CN108373333A - 一种在超高温陶瓷粉体表面原位合成SiC纳米线的方法 - Google Patents

一种在超高温陶瓷粉体表面原位合成SiC纳米线的方法 Download PDF

Info

Publication number
CN108373333A
CN108373333A CN201810105869.0A CN201810105869A CN108373333A CN 108373333 A CN108373333 A CN 108373333A CN 201810105869 A CN201810105869 A CN 201810105869A CN 108373333 A CN108373333 A CN 108373333A
Authority
CN
China
Prior art keywords
powder
sic
zrb
method described
ultra
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810105869.0A
Other languages
English (en)
Inventor
褚衍辉
敬思仪
刘达
叶贝琳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN201810105869.0A priority Critical patent/CN108373333A/zh
Publication of CN108373333A publication Critical patent/CN108373333A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62675Thermal treatment of powders or mixtures thereof other than sintering characterised by the treatment temperature
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/5805Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides
    • C04B35/58064Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides
    • C04B35/58078Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides based on zirconium or hafnium borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/428Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Ceramic Products (AREA)

Abstract

本发明公开了一种在超高温陶瓷粉体表面原位合成SiC纳米线的方法。该方法包括步骤:(1)将Si粉、SiC粉和ZrB2粉置于聚四氟乙烯球磨罐中,再加入无水乙醇,球磨,形成混合均匀的悬浊液;(2)将得到的悬浊液旋转蒸发、干燥、研磨,得到前驱体粉末;(3)将前驱体粉末置于管式炉中,加热进行反应,冷却至室温,在超高温陶瓷粉体表面原位合成出SiC纳米线。本发明方法生产成本低,工艺简单,制备周期短,合成SiC纳米线的产率和纯度高,且合成的SiC纳米线均匀分布在超高温陶瓷粉体表面,有利于大规模工业化生产;同时,通过调整SiC的含量以及制备温度、时间,能有效控制合成SiC纳米线的形貌和尺寸。

Description

一种在超高温陶瓷粉体表面原位合成SiC纳米线的方法
技术领域
本发明涉及SiC纳米线制备技术领域,具体涉及一种在超高温陶瓷粉体表面原位合成SiC纳米线的方法。
背景技术
一维SiC纳米线不仅具有优良的力学特性,如高硬度、高强度、高弹性模量等,而且具有优异的物理和化学性质,如高熔点、低密度、低热膨胀系数、耐高温以及耐腐蚀等,是一种非常理想的先进复合材料的强韧化相,特别是对于应用在极端环境下(如超高温、有氧环境)的先进结构复合材料而言。近年来,SiC纳米线已被作为强韧化相应用在SiC陶瓷基复合材料及碳/碳复合材料超高温防氧化抗烧蚀陶瓷涂层中,研究结果表明,SiC纳米线的引入显著地提高了材料的断裂韧性和弯曲强度。然而,SiC纳米线在超高温结构陶瓷材料中作为强韧化相的应用至今未见报道,这主要是因为如何在超高温陶瓷粉体表面原位合成出均匀的、高纯的SiC纳米线的问题难以解决。
Zhong等研究了一种在ZrB2、SiC粉体中制备SiC纳米线的方法,该方法以Ni(NO3)2·6H2O作为催化剂前驱体,先用湿法球磨使其附着在ZrB2、SiC混合粉体的表面,再利用后续的加热过程使其分解来作为SiC纳米线生长的催化剂(Zhong Z,Yan L,Liu L,etal.Fabrication of modified ultra high-temperature ceramic hybrid powdersusing in situ grown SiC nanowires.Ceramics International,2017,43(3):3462-3464.)。该方法很容易导致催化剂分散不均匀从而引起合成的SiC纳米线分布不均匀;另外,该方法采用浸渍法引入含Zr有机前驱体和含B有机前驱体混合而成的ZrB2有机前驱体作为合成SiC纳米线的碳源,制备流程繁复,SiC纳米线的合成反应也复杂且不可控。最后获得的SiC纳米线纯度较低,含有Ni和ZrO2等杂质。上述缺点严重限制了该材料的广泛应用。
发明内容
本发明的目的在于针对现有技术的不足,提供了一种在超高温陶瓷粉体表面原位合成SiC纳米线的方法。该方法以Si粉、SiC粉和ZrB2粉为原料,无需引入催化剂,在氩气中,在ZrB2粉体以及SiC粉体表面一次性制备高纯的SiC纳米线,制备方法简单、成本低、效率高,且制备的高纯SiC纳米线分布均匀,通过调整制备工艺可以对纳米线的形貌和尺寸进行控制。
本发明的目的通过如下技术方案实现。
一种在超高温陶瓷粉体表面原位合成SiC纳米线的方法,包括如下步骤:
(1)将Si粉、SiC粉和ZrB2粉置于聚四氟乙烯球磨罐中,再加入无水乙醇,球磨,形成混合均匀的悬浊液;
(2)将得到的悬浊液旋转蒸发、干燥、研磨,得到前驱体粉末;
(3)将前驱体粉末置于管式炉中,加热进行反应,冷却至室温,在超高温陶瓷粉体表面原位合成出SiC纳米线。
进一步地,步骤(1)中,按质量百分比计,Si粉、SiC粉和ZrB2粉的混合物料中,各原料占比为:Si粉10~30%,SiC粉20~40%,ZrB2粉70~30%。
进一步地,步骤(1)中,所述Si粉的纯度为99%,粒度为300目。
进一步地,步骤(1)中,所述SiC粉的纯度为99%,粒度为0.5~0.7μm。
进一步地,步骤(1)中,所述ZrB2粉的纯度为分析纯,粒度为0.5~1.5μm。
进一步地,步骤(1)中,所述无水乙醇与Si粉、SiC粉和ZrB2粉的混合物料的液料比为3~3.5∶1mL/g。
进一步地,步骤(1)中,所述球磨过程中,磨球与Si粉、SiC粉和ZrB2粉的混合物料的体积比为2∶1。
进一步地,步骤(1)中,所述球磨的转速为500r/min,时间为1~3h。
进一步地,步骤(2)中,所述旋转蒸发是在70℃旋转蒸发1~3h。
进一步地,步骤(2)中,所述干燥是在70~90℃干燥12~24h。
进一步地,步骤(3)中,所述反应是在氩气流动气氛下进行,氩气流动气氛的流量为100~300sccm。
进一步地,步骤(3)中,所述反应的温度为1400~1600℃,时间为1~3h。
进一步地,步骤(3)中,所述冷却是自然冷却。
与现有技术相比,本发明具有如下优点和有益效果:
(1)本发明方法生产成本低,工艺简单,制备周期短,合成SiC纳米线的产率和纯度高,且合成的SiC纳米线均匀分布在超高温陶瓷粉体表面,有利于大规模工业化生产;
(2)本发明方法通过调整SiC的含量以及制备温度、时间,有效控制合成SiC纳米线的形貌和尺寸。
附图说明
图1为实施例1中合成的SiC纳米线的SEM图;
图2为实施例2中合成的SiC纳米线的SEM图;
图3为实施例3中合成的SiC纳米线的SEM图。
具体实施方式
以下结合具体实施例及附图对本发明技术方案作进一步详细描述,但本发明的保护范围及实施方式不限于此。
本发明具体实施例中,采用的Si粉的纯度为99%,粒度为300目;采用的SiC粉的纯度为99%,粒度为0.5~0.7μm;采用的ZrB2粉的纯度为分析纯,粒度为0.5~1.5μm。
实施例1
在超高温陶瓷粉体表面原位合成SiC纳米线,具体步骤如下:
(1)分别称量1g Si粉、2g SiC粉和7g ZrB2粉,倒入聚四氟乙烯球磨罐中,取与Si粉、SiC粉和ZrB2粉的混合物料体积比为2∶1的玛瑙球放入球磨罐中,再倒入30ml无水乙醇,用行星式球磨机,以500r/min的转速球磨1h,得到混合均匀的悬浊液;
(2)将得到的悬浊液转移至旋蒸仪中,在70℃下旋蒸1h,得到半干燥的混合均匀的粉体,再将半干燥的粉体置于干燥箱在70℃下干燥12h,研磨后得到前驱体粉末;
(3)将前驱体粉末均匀平铺在铺有石墨纸内衬的刚玉方舟内,置于管式炉中;抽真空30min后使真空度达到0.09MPa,保真空30min,观察真空表指示是否变化,如无变化,说明系统密封完好,通氩气至常压,此过程重复三次;之后将炉温升至1400℃,升温速率为5℃/min,然后保温1h,整个过程中通流量为100sccm的氩气保护;
(4)关闭电源,自然冷却至室温,最后在SiC和ZrB2的混合粉体表面合成出SiC纳米线。
对合成的纳米复合粉体进行SEM观察,合成的纳米复合粉体的SEM图如图1所示,由图1可知,SiC、ZrB2混合粉体表面存在少量的、均匀分布的SiC纳米线,合成的SiC纳米线的直径为50~200nm,且纯度高、无其他杂质存在。
实施例2
在超高温陶瓷粉体表面原位合成SiC纳米线,具体步骤如下:
(1)分别称量3g Si粉、4g SiC粉和3g ZrB2粉,倒入球磨罐中,取与Si粉、SiC粉和ZrB2粉的混合物料体积比为2∶1的玛瑙球放入球磨罐中,倒入32ml无水乙醇,用行星式球磨机,以500r/min的转速球磨2h,得到混合均匀的悬浊液;
(2)将得到的悬浊液转移至旋蒸仪中,在70℃下旋蒸2h,得到半干燥的混合均匀的粉体,再将半干燥的粉体置于干燥箱在80℃下干燥18h,研磨后得到前驱体粉末;
(3)将前驱体粉末均匀平铺在铺有石墨纸内衬的刚玉方舟内,置于管式炉中;抽真空30min后使真空度达到0.09MPa,保真空30min,观察真空表指示是否变化,如无变化,说明系统密封完好,通氩气至常压,此过程重复三次;之后将炉温升至1500℃,升温速率为5℃/min,然后保温2h,整个过程中通流量为200sccm的氩气保护;
(4)关闭电源,自然冷却至室温,最后在SiC、ZrB2混合粉体表面合成出SiC纳米线。
对合成的纳米复合粉体进行SEM观察,合成的纳米复合粉体的SEM图如图2所示,由图2可知,SiC和ZrB2的混合粉体表面存在大量的、均匀分布的SiC纳米线,合成的SiC纳米线的直径为50~200nm,且纯度高、无其他杂质存在。
实施例3
在超高温陶瓷粉体表面原位合成SiC纳米线,具体步骤如下:
(1)分别称量2g Si粉、3g SiC粉和5g ZrB2粉,倒入球磨罐中,取与Si粉、SiC粉和ZrB2粉的混合物料体积比为2∶1的玛瑙球放入球磨罐中,倒入35ml无水乙醇,用行星式球磨机,以500r/min的转速球磨3h,得到混合均匀的悬浊液;
(2)将得到的悬浊液转移至旋蒸仪中,在70℃下旋蒸3h,得到半干燥的混合均匀的粉体,再将半干燥的粉体置于干燥箱在90℃下干燥24h,研磨后得到前驱体粉末;
(3)将前驱体粉末均匀平铺在铺有石墨纸内衬的刚玉方舟内,置于管式炉中;抽真空30min后使真空度达到0.09MPa,保真空30min,观察真空表指示是否变化,如无变化,说明系统密封完好,通氩气至常压,此过程重复三次;之后将炉温升至1600℃,升温速率为5℃/min,然后保温3h,整个过程中通流量为300sccm的氩气保护;
(4)随后关闭电源,自然冷却至室温,最后在SiC、ZrB2混合粉体表面合成出SiC纳米线。
对合成的纳米复合粉体进行SEM观察,合成的纳米复合粉体的SEM图如图3所示,由图3可知,SiC和ZrB2的混合粉体表面含有少量的、均匀分布的SiC纳米线,合成的SiC纳米线的直径为50~200nm,且纯度高、无其他杂质存在。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其它的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

1.一种在超高温陶瓷粉体表面原位合成SiC纳米线的方法,其特征在于,包括如下步骤:
(1)将Si粉、SiC粉和ZrB2粉置于聚四氟乙烯球磨罐中,再加入无水乙醇,球磨,形成混合均匀的悬浊液;
(2)将得到的悬浊液旋转蒸发、干燥、研磨,得到前驱体粉末;
(3)将前驱体粉末置于管式炉中,加热进行反应,冷却至室温,在超高温陶瓷粉体表面原位合成出SiC纳米线。
2.根据权利要求1所述的方法,其特征在于,步骤(1)中,按质量百分比计,Si粉、SiC粉和ZrB2粉的混合物料中,各原料占比为:Si粉10~30%,SiC粉20~40%,ZrB2粉70~30%。
3.根据权利要求1所述的方法,其特征在于,步骤(1)中,所述Si粉的纯度为99%,粒度为300目;所述SiC粉的纯度为99%,粒度为0.5~0.7μm;所述ZrB2粉的纯度为分析纯,粒度为0.5~1.5μm。
4.根据权利要求1所述的方法,其特征在于,步骤(1)中,所述无水乙醇与Si粉、SiC粉和ZrB2粉的混合物料的液料比为3~3.5∶1mL/g。
5.根据权利要求1所述的方法,其特征在于,步骤(1)中,所述球磨过程中,磨球与Si粉、SiC粉和ZrB2粉的混合物料的体积比为2∶1。
6.根据权利要求1所述的方法,其特征在于,步骤(1)中,所述球磨的转速为500r/min,时间为1~3h。
7.根据权利要求1所述的方法,其特征在于,步骤(2)中,所述旋转蒸发是在70℃旋转蒸发1~3h。
8.根据权利要求1所述的方法,其特征在于,步骤(2)中,所述干燥是在70~90℃干燥12~24h。
9.根据权利要求1所述的方法,其特征在于,步骤(3)中,所述反应是在氩气流动气氛下进行,氩气流动气氛的流量为100~300sccm。
10.根据权利要求1所述的方法,其特征在于,步骤(3)中,所述反应的温度为1400~1600℃,时间为1~3h。
CN201810105869.0A 2018-01-31 2018-01-31 一种在超高温陶瓷粉体表面原位合成SiC纳米线的方法 Pending CN108373333A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810105869.0A CN108373333A (zh) 2018-01-31 2018-01-31 一种在超高温陶瓷粉体表面原位合成SiC纳米线的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810105869.0A CN108373333A (zh) 2018-01-31 2018-01-31 一种在超高温陶瓷粉体表面原位合成SiC纳米线的方法

Publications (1)

Publication Number Publication Date
CN108373333A true CN108373333A (zh) 2018-08-07

Family

ID=63017189

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810105869.0A Pending CN108373333A (zh) 2018-01-31 2018-01-31 一种在超高温陶瓷粉体表面原位合成SiC纳米线的方法

Country Status (1)

Country Link
CN (1) CN108373333A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115322012A (zh) * 2022-07-05 2022-11-11 安徽工程大学 一种超高温陶瓷粉体表面原位生长SiC纳米线的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103922745A (zh) * 2014-04-03 2014-07-16 西北工业大学 SiC纳米线增韧ZrB2-SiC高温抗烧蚀复合涂层及其制备方法
CN107032816A (zh) * 2017-05-10 2017-08-11 西北工业大学 一种碳化硅纳米线增强C/C‑SiC‑ZrB2陶瓷基复合材料的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103922745A (zh) * 2014-04-03 2014-07-16 西北工业大学 SiC纳米线增韧ZrB2-SiC高温抗烧蚀复合涂层及其制备方法
CN107032816A (zh) * 2017-05-10 2017-08-11 西北工业大学 一种碳化硅纳米线增强C/C‑SiC‑ZrB2陶瓷基复合材料的制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
(美)威廉·法伦霍尔茨(WILLIAM G.FAHRENHOLTZ)著: "《超高温陶瓷 应用于极端环境的材料》", 30 April 2016, 北京:国防工业出版社 *
YANHUI CHU 等: "Adsorbed O2 on the Graphite-Induced Growth of Ultra-Long Single-", 《JOURNAL OF THE AMERICAN CERAMIC SOCIETY》 *
YANHUI CHU 等: "In situ synthesis of homogeneously dispersed SiC nanowires in reaction", 《CERAMICS INTERNATIONAL》 *
周瑞发等: "《高温结构材料》", 30 April 2006, 北京:国防工业出版社 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115322012A (zh) * 2022-07-05 2022-11-11 安徽工程大学 一种超高温陶瓷粉体表面原位生长SiC纳米线的方法

Similar Documents

Publication Publication Date Title
CN100430516C (zh) 碳/碳复合材料表面碳化硅纳米线的制备方法
CN103588216B (zh) 一种硼/碳热还原法低温制备硼化锆粉体的方法
CN107555470B (zh) 一种两步法合成锌镉硫固溶体材料的方法
CN101348242A (zh) 镁热还原制备氮化硼纳米管的方法
CN110407213B (zh) 一种(Ta, Nb, Ti, V)C高熵碳化物纳米粉体及其制备方法
CN109796209A (zh) 一种(Ti, Zr, Hf, Ta, Nb)B2高熵陶瓷粉体及其制备方法
CN109437203A (zh) 一种高纯一维SiC纳米材料的制备方法
CN109851367A (zh) 一种棒状(Zr,Hf,Ta,Nb)B2高熵纳米粉体及其制备方法
CN102583398B (zh) 一种制备二氧化硅包覆碳纳米管及二氧化硅纳米管的方法
CN105601316A (zh) 一种碳化硅气凝胶及其制备方法
CN110104652A (zh) 一种纳米硅粉的球磨制备方法
CN108585887A (zh) 一种TixZr1-xB2超高温固溶体陶瓷粉体的制备方法
CN110204341A (zh) 一种(Hf,Ta,Nb,Ti)B2高熵陶瓷粉体及其制备方法
CN107265416A (zh) 热解氮化硼材料的制备方法
CN102701207B (zh) 一种制备Al掺杂的碳化硅纳米线的方法
CN102491332B (zh) 一种在SiC陶瓷表面制备碳化硅纳米带的方法
Guo et al. Preparation of SiC nanowires with fins by chemical vapor deposition
CN102557642B (zh) 利用含锆有机物前驱体合成硼化锆粉体材料的制备方法
CN108373333A (zh) 一种在超高温陶瓷粉体表面原位合成SiC纳米线的方法
CN107602154A (zh) 一种珠串状SiC/SiO2异质结构及其合成方法
CN105645422B (zh) 一种液相法制备球形超细硼化锆粉体的工艺
CN113666754A (zh) 一种高熵硼化物纳米粉体及其制备方法和应用
CN104445200B (zh) 一种制备超长碳化硅纳米线的方法
CN108584973A (zh) 一种六方片状硼化锆粉体的制备方法
CN103553093B (zh) 气流混合反应合成氧氮化铝粉体的方法及装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20180807