CN108373333A - 一种在超高温陶瓷粉体表面原位合成SiC纳米线的方法 - Google Patents
一种在超高温陶瓷粉体表面原位合成SiC纳米线的方法 Download PDFInfo
- Publication number
- CN108373333A CN108373333A CN201810105869.0A CN201810105869A CN108373333A CN 108373333 A CN108373333 A CN 108373333A CN 201810105869 A CN201810105869 A CN 201810105869A CN 108373333 A CN108373333 A CN 108373333A
- Authority
- CN
- China
- Prior art keywords
- powder
- sic
- zrb
- method described
- ultra
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/62645—Thermal treatment of powders or mixtures thereof other than sintering
- C04B35/62675—Thermal treatment of powders or mixtures thereof other than sintering characterised by the treatment temperature
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/58—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
- C04B35/5805—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides
- C04B35/58064—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides
- C04B35/58078—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides based on zirconium or hafnium borides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/38—Non-oxide ceramic constituents or additives
- C04B2235/3817—Carbides
- C04B2235/3826—Silicon carbides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/42—Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
- C04B2235/428—Silicon
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6567—Treatment time
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/658—Atmosphere during thermal treatment
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Inorganic Chemistry (AREA)
- Carbon And Carbon Compounds (AREA)
- Ceramic Products (AREA)
Abstract
本发明公开了一种在超高温陶瓷粉体表面原位合成SiC纳米线的方法。该方法包括步骤:(1)将Si粉、SiC粉和ZrB2粉置于聚四氟乙烯球磨罐中,再加入无水乙醇,球磨,形成混合均匀的悬浊液;(2)将得到的悬浊液旋转蒸发、干燥、研磨,得到前驱体粉末;(3)将前驱体粉末置于管式炉中,加热进行反应,冷却至室温,在超高温陶瓷粉体表面原位合成出SiC纳米线。本发明方法生产成本低,工艺简单,制备周期短,合成SiC纳米线的产率和纯度高,且合成的SiC纳米线均匀分布在超高温陶瓷粉体表面,有利于大规模工业化生产;同时,通过调整SiC的含量以及制备温度、时间,能有效控制合成SiC纳米线的形貌和尺寸。
Description
技术领域
本发明涉及SiC纳米线制备技术领域,具体涉及一种在超高温陶瓷粉体表面原位合成SiC纳米线的方法。
背景技术
一维SiC纳米线不仅具有优良的力学特性,如高硬度、高强度、高弹性模量等,而且具有优异的物理和化学性质,如高熔点、低密度、低热膨胀系数、耐高温以及耐腐蚀等,是一种非常理想的先进复合材料的强韧化相,特别是对于应用在极端环境下(如超高温、有氧环境)的先进结构复合材料而言。近年来,SiC纳米线已被作为强韧化相应用在SiC陶瓷基复合材料及碳/碳复合材料超高温防氧化抗烧蚀陶瓷涂层中,研究结果表明,SiC纳米线的引入显著地提高了材料的断裂韧性和弯曲强度。然而,SiC纳米线在超高温结构陶瓷材料中作为强韧化相的应用至今未见报道,这主要是因为如何在超高温陶瓷粉体表面原位合成出均匀的、高纯的SiC纳米线的问题难以解决。
Zhong等研究了一种在ZrB2、SiC粉体中制备SiC纳米线的方法,该方法以Ni(NO3)2·6H2O作为催化剂前驱体,先用湿法球磨使其附着在ZrB2、SiC混合粉体的表面,再利用后续的加热过程使其分解来作为SiC纳米线生长的催化剂(Zhong Z,Yan L,Liu L,etal.Fabrication of modified ultra high-temperature ceramic hybrid powdersusing in situ grown SiC nanowires.Ceramics International,2017,43(3):3462-3464.)。该方法很容易导致催化剂分散不均匀从而引起合成的SiC纳米线分布不均匀;另外,该方法采用浸渍法引入含Zr有机前驱体和含B有机前驱体混合而成的ZrB2有机前驱体作为合成SiC纳米线的碳源,制备流程繁复,SiC纳米线的合成反应也复杂且不可控。最后获得的SiC纳米线纯度较低,含有Ni和ZrO2等杂质。上述缺点严重限制了该材料的广泛应用。
发明内容
本发明的目的在于针对现有技术的不足,提供了一种在超高温陶瓷粉体表面原位合成SiC纳米线的方法。该方法以Si粉、SiC粉和ZrB2粉为原料,无需引入催化剂,在氩气中,在ZrB2粉体以及SiC粉体表面一次性制备高纯的SiC纳米线,制备方法简单、成本低、效率高,且制备的高纯SiC纳米线分布均匀,通过调整制备工艺可以对纳米线的形貌和尺寸进行控制。
本发明的目的通过如下技术方案实现。
一种在超高温陶瓷粉体表面原位合成SiC纳米线的方法,包括如下步骤:
(1)将Si粉、SiC粉和ZrB2粉置于聚四氟乙烯球磨罐中,再加入无水乙醇,球磨,形成混合均匀的悬浊液;
(2)将得到的悬浊液旋转蒸发、干燥、研磨,得到前驱体粉末;
(3)将前驱体粉末置于管式炉中,加热进行反应,冷却至室温,在超高温陶瓷粉体表面原位合成出SiC纳米线。
进一步地,步骤(1)中,按质量百分比计,Si粉、SiC粉和ZrB2粉的混合物料中,各原料占比为:Si粉10~30%,SiC粉20~40%,ZrB2粉70~30%。
进一步地,步骤(1)中,所述Si粉的纯度为99%,粒度为300目。
进一步地,步骤(1)中,所述SiC粉的纯度为99%,粒度为0.5~0.7μm。
进一步地,步骤(1)中,所述ZrB2粉的纯度为分析纯,粒度为0.5~1.5μm。
进一步地,步骤(1)中,所述无水乙醇与Si粉、SiC粉和ZrB2粉的混合物料的液料比为3~3.5∶1mL/g。
进一步地,步骤(1)中,所述球磨过程中,磨球与Si粉、SiC粉和ZrB2粉的混合物料的体积比为2∶1。
进一步地,步骤(1)中,所述球磨的转速为500r/min,时间为1~3h。
进一步地,步骤(2)中,所述旋转蒸发是在70℃旋转蒸发1~3h。
进一步地,步骤(2)中,所述干燥是在70~90℃干燥12~24h。
进一步地,步骤(3)中,所述反应是在氩气流动气氛下进行,氩气流动气氛的流量为100~300sccm。
进一步地,步骤(3)中,所述反应的温度为1400~1600℃,时间为1~3h。
进一步地,步骤(3)中,所述冷却是自然冷却。
与现有技术相比,本发明具有如下优点和有益效果:
(1)本发明方法生产成本低,工艺简单,制备周期短,合成SiC纳米线的产率和纯度高,且合成的SiC纳米线均匀分布在超高温陶瓷粉体表面,有利于大规模工业化生产;
(2)本发明方法通过调整SiC的含量以及制备温度、时间,有效控制合成SiC纳米线的形貌和尺寸。
附图说明
图1为实施例1中合成的SiC纳米线的SEM图;
图2为实施例2中合成的SiC纳米线的SEM图;
图3为实施例3中合成的SiC纳米线的SEM图。
具体实施方式
以下结合具体实施例及附图对本发明技术方案作进一步详细描述,但本发明的保护范围及实施方式不限于此。
本发明具体实施例中,采用的Si粉的纯度为99%,粒度为300目;采用的SiC粉的纯度为99%,粒度为0.5~0.7μm;采用的ZrB2粉的纯度为分析纯,粒度为0.5~1.5μm。
实施例1
在超高温陶瓷粉体表面原位合成SiC纳米线,具体步骤如下:
(1)分别称量1g Si粉、2g SiC粉和7g ZrB2粉,倒入聚四氟乙烯球磨罐中,取与Si粉、SiC粉和ZrB2粉的混合物料体积比为2∶1的玛瑙球放入球磨罐中,再倒入30ml无水乙醇,用行星式球磨机,以500r/min的转速球磨1h,得到混合均匀的悬浊液;
(2)将得到的悬浊液转移至旋蒸仪中,在70℃下旋蒸1h,得到半干燥的混合均匀的粉体,再将半干燥的粉体置于干燥箱在70℃下干燥12h,研磨后得到前驱体粉末;
(3)将前驱体粉末均匀平铺在铺有石墨纸内衬的刚玉方舟内,置于管式炉中;抽真空30min后使真空度达到0.09MPa,保真空30min,观察真空表指示是否变化,如无变化,说明系统密封完好,通氩气至常压,此过程重复三次;之后将炉温升至1400℃,升温速率为5℃/min,然后保温1h,整个过程中通流量为100sccm的氩气保护;
(4)关闭电源,自然冷却至室温,最后在SiC和ZrB2的混合粉体表面合成出SiC纳米线。
对合成的纳米复合粉体进行SEM观察,合成的纳米复合粉体的SEM图如图1所示,由图1可知,SiC、ZrB2混合粉体表面存在少量的、均匀分布的SiC纳米线,合成的SiC纳米线的直径为50~200nm,且纯度高、无其他杂质存在。
实施例2
在超高温陶瓷粉体表面原位合成SiC纳米线,具体步骤如下:
(1)分别称量3g Si粉、4g SiC粉和3g ZrB2粉,倒入球磨罐中,取与Si粉、SiC粉和ZrB2粉的混合物料体积比为2∶1的玛瑙球放入球磨罐中,倒入32ml无水乙醇,用行星式球磨机,以500r/min的转速球磨2h,得到混合均匀的悬浊液;
(2)将得到的悬浊液转移至旋蒸仪中,在70℃下旋蒸2h,得到半干燥的混合均匀的粉体,再将半干燥的粉体置于干燥箱在80℃下干燥18h,研磨后得到前驱体粉末;
(3)将前驱体粉末均匀平铺在铺有石墨纸内衬的刚玉方舟内,置于管式炉中;抽真空30min后使真空度达到0.09MPa,保真空30min,观察真空表指示是否变化,如无变化,说明系统密封完好,通氩气至常压,此过程重复三次;之后将炉温升至1500℃,升温速率为5℃/min,然后保温2h,整个过程中通流量为200sccm的氩气保护;
(4)关闭电源,自然冷却至室温,最后在SiC、ZrB2混合粉体表面合成出SiC纳米线。
对合成的纳米复合粉体进行SEM观察,合成的纳米复合粉体的SEM图如图2所示,由图2可知,SiC和ZrB2的混合粉体表面存在大量的、均匀分布的SiC纳米线,合成的SiC纳米线的直径为50~200nm,且纯度高、无其他杂质存在。
实施例3
在超高温陶瓷粉体表面原位合成SiC纳米线,具体步骤如下:
(1)分别称量2g Si粉、3g SiC粉和5g ZrB2粉,倒入球磨罐中,取与Si粉、SiC粉和ZrB2粉的混合物料体积比为2∶1的玛瑙球放入球磨罐中,倒入35ml无水乙醇,用行星式球磨机,以500r/min的转速球磨3h,得到混合均匀的悬浊液;
(2)将得到的悬浊液转移至旋蒸仪中,在70℃下旋蒸3h,得到半干燥的混合均匀的粉体,再将半干燥的粉体置于干燥箱在90℃下干燥24h,研磨后得到前驱体粉末;
(3)将前驱体粉末均匀平铺在铺有石墨纸内衬的刚玉方舟内,置于管式炉中;抽真空30min后使真空度达到0.09MPa,保真空30min,观察真空表指示是否变化,如无变化,说明系统密封完好,通氩气至常压,此过程重复三次;之后将炉温升至1600℃,升温速率为5℃/min,然后保温3h,整个过程中通流量为300sccm的氩气保护;
(4)随后关闭电源,自然冷却至室温,最后在SiC、ZrB2混合粉体表面合成出SiC纳米线。
对合成的纳米复合粉体进行SEM观察,合成的纳米复合粉体的SEM图如图3所示,由图3可知,SiC和ZrB2的混合粉体表面含有少量的、均匀分布的SiC纳米线,合成的SiC纳米线的直径为50~200nm,且纯度高、无其他杂质存在。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其它的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。
Claims (10)
1.一种在超高温陶瓷粉体表面原位合成SiC纳米线的方法,其特征在于,包括如下步骤:
(1)将Si粉、SiC粉和ZrB2粉置于聚四氟乙烯球磨罐中,再加入无水乙醇,球磨,形成混合均匀的悬浊液;
(2)将得到的悬浊液旋转蒸发、干燥、研磨,得到前驱体粉末;
(3)将前驱体粉末置于管式炉中,加热进行反应,冷却至室温,在超高温陶瓷粉体表面原位合成出SiC纳米线。
2.根据权利要求1所述的方法,其特征在于,步骤(1)中,按质量百分比计,Si粉、SiC粉和ZrB2粉的混合物料中,各原料占比为:Si粉10~30%,SiC粉20~40%,ZrB2粉70~30%。
3.根据权利要求1所述的方法,其特征在于,步骤(1)中,所述Si粉的纯度为99%,粒度为300目;所述SiC粉的纯度为99%,粒度为0.5~0.7μm;所述ZrB2粉的纯度为分析纯,粒度为0.5~1.5μm。
4.根据权利要求1所述的方法,其特征在于,步骤(1)中,所述无水乙醇与Si粉、SiC粉和ZrB2粉的混合物料的液料比为3~3.5∶1mL/g。
5.根据权利要求1所述的方法,其特征在于,步骤(1)中,所述球磨过程中,磨球与Si粉、SiC粉和ZrB2粉的混合物料的体积比为2∶1。
6.根据权利要求1所述的方法,其特征在于,步骤(1)中,所述球磨的转速为500r/min,时间为1~3h。
7.根据权利要求1所述的方法,其特征在于,步骤(2)中,所述旋转蒸发是在70℃旋转蒸发1~3h。
8.根据权利要求1所述的方法,其特征在于,步骤(2)中,所述干燥是在70~90℃干燥12~24h。
9.根据权利要求1所述的方法,其特征在于,步骤(3)中,所述反应是在氩气流动气氛下进行,氩气流动气氛的流量为100~300sccm。
10.根据权利要求1所述的方法,其特征在于,步骤(3)中,所述反应的温度为1400~1600℃,时间为1~3h。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810105869.0A CN108373333A (zh) | 2018-01-31 | 2018-01-31 | 一种在超高温陶瓷粉体表面原位合成SiC纳米线的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810105869.0A CN108373333A (zh) | 2018-01-31 | 2018-01-31 | 一种在超高温陶瓷粉体表面原位合成SiC纳米线的方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN108373333A true CN108373333A (zh) | 2018-08-07 |
Family
ID=63017189
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810105869.0A Pending CN108373333A (zh) | 2018-01-31 | 2018-01-31 | 一种在超高温陶瓷粉体表面原位合成SiC纳米线的方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108373333A (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115322012A (zh) * | 2022-07-05 | 2022-11-11 | 安徽工程大学 | 一种超高温陶瓷粉体表面原位生长SiC纳米线的方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103922745A (zh) * | 2014-04-03 | 2014-07-16 | 西北工业大学 | SiC纳米线增韧ZrB2-SiC高温抗烧蚀复合涂层及其制备方法 |
CN107032816A (zh) * | 2017-05-10 | 2017-08-11 | 西北工业大学 | 一种碳化硅纳米线增强C/C‑SiC‑ZrB2陶瓷基复合材料的制备方法 |
-
2018
- 2018-01-31 CN CN201810105869.0A patent/CN108373333A/zh active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103922745A (zh) * | 2014-04-03 | 2014-07-16 | 西北工业大学 | SiC纳米线增韧ZrB2-SiC高温抗烧蚀复合涂层及其制备方法 |
CN107032816A (zh) * | 2017-05-10 | 2017-08-11 | 西北工业大学 | 一种碳化硅纳米线增强C/C‑SiC‑ZrB2陶瓷基复合材料的制备方法 |
Non-Patent Citations (4)
Title |
---|
(美)威廉·法伦霍尔茨(WILLIAM G.FAHRENHOLTZ)著: "《超高温陶瓷 应用于极端环境的材料》", 30 April 2016, 北京:国防工业出版社 * |
YANHUI CHU 等: "Adsorbed O2 on the Graphite-Induced Growth of Ultra-Long Single-", 《JOURNAL OF THE AMERICAN CERAMIC SOCIETY》 * |
YANHUI CHU 等: "In situ synthesis of homogeneously dispersed SiC nanowires in reaction", 《CERAMICS INTERNATIONAL》 * |
周瑞发等: "《高温结构材料》", 30 April 2006, 北京:国防工业出版社 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115322012A (zh) * | 2022-07-05 | 2022-11-11 | 安徽工程大学 | 一种超高温陶瓷粉体表面原位生长SiC纳米线的方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100430516C (zh) | 碳/碳复合材料表面碳化硅纳米线的制备方法 | |
CN103588216B (zh) | 一种硼/碳热还原法低温制备硼化锆粉体的方法 | |
CN107555470B (zh) | 一种两步法合成锌镉硫固溶体材料的方法 | |
CN101348242A (zh) | 镁热还原制备氮化硼纳米管的方法 | |
CN110407213B (zh) | 一种(Ta, Nb, Ti, V)C高熵碳化物纳米粉体及其制备方法 | |
CN109796209A (zh) | 一种(Ti, Zr, Hf, Ta, Nb)B2高熵陶瓷粉体及其制备方法 | |
CN109437203A (zh) | 一种高纯一维SiC纳米材料的制备方法 | |
CN109851367A (zh) | 一种棒状(Zr,Hf,Ta,Nb)B2高熵纳米粉体及其制备方法 | |
CN102583398B (zh) | 一种制备二氧化硅包覆碳纳米管及二氧化硅纳米管的方法 | |
CN105601316A (zh) | 一种碳化硅气凝胶及其制备方法 | |
CN110104652A (zh) | 一种纳米硅粉的球磨制备方法 | |
CN108585887A (zh) | 一种TixZr1-xB2超高温固溶体陶瓷粉体的制备方法 | |
CN110204341A (zh) | 一种(Hf,Ta,Nb,Ti)B2高熵陶瓷粉体及其制备方法 | |
CN107265416A (zh) | 热解氮化硼材料的制备方法 | |
CN102701207B (zh) | 一种制备Al掺杂的碳化硅纳米线的方法 | |
CN102491332B (zh) | 一种在SiC陶瓷表面制备碳化硅纳米带的方法 | |
Guo et al. | Preparation of SiC nanowires with fins by chemical vapor deposition | |
CN102557642B (zh) | 利用含锆有机物前驱体合成硼化锆粉体材料的制备方法 | |
CN108373333A (zh) | 一种在超高温陶瓷粉体表面原位合成SiC纳米线的方法 | |
CN107602154A (zh) | 一种珠串状SiC/SiO2异质结构及其合成方法 | |
CN105645422B (zh) | 一种液相法制备球形超细硼化锆粉体的工艺 | |
CN113666754A (zh) | 一种高熵硼化物纳米粉体及其制备方法和应用 | |
CN104445200B (zh) | 一种制备超长碳化硅纳米线的方法 | |
CN108584973A (zh) | 一种六方片状硼化锆粉体的制备方法 | |
CN103553093B (zh) | 气流混合反应合成氧氮化铝粉体的方法及装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20180807 |