011-07-03 太阳能收集的油田应用 Pending CN108375200A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US36150710P 2010-07-05 2010-07-05
US61/361,507 2010-07-05
CN2011800427092A CN103221757A (zh) 2010-07-05 2011-07-03 太阳能收集的油田应用

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN2011800427092A Division CN103221757A (zh) 2010-07-05 2011-07-03 太阳能收集的油田应用

Publications (1)

Publication Number Publication Date
CN108375200A true CN108375200A (zh) 2018-08-07

Family

ID=45441765

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201810071461.6A Pending CN108375200A (zh) 2010-07-05 2011-07-03 太阳能收集的油田应用
CN2011800427092A Pending CN103221757A (zh) 2010-07-05 2011-07-03 太阳能收集的油田应用

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN2011800427092A Pending CN103221757A (zh) 2010-07-05 2011-07-03 太阳能收集的油田应用

Country Status (5)

Country Link
US (3) US8701773B2 (zh)
EP (1) EP2591294A4 (zh)
CN (2) CN108375200A (zh)
AU (3) AU2011276380B2 (zh)
WO (1) WO2012006258A2 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109442764A (zh) * 2018-10-11 2019-03-08 江苏华扬液碳有限责任公司 一种节能型撬装式复合加热装置
RU2723263C1 (ru) * 2019-07-15 2020-06-09 Юрий Максимович Коломеец Система солнечного теплоснабжения с регулируемой поглощательной способностью

Families Citing this family (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010088632A2 (en) 2009-02-02 2010-08-05 Glasspoint Solar, Inc. Concentrating solar power with glasshouses
US8701773B2 (en) 2010-07-05 2014-04-22 Glasspoint Solar, Inc. Oilfield application of solar energy collection
WO2012006288A2 (en) 2010-07-05 2012-01-12 Glasspoint Solar, Inc. Subsurface thermal energy storage of heat generated by concentrating solar power
CN105927953B (zh) 2010-07-05 2019-02-15 玻点太阳能有限公司 太阳能直接生成蒸汽
AU2011276377B2 (en) 2010-07-05 2016-05-19 Glasspoint Solar, Inc. Concentrating solar power with glasshouses
WO2012128877A2 (en) 2011-02-22 2012-09-27 Glasspoint Solar, Inc. Concentrating solar power with glasshouses
WO2012026837A1 (ru) * 2010-08-23 2012-03-01 Щлюмберже Холдингс Лимитед Способ предварительного прогрева нефтенасыщенного пласта
CN101968041B (zh) * 2010-09-29 2012-05-30 武汉凯迪工程技术研究总院有限公司 采用生物质锅炉作为辅助热源的太阳能发电方法及系统
US9249650B2 (en) * 2010-12-15 2016-02-02 Wallace Bruce Clean solar energy to enhance oil and gas location separator recovery
US9394780B2 (en) * 2010-12-15 2016-07-19 Industrial Solar Heating Systems, Llc Solar heating for site located oil storage or separation
CA2827656A1 (en) * 2011-03-04 2012-09-13 Conocophillips Company Heat recovery method for wellpad sagd steam generation
US9243482B2 (en) * 2011-11-01 2016-01-26 Nem Energy B.V. Steam supply for enhanced oil recovery
MX352193B (es) * 2012-03-21 2017-10-27 Inventive Power Sa De Cv Un sistema flexible de concentrador solar parabolico lineal en pequeña escala, para generacion de energia y deshidratacion.
US9200799B2 (en) 2013-01-07 2015-12-01 Glasspoint Solar, Inc. Systems and methods for selectively producing steam from solar collectors and heaters for processes including enhanced oil recovery
US9874359B2 (en) 2013-01-07 2018-01-23 Glasspoint Solar, Inc. Systems and methods for selectively producing steam from solar collectors and heaters
US10934895B2 (en) 2013-03-04 2021-03-02 Echogen Power Systems, Llc Heat engine systems with high net power supercritical carbon dioxide circuits
WO2014149326A1 (en) 2013-03-15 2014-09-25 World Energy Systems Incorporated Downhole steam generator control system
US9328601B2 (en) 2013-04-30 2016-05-03 General Electric Company System and method for enhanced recovery of oil from an oil field
US9777562B2 (en) * 2013-09-05 2017-10-03 Saudi Arabian Oil Company Method of using concentrated solar power (CSP) for thermal gas well deliquification
CN104747151A (zh) * 2013-12-27 2015-07-01 首航节能光热技术股份有限公司 用于稠油热采的太阳能产蒸汽系统
DE102014212634A1 (de) * 2014-06-30 2015-12-31 Oerlikon Leybold Vacuum Gmbh Öldiffusionspumpe
CN104153748A (zh) * 2014-07-18 2014-11-19 北京特瑞邦新能源技术有限公司 利用光热能的采油系统
US10065147B2 (en) 2014-10-23 2018-09-04 Glasspoint Solar, Inc. Gas purification using solar energy, and associated systems and methods
WO2016065191A1 (en) 2014-10-23 2016-04-28 Glasspoint Solar, Inc. Heat storage devices for solar steam generation, and associated systems and methods
WO2016073252A1 (en) 2014-11-03 2016-05-12 Echogen Power Systems, L.L.C. Active thrust management of a turbopump within a supercritical working fluid circuit in a heat engine system
CN104499991B (zh) * 2014-12-10 2017-11-28 西安海枫机电科技有限公司 一种智能恒流注水井口
CN104832897A (zh) * 2015-05-18 2015-08-12 深圳市易精制衣设备有限公司 一种蒸汽补偿系统
CN107912054B (zh) 2015-06-30 2020-03-17 玻点太阳能有限公司 用于冷却包括用于太阳能收集的封闭的电子部件的相变材料及相关联的系统和方法
US9845667B2 (en) 2015-07-09 2017-12-19 King Fahd University Of Petroleum And Minerals Hybrid solar thermal enhanced oil recovery system with oxy-fuel combustor
CN105202508B (zh) * 2015-08-31 2017-11-24 南瑞(武汉)电气设备与工程能效测评中心 光热补偿型电锅炉联合循环供能装置及方法
US9540918B1 (en) 2015-09-01 2017-01-10 King Fahd University Of Petroleum And Minerals Solar power and ion transport-based enhanced oil recovery system and method
CN108350732A (zh) * 2015-09-01 2018-07-31 玻点太阳能有限公司 可变速率蒸汽注入,包括通过太阳能提高石油采收率,以及相关联的系统和方法
JP2017067359A (ja) * 2015-09-30 2017-04-06 日立造船株式会社 蒸気発生装置
WO2017136241A1 (en) 2016-02-01 2017-08-10 Glasspoint Solar, Inc. Separators and mixers for delivering controlled-quality solar-generated steam over long distances for enhanced oil recovery, and associated systems and methods
CN105841129B (zh) * 2016-06-01 2018-05-18 中油锐思技术开发有限责任公司 废水复合热载体发生器及复合热载体产生方法
WO2017208023A1 (en) * 2016-06-03 2017-12-07 Sowers Hank James Water processing system and method
DE102017123455A1 (de) * 2017-10-10 2019-04-11 Bilfinger Engineering & Technologies Gmbh Receiver, Kraftwerk und Verfahren zur thermischen Nutzung von Sonnenenergie
CN108150146B (zh) * 2018-01-30 2019-06-18 程煦 一种利用太阳能加热的页岩气开采系统
US11187112B2 (en) 2018-06-27 2021-11-30 Echogen Power Systems Llc Systems and methods for generating electricity via a pumped thermal energy storage system
WO2020227567A1 (en) 2019-05-07 2020-11-12 Kore Infrastructure Production of renewable fuel for steam generation for heavy oil extraction
CN110220177B (zh) * 2019-06-26 2024-01-30 东方电气集团东方锅炉股份有限公司 太阳能光热发电熔盐蒸汽发生系统的水侧系统及运行方法
US11859477B2 (en) 2019-07-02 2024-01-02 Totalenergies Se Hydrocarbon extraction using solar energy
CN112302599A (zh) * 2019-07-24 2021-02-02 中国石油化工股份有限公司 用于原位开采油页岩的装置和方法
US11435120B2 (en) 2020-05-05 2022-09-06 Echogen Power Systems (Delaware), Inc. Split expansion heat pump cycle
US12018596B2 (en) 2020-11-30 2024-06-25 Rondo Energy, Inc. Thermal energy storage system coupled with thermal power cycle systems
IL303311A (en) 2020-11-30 2023-07-01 Rondo Energy Inc Energy storage system and applications
US11913362B2 (en) 2020-11-30 2024-02-27 Rondo Energy, Inc. Thermal energy storage system coupled with steam cracking system
US11913361B2 (en) 2020-11-30 2024-02-27 Rondo Energy, Inc. Energy storage system and alumina calcination applications
IL303493A (en) 2020-12-09 2023-08-01 Supercritical Storage Company Inc A system with three reservoirs for storing thermal electrical energy
US20220307685A1 (en) * 2021-03-25 2022-09-29 Eric Jose Marruffo Soleric Process for Enhancing Steam and Super-heated Steam Production from Small Concentrated Solar Power and Renewable Energy.
BR112023026254A2 (pt) * 2021-06-16 2024-02-27 Onesubsea Ip Uk Ltd Sistema de controle de energia para equipamentos submarinos
CN113669039B (zh) * 2021-09-13 2022-05-13 中国石油大学(华东) 蒸汽辅助稠油热采系统
WO2023172770A2 (en) * 2022-03-11 2023-09-14 Transitional Energy Llc Mobile oil stream energy recovery system
US11939965B2 (en) 2022-04-01 2024-03-26 Saudi Arabian Oil Company Use of concentrated solar to enhance the power generation of the turboexpander in gas wells

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101226007A (zh) * 2007-01-19 2008-07-23 李建民 一种太阳能热发电系统
US20100000733A1 (en) * 2008-07-03 2010-01-07 Matteo Chiesa Apparatus and Method for Energy-Efficient and Environmentally-friendly Recovery of Bitumen

Family Cites Families (175)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1240890A (en) 1912-09-30 1917-09-25 Frank Shuman Sun-boiler.
US2221919A (en) 1938-08-23 1940-11-19 Kenan Wilder Bridge construction
US2217593A (en) 1939-06-29 1940-10-08 Robinson & Steinman Bracing for suspension bridges
US2859745A (en) 1954-05-04 1958-11-11 Brudersdorff Luis Von Solar energy operated heaters
US3672572A (en) 1970-07-27 1972-06-27 Valmont Industries Rough ground self-propelled sprinkling irrigation apparatus
US3847136A (en) 1973-07-27 1974-11-12 N Salvail Solar water-heating systems
US3996917A (en) 1974-03-27 1976-12-14 Malz Nominees Pty. Ltd. Solar heating apparatus
US3962873A (en) 1974-05-20 1976-06-15 Thermo Electron Corporation Solar steam generator
US3923039A (en) 1975-02-07 1975-12-02 Gerald Falbel Solar energy heating system
US3994279A (en) 1975-07-24 1976-11-30 The United States Of America As Represented By The United States Energy Research And Development Administration Solar collector with improved thermal concentration
US3991740A (en) 1975-07-28 1976-11-16 The United States Of America As Represented By The United States Energy Research And Development Administration Sea shell solar collector
US4015585A (en) 1975-08-21 1977-04-05 Arthur Fattor Solar heating apparatus
US4003366A (en) 1975-12-11 1977-01-18 Lightfoot Daniel J Solar heat collector module
US4088116A (en) 1976-01-06 1978-05-09 Jose Pastor Radiant energy collector
CH601972A5 (zh) 1976-03-24 1978-07-14 Mario Posnansky
IL49575A (en) 1976-05-14 1977-10-31 Hirschsohn L Solar collectors
FR2353812A1 (fr) 1976-06-03 1977-12-30 Bertin & Cie Systeme de capteurs d'energie solaire a miroir cylindroparabolique
US4078549A (en) 1976-08-05 1978-03-14 Mckeen Thomas Ray Solar energy collector
FI64856C (fi) 1976-11-01 1984-01-10 Sunstore Kb Saett att i en markkropp lagra termisk energi
US4108154A (en) 1976-11-22 1978-08-22 Homer Van Dyke Solar energy collection system
US4124277A (en) 1977-02-16 1978-11-07 Martin Marietta Corporation Parabolic mirror construction
US4083155A (en) 1977-03-14 1978-04-11 Lampert Albert J Thermally insulated enclosure
CH619769A5 (zh) 1977-05-03 1980-10-15 Posnansky Mario
US4202322A (en) 1977-05-11 1980-05-13 Del Manufacturing Company Solar energy collector and heat exchanger
DE2745473C3 (de) 1977-10-08 1980-05-29 Mannesmann Ag, 4000 Duesseldorf Aufhängevorrichtung
US4159712A (en) 1977-10-20 1979-07-03 Legg Howard W Solar energy conversion unit
US4174752A (en) 1978-01-24 1979-11-20 Dale Fuqua Secondary recovery method and system for oil wells using solar energy
US4258696A (en) 1978-04-05 1981-03-31 Johnson Controls, Inc. Passive thermal energy phase change storage apparatus
US4237864A (en) 1978-05-15 1980-12-09 Barry Kravitz Focusing solar collector
US4230095A (en) 1978-05-26 1980-10-28 The United States Of America As Represented By The United States Department Of Energy Ideal light concentrators with reflector gaps
US4219008A (en) 1978-09-06 1980-08-26 John Schultz Method and apparatus for solar heating and shading
DE2963071D1 (en) 1978-09-23 1982-07-29 Josef Koller Apparatus for separating rubbed cleaning bodies
US4184482A (en) 1978-09-29 1980-01-22 Cohen Elie Solar energy collecting system
US4263893A (en) 1978-10-03 1981-04-28 Consuntrator, Inc. Solar energy collector construction
US4249340A (en) 1978-12-07 1981-02-10 Environmental Research Institute Of Michigan Solar energy collector
USRE30407E (en) 1979-01-15 1980-09-23 Solar heat collector module
US4290419A (en) 1979-06-28 1981-09-22 Rabedeaux Richard W Multi systems solar collector
US4282394A (en) 1979-10-24 1981-08-04 The Boeing Company Underwing reflector solar array
US4287880A (en) 1979-11-13 1981-09-08 Geppert John M Solar collector
JPS5685508A (en) 1979-12-14 1981-07-11 Nissan Motor Co Ltd Power generator for propulsion
US4318394A (en) 1980-01-11 1982-03-09 Alexander William C Solar energy concentrator
US4280480A (en) 1980-03-17 1981-07-28 Raposo Sulpicio B Solar heating plant
US4423719A (en) 1980-04-03 1984-01-03 Solar Kinetics, Inc. Parabolic trough solar collector
US4333447A (en) 1980-06-04 1982-06-08 Corning Glass Works Solar receiver tube support
US4343533A (en) 1980-12-31 1982-08-10 Dow Corning Corporation Solar radiation reflector with a cellulosic substrate and method of making
US4371623A (en) 1981-02-09 1983-02-01 William N. Durkin Solar still
US4372386A (en) 1981-02-20 1983-02-08 Rhoades C A Steam injection method and apparatus for recovery of oil
US4386600A (en) 1981-02-23 1983-06-07 The Budd Company Support structure for supporting a plurality of aligned solar reflector panels
US4484568A (en) 1981-08-31 1984-11-27 Solar Kinetics, Inc. Overheat emergency outfocus mechanism for solar energy collector
US4462390A (en) 1981-10-16 1984-07-31 Holdridge Robert B Modular solar greenhouse with elevated overhead heat storage material and movable insulation barriers and method and system for solar heating of attached living space using thermostat-controlled air circulation for harvesting heat
US4513733A (en) 1982-11-12 1985-04-30 The Babcock & Wilcox Company Oil field steam production and use
US4490926A (en) 1982-11-26 1985-01-01 Scott Stokes Solar drying device and method for drying
JPS60196548A (ja) 1984-03-19 1985-10-05 Toshiba Corp 太陽自動追尾装置
US4597377A (en) 1984-10-09 1986-07-01 Melamed Alan M Solar reflector system
DE3543479A1 (de) 1985-12-09 1987-06-11 Teves Gmbh Alfred Bremsdruckgeber fuer eine hydraulische bremsanlage, insbesondere fuer kraftfahrzeuge
US4727854A (en) 1986-05-08 1988-03-01 Johnson Arthur C W High efficiency infrared radiant energy heating system and reflector therefor
CN2050918U (zh) 1989-01-26 1990-01-10 陈经文 密封式管道伸缩器
GB8902662D0 (en) 1989-02-07 1989-03-30 Ridett Alan H Improvements in or relating to buildings
WO1990009556A1 (en) 1989-02-08 1990-08-23 Barry Bros. Specialised Services Pty. Ltd. Apparatus for cleaning the inner surfaces of tubes in operating multi-tube heat transfer devices
US5258101A (en) 1990-03-14 1993-11-02 Wayne Technology Corp. Pyrolytic conversion system
US5058675A (en) * 1990-10-29 1991-10-22 Travis Elmer E Method and apparatus for the destructive distillation of kerogen in situ
FR2674458B1 (fr) 1991-03-28 1993-05-21 Commissariat Energie Atomique Dispositif de nettoyage automatique et continu de la canalisation du recepteur solaire d'un photobioreacteur.
US5191876A (en) 1992-03-04 1993-03-09 Atchley Curtis L Rotatable solar collection system
US5347402A (en) 1992-08-12 1994-09-13 Porter Arbogast Multiple mirror assembly for solar collector
FR2696753B1 (fr) 1992-10-13 1995-01-20 Inst Fs Rech Expl Mer Dispositif de nettoyage des canalisations d'un photobioréacteur et photobioréacteur muni de ce dispositif.
US5344496A (en) 1992-11-16 1994-09-06 General Dynamics Corporation, Space Systems Division Lightweight solar concentrator cell array
US5520747A (en) 1994-05-02 1996-05-28 Astro Aerospace Corporation Foldable low concentration solar array
SE9500123D0 (sv) 1994-05-19 1995-01-16 George Wegler Systemlösning
US5524610A (en) 1995-03-20 1996-06-11 Clark; John D. Solar powered/multiple fuel cooking device
DE19533475B4 (de) 1995-09-12 2006-04-13 Krecké, Edmond Dominique Energieanlage für Gebäude
US5851309A (en) 1996-04-26 1998-12-22 Kousa; Paavo Directing and concentrating solar energy collectors
US5699785A (en) 1996-09-26 1997-12-23 Sparkman; Scott Solar energy collector
DE19648860C1 (de) 1996-11-26 1998-02-05 Jan Kai Dobelmann Verfahren zur Reinigung von Abwasser
DE19723543C2 (de) * 1997-06-05 2003-04-17 Deutsch Zentr Luft & Raumfahrt Energieerzeugungsanlage
SE9702256L (sv) 1997-06-13 1998-12-14 Vattenfall Ab Solfångare
US6017002A (en) 1997-07-21 2000-01-25 Hughes Electronics Corporation Thin-film solar reflectors deployable from an edge-stowed configuration
US6233914B1 (en) 1997-07-31 2001-05-22 Ormat Industries Ltd. Method of an apparatus for producing power having a solar reformer and a steam generator which generate fuel for a power plant
JP3174549B2 (ja) 1998-02-26 2001-06-11 株式会社日立製作所 太陽光発電装置及び太陽光発電モジュール並びに太陽光発電システムの設置方法
ES2219005T3 (es) 1998-03-09 2004-11-16 Krecke, Edmond Dominique Procedimiento de climatizacion de edificios y edificio climatizado.
US6237337B1 (en) 1998-09-10 2001-05-29 Ormat Industries Ltd. Retrofit equipment for reducing the consumption of fossil fuel by a power plant using solar insolation
JP2000205044A (ja) 1999-01-19 2000-07-25 Shigeaki Kimura コ―ジェネレ―ション装置
JP2001082104A (ja) 1999-09-17 2001-03-27 Takahashi Kikan:Kk 蒸気供給システム
US6363928B1 (en) 2000-04-04 2002-04-02 Alternative Energy Group, Inc. Solar collection system
IL152456A0 (en) * 2000-04-24 2003-05-29 Shell Int Research Method for treating a hydrocarbon-cotaining formation
US6485152B2 (en) 2000-05-05 2002-11-26 Doug Wood Matrix solar dish
AU2001266284A1 (en) 2000-06-15 2001-12-24 Ben-Gurion University Of The Negev Environmentally friendly conditioning system particularly for a greenhouse
US6508850B1 (en) 2000-11-16 2003-01-21 Igor K. Kotliar Clean air tent system
US6905645B2 (en) 2002-07-03 2005-06-14 Therics, Inc. Apparatus, systems and methods for use in three-dimensional printing
US20110088686A1 (en) 2002-09-20 2011-04-21 Hochberg Eric B Lightweight, low cost solar energy collector
US6994082B2 (en) 2002-09-20 2006-02-07 Hochberg Eric B Lightweight, low-cost solar energy collector
US7055519B2 (en) 2003-12-10 2006-06-06 United Technologies Corporation Solar collector and method
EP1728030A4 (en) 2004-02-17 2012-08-15 Solar Heat And Power Pty Ltd MULTITUBE SOLAR SENSOR TYPE STRUCTURE
DE102004013590B4 (de) 2004-03-19 2010-01-07 Deutsches Zentrum für Luft- und Raumfahrt e.V. Solarkonzentrator mit mehreren Spiegeln
US7472548B2 (en) 2004-09-08 2009-01-06 Sovani Meksvanh Solar augmented geothermal energy
CN2776908Y (zh) 2005-02-05 2006-05-03 鲍庆春 油井单体储罐太阳能加温装置
US20070056726A1 (en) 2005-09-14 2007-03-15 Shurtleff James K Apparatus, system, and method for in-situ extraction of oil from oil shale
US7858875B2 (en) 2005-09-29 2010-12-28 Enfocus Engineering Corp. Radiant energy conversion system
DE202005021000U1 (de) 2005-12-21 2007-01-11 Novatec Biosol Ag Receivertragwerk
US7809538B2 (en) * 2006-01-13 2010-10-05 Halliburton Energy Services, Inc. Real time monitoring and control of thermal recovery operations for heavy oil reservoirs
WO2007087680A1 (en) 2006-02-03 2007-08-09 Miralite Pty Ltd Improved trough reflectors for solar energy collectors
US7337843B2 (en) 2006-02-13 2008-03-04 Mecham Travis W Solar blackbody waveguide for solar assisted oil recovery applications
US8397434B2 (en) 2006-03-28 2013-03-19 David Bayne Greenhouse insulation system
US8056555B2 (en) 2006-04-12 2011-11-15 Prueitt Melvin L Thin film trough solar collector
CN200958464Y (zh) 2006-04-29 2007-10-10 张嘉明 热致伸缩器
WO2007146183A2 (en) 2006-06-08 2007-12-21 Sopogy, Inc. Apparatus and methods for concentrating solar power
CN101126553A (zh) 2006-06-19 2008-02-20 陈红专 太阳能锅炉
CN2926930Y (zh) 2006-07-14 2007-07-25 于元亮 自动跟踪焦点静止太阳灶
US20080066736A1 (en) 2006-07-25 2008-03-20 Yanong Zhu Method and apparatus for solar energy storage system using gas and rock
ES2327991B1 (es) * 2006-08-04 2010-07-15 Abengoa Solar New Technologies, S.A. Planta de concentracion solar.
KR100818197B1 (ko) 2006-09-13 2008-04-01 미래에너지기술(주) 태양광 집속식 발전장치
US20080127647A1 (en) * 2006-09-15 2008-06-05 Skyfuel, Inc. Solar-Generated Steam Retrofit for Supplementing Natural-Gas Combustion at Combined Cycle Power Plants
JP5085081B2 (ja) 2006-09-22 2012-11-28 パナソニック株式会社 電子部品実装構造体
US7878192B2 (en) 2006-11-22 2011-02-01 Theodore Edward Larsen Adjustable solar collector and method of use
US7836695B2 (en) 2007-03-06 2010-11-23 Solar and Environmental Technologies Corporation Solar energy system
DE102007026473B4 (de) 2007-03-30 2008-11-20 Amaton Sa Parabolrinnenkollektor
US20080236227A1 (en) 2007-04-02 2008-10-02 Flynn Timothy M Dry land erosion control using photosynthetic nitrogen-fixing microorganisms
CN101280966A (zh) * 2007-04-03 2008-10-08 庄绍林 阳光辅助的火电厂
US7975686B2 (en) 2007-04-05 2011-07-12 Prueitt Melvin L High leverage trough solar collector
WO2008128252A1 (en) * 2007-04-17 2008-10-23 Shurtleff J Kevin Apparatus, system, and method for in-situ extraction of hydrocarbons
WO2008153922A1 (en) 2007-06-06 2008-12-18 Ausra, Inc. Integrated solar energy receiver-storage unit
CN201059795Y (zh) 2007-06-14 2008-05-14 东莞市康达机电工程有限公司 中高温聚光型太阳能集热系统
JP2010530757A (ja) 2007-06-22 2010-09-16 アルゲダイン コーポレイション バイオリアクター
WO2009012190A1 (en) 2007-07-15 2009-01-22 Yin Wang Wood-drying solar greenhouse
US8469092B2 (en) * 2007-07-19 2013-06-25 Shell Oil Company Water processing system and methods
US20090056703A1 (en) 2007-08-27 2009-03-05 Ausra, Inc. Linear fresnel solar arrays and components therefor
ITMI20071702A1 (it) 2007-08-29 2009-02-28 Donati Group S P A Struttura parabolica riflettente per impianti per la produzione di calore da energia solare.
US7845406B2 (en) 2007-08-30 2010-12-07 George Nitschke Enhanced oil recovery system for use with a geopressured-geothermal conversion system
US7709730B2 (en) 2007-09-05 2010-05-04 Skyline Solar, Inc. Dual trough concentrating solar photovoltaic module
US20090199847A1 (en) 2008-02-11 2009-08-13 James Hawley Earth based solar collector
EP2285502A4 (en) 2008-04-10 2012-05-16 C 3 International Llc MOLCH AND METHOD FOR THE USE OF PROPHYLACTIC SURFACE TREATMENTS
US20090260359A1 (en) 2008-04-16 2009-10-22 Alstom Technology Ltd. Solar thermal power plant
AU2009238733B2 (en) * 2008-04-22 2013-08-15 Siemens Aktiengesellschaft Steam generation system having a main and auxiliary steam generator
CN101270675A (zh) * 2008-04-24 2008-09-24 华北电力大学 太阳能和燃煤机组混合的热发电系统
US8430090B2 (en) 2008-05-12 2013-04-30 Arizona Board Of Regents On Behalf Of University Of Arizona Solar concentrator apparatus with large, multiple, co-axial dish reflectors
US8776784B2 (en) 2008-06-27 2014-07-15 The Boeing Company Solar power device
ITMI20081184A1 (it) 2008-06-27 2009-12-28 Elletiemme S R L Dispositivo di copertura per tetti e simili
DE102008037711A1 (de) 2008-08-14 2010-02-18 Senior Berghöfer GmbH Anschlusssystem für ein um eine Drehachse schwenkbares Leitungsrohr einer solarthermischen Anlage
CN101363958A (zh) 2008-08-27 2009-02-11 吴砺 一种太阳能收集结构及其应用
US20100051016A1 (en) 2008-08-27 2010-03-04 Ammar Danny F Modular fresnel solar energy collection system
US8333186B2 (en) 2008-09-18 2012-12-18 Kevin Jennings Parabolic trough solar reflector with an independently supported collector tube
WO2010032095A2 (en) 2008-09-18 2010-03-25 Kloben S.A.S. Di Turco Adelino Ec. Non-tracking solar collector device
US9181930B2 (en) * 2008-09-23 2015-11-10 Skibo Systems, LLC Methods and systems for electric power generation using geothermal field enhancements
CN101354191A (zh) 2008-09-26 2009-01-28 南京工业大学 太阳能梯级开发热利用系统
FR2941038B1 (fr) 2009-01-15 2012-11-30 Andre Jean Marie Philippe Cabarbaye Concentrateur solaire statique optimal forme en spirale et muni de miroirs
ES2372827B1 (es) 2008-10-14 2012-12-03 Iberdrola Ingeniería Y Construcción, S.A.U. Estructura mejorada aplicable a colectores de energía solar cilindro-parabólicos.
US20110277470A1 (en) 2008-11-05 2011-11-17 Shay Benyaminy Solar Thermal Power Plant and Dual-Purpose Pipe for Use Therewith
CN201359397Y (zh) 2009-01-04 2009-12-09 刘阳 一种太阳能聚集装置和采用该装置的建筑构件
US8342169B2 (en) 2009-01-05 2013-01-01 Kenergy Scientific, Inc. Reciprocating solar engine with solar reflectors
CN101769643B (zh) 2009-01-06 2011-08-10 成都钟顺科技发展有限公司 追踪式大型菲涅耳透镜点聚焦太阳能系统
US7987844B2 (en) 2009-01-13 2011-08-02 Hamilton Sundstrand Corporation Catalyzed hot gas heating system for concentrated solar power generation systems
WO2010088632A2 (en) 2009-02-02 2010-08-05 Glasspoint Solar, Inc. Concentrating solar power with glasshouses
WO2010132849A2 (en) 2009-05-15 2010-11-18 Areva Solar, Inc. Systems and methods for producing steam using solar radiation
EP2256428A1 (en) 2009-05-26 2010-12-01 Aries Ingenieria y Sistemas, S.A. Irradiated energy collector device
BRPI1014338B1 (pt) 2009-06-25 2019-12-24 Shell Int Research método para injetar água em uma formação contendo hidrocarbonetos, e, método para preparar uma água com salinidade elevada
WO2011005923A2 (en) 2009-07-08 2011-01-13 Areva Solar, Inc. Solar powered heating system for working fluid
AU2010282746A1 (en) 2009-08-10 2012-02-09 Shell Internationale Research Maatschappij B.V. Enhanced oil recovery systems and methods
EP2486341A2 (en) 2009-10-07 2012-08-15 Areva Solar, Inc Multi-tube solar thermal receiver
US20110094755A1 (en) 2009-10-28 2011-04-28 Chevron U.S.A. Inc. Systems and methods for initiating annular obstruction in a subsurface well
US20120274069A1 (en) 2009-10-30 2012-11-01 Areva Solar, Inc. Dual fluid circuit system for generating a vaporous working fluid using solar energy
WO2011068880A2 (en) 2009-12-01 2011-06-09 Areva Solar, Inc. Utilizing steam and/or hot water generated using solar energy
US20110174935A1 (en) 2010-01-21 2011-07-21 Chalice Bingham Swivel-coupling hanger assembly
US20110240006A1 (en) 2010-04-01 2011-10-06 Linke Edward J Solar Tracking System and Method
CN103003550B (zh) 2010-05-03 2016-02-17 亮源工业(以色列)有限公司 一种用于操作太阳热能发电系统的系统、方法和装置
US8701773B2 (en) 2010-07-05 2014-04-22 Glasspoint Solar, Inc. Oilfield application of solar energy collection
WO2012006288A2 (en) 2010-07-05 2012-01-12 Glasspoint Solar, Inc. Subsurface thermal energy storage of heat generated by concentrating solar power
CN105927953B (zh) 2010-07-05 2019-02-15 玻点太阳能有限公司 太阳能直接生成蒸汽
WO2012128877A2 (en) 2011-02-22 2012-09-27 Glasspoint Solar, Inc. Concentrating solar power with glasshouses
AU2011276377B2 (en) 2010-07-05 2016-05-19 Glasspoint Solar, Inc. Concentrating solar power with glasshouses
US20120067339A1 (en) 2010-09-21 2012-03-22 Hall David R Rotatable Panels on an Exterior of a Structure that Directs Solar Energy within the Structure
US9097110B2 (en) 2010-12-03 2015-08-04 Exxonmobil Upstream Research Company Viscous oil recovery using a fluctuating electric power source and a fired heater
CA2769189C (en) 2011-04-26 2019-04-23 Conocophillips Company Method for steam assisted gravity drainage with pressure differential injection
CN202598911U (zh) 2012-04-01 2012-12-12 天津工业大学 太阳能加热石油储油罐温度自动控制系统
US9874359B2 (en) 2013-01-07 2018-01-23 Glasspoint Solar, Inc. Systems and methods for selectively producing steam from solar collectors and heaters
US9200799B2 (en) 2013-01-07 2015-12-01 Glasspoint Solar, Inc. Systems and methods for selectively producing steam from solar collectors and heaters for processes including enhanced oil recovery
US9328601B2 (en) 2013-04-30 2016-05-03 General Electric Company System and method for enhanced recovery of oil from an oil field

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101226007A (zh) * 2007-01-19 2008-07-23 李建民 一种太阳能热发电系统
US20100000733A1 (en) * 2008-07-03 2010-01-07 Matteo Chiesa Apparatus and Method for Energy-Efficient and Environmentally-friendly Recovery of Bitumen

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109442764A (zh) * 2018-10-11 2019-03-08 江苏华扬液碳有限责任公司 一种节能型撬装式复合加热装置
CN109442764B (zh) * 2018-10-11 2023-08-29 江苏华扬液碳有限责任公司 一种节能型撬装式复合加热装置
RU2723263C1 (ru) * 2019-07-15 2020-06-09 Юрий Максимович Коломеец Система солнечного теплоснабжения с регулируемой поглощательной способностью

Also Published As

Publication number Publication date
CN103221757A (zh) 2013-07-24
US20140345599A1 (en) 2014-11-27
WO2012006258A3 (en) 2012-04-19
AU2019200527A1 (en) 2019-02-14
WO2012006258A2 (en) 2012-01-12
US9810451B2 (en) 2017-11-07
US20130112394A1 (en) 2013-05-09
EP2591294A4 (en) 2017-05-17
US20180073777A1 (en) 2018-03-15
US8701773B2 (en) 2014-04-22
EP2591294A2 (en) 2013-05-15
AU2016213824B2 (en) 2018-10-25
AU2016213824A1 (en) 2016-09-01
AU2011276380A1 (en) 2013-02-14
AU2011276380B2 (en) 2016-05-26

Similar Documents

Publication Publication Date Title
CN108375200A (zh) 太阳能收集的油田应用
CN105927953B (zh) 太阳能直接生成蒸汽
AU2010271387B2 (en) Solar powered heating system for working fluid
Hamed et al. Concentrating solar power for seawater thermal desalination
Poullikkas Economic analysis of power generation from parabolic trough solar thermal plants for the Mediterranean region—A case study for the island of Cyprus
Angrisani et al. Development of a new concept solar-biomass cogeneration system
Mosleh et al. Linear parabolic trough solar power plant assisted with latent thermal energy storage system: A dynamic simulation
CN104583686A (zh) 聚光太阳能发电系统
US20100258112A1 (en) Generation of steam from solar energy
CN105650900B (zh) 一种槽式太阳能高温集热装置及其用于稠油注汽开采的方法
Alhawsawi et al. Hybridizing solar dish Stirling power system with single-effect desalination for sustainable electricity and freshwater co-generation: Mathematical modeling and performance evaluation
EP3055562B1 (en) Controlled heating method of a process fluid through concentrating solar thermal plant and heat carrier system and apparatus thereof
Merad et al. A maximum power control based on flexible collector applied to concentrator solar power
CN103303990B (zh) 一种移动点阵列太阳能海水淡化系统
AU2011276379B9 (en) Direct solar steam generation
CN103303989B (zh) 一种固定点阵列太阳能海水淡化系统
CN1207479A (zh) 快速全年太阳万能器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20180807

WD01 Invention patent application deemed withdrawn after publication