CN108369154B - 鉴定光纤带宽和选择光纤的系统、方法和介质 - Google Patents

鉴定光纤带宽和选择光纤的系统、方法和介质 Download PDF

Info

Publication number
CN108369154B
CN108369154B CN201580085434.9A CN201580085434A CN108369154B CN 108369154 B CN108369154 B CN 108369154B CN 201580085434 A CN201580085434 A CN 201580085434A CN 108369154 B CN108369154 B CN 108369154B
Authority
CN
China
Prior art keywords
wavelength
multimode optical
data
optical fiber
bandwidth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201580085434.9A
Other languages
English (en)
Other versions
CN108369154A (zh
Inventor
D·莫林
K·德容
M·比戈
P·斯拉德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Drake Communication Technology
Original Assignee
Drake Communication Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Drake Communication Technology filed Critical Drake Communication Technology
Publication of CN108369154A publication Critical patent/CN108369154A/zh
Application granted granted Critical
Publication of CN108369154B publication Critical patent/CN108369154B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • G01M11/33Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter being disposed at one fibre or waveguide end-face, and a light receiver at the other end-face
    • G01M11/338Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter being disposed at one fibre or waveguide end-face, and a light receiver at the other end-face by measuring dispersion other than PMD, e.g. chromatic dispersion
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • G01M11/33Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter being disposed at one fibre or waveguide end-face, and a light receiver at the other end-face
    • G01M11/335Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter being disposed at one fibre or waveguide end-face, and a light receiver at the other end-face using two or more input wavelengths
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/028Optical fibres with cladding with or without a coating with core or cladding having graded refractive index
    • G02B6/0288Multimode fibre, e.g. graded index core for compensating modal dispersion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/077Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using a supervisory or additional signal
    • H04B10/0775Performance monitoring and measurement of transmission parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2581Multimode transmission

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Dispersion Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Optical Communication System (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)

Abstract

本发明涉及用于进行以下步骤的方法:使用在第二波长λ2处测量到的该光纤的DMD数据来鉴定多模光纤在第一波长λ1处的有效带宽。根据第二波长λ2处的DMD数据来推导表示该光纤的径向偏移延迟、径向偏移带宽和相对径向耦合功率的数据。对第二波长λ2处的ROD数据和ROB数据进行变换,以获得相应的第一波长λ1处的ROD数据和ROB数据。使用第一波长λ1处的ROD数据和ROB数据以及第二波长λ2处的PDMD数据来计算该光纤在第二波长λ2处的有效带宽。

Description

鉴定光纤带宽和选择光纤的系统、方法和介质
技术领域
本发明涉及光纤传输领域,并且更具体地,涉及(相对)较长距离和高比特率的系统中所使用的多模光纤。更具体地,本发明涉及用于在宽波长范围内鉴定多模光纤的性能的方法。
背景技术
多模光纤从光通信行业一开始就不断演进,直到当前正经历的以太网业务爆发。通过VCSEL技术实现的高速多模光纤(例如OM4光纤,其是由国际标准化组织在ISO/IEC11801文档以及TIA/EIA492AAAD标准中标准化的激光优化的高带宽50μm多模光纤)等)已被证明是高数据速率通信的首选媒介,其提供可靠且经济高效的10~100Gbps的解决方案。宽带(WB)多模光纤与用于粗波分复用(CWDM)的较长波长的VCSEL的组合是用于满足未来需求的增长的值得考虑的关注选项。宽带多模光纤在这里并且在全文中意味着具有大于20nm的工作波长范围(例如,包括在850nm和950nm之间或者更高的工作波长范围)的多模光纤。
然而,直到现在为止,OM4光纤的高模带宽仅在窄波长范围(通常为850nm+/-2nm或者850nm+/-10nm)内实现。在更广泛的波长范围内满足OM4性能要求的宽带(WB)多模光纤的可用性是下一代多模系统要克服的挑战。
OM4光纤性能通常通过在给定单一波长处的有效模式带宽(EMB)评估来定义。例如,OM4光纤在850nm波长处应当展现出大于4700MHz-km的EMB。实现如此高的EMB值需要对多模光纤的折射率分布进行非常准确的控制。到目前为止,传统的制造工艺不能确保如此高的EMB,并且通常很难根据对芯棒或芯条的折射率分布测量来准确预测EMB值,特别是在预期高EMB(通常大于2000MHz-km)的情况下这意味着光纤折射率分布接近最佳分布。事实上,EMB是直接在光纤上评估的。
为了使模式色散最小化,OM4光纤通常包括呈现如下折射率的芯,其中该折射率从光纤中心向光纤中心与包层的接合部逐渐减小。通常,如下所述,通过已知为“α分布”的关系来给出折射率分布:
Figure GDA0002354886760000021
其中r≤a
其中:
n0是光纤的光轴上的折射率;
r是相对于光轴的距离;
a是光纤的芯的半径;
Δ是表示光纤的芯和包层之间的折射率差的无量纲参数;以及
α是表示折射率分布的一般形状的无量纲参数。
当光信号在具有渐变折射率的这种芯中传播时,不同的模式经历不同的传播介质,这对其传播速度产生不同的影响。通过调整参数α的值,由此从理论上可以获得针对所有模式实际上相等的一组速度,并且由此获得针对特定波长的减小的模间色散。
因而,可以调整用于支配折射率渐变的芯的形状的Alpha参数(α),以使OM4多模光纤的模式带宽在850nm(这是高速数据通信的典型工作波长)处最大。如Molin等人在文献“WideBand OM4 Multi-Mode Fiber for Next-Generation 400Gbps DataCommunications”(在ECOC 2014中)中所示,通常选择给定的α参数值以提供最佳的EMB。
通过对由于模式色散而引起的延迟(已知为“色散模式延迟(Dispersion ModalDelay)图形表示”,通过首字母缩略为DMD图形表示)的测量来评估有效模式带宽(EMB)。DMD测量在于记录多模光纤针对用于对芯进行径向扫描的单模注入的脉冲响应。这提供了被称为DMD图的多模光纤的模式色散的准确绘图,然后对该DMD图进行后处理以评估光纤在给定波长处可以提供的最小EMB。DMD测量过程是标准化(IEC 60793-1-49和FOTP-220)的主题,并且也在电信工业协会的文档编号TIA-455-220-A中被指定。各DMD度量或DMD值以皮秒/米(ps/m)为单位表示,使得总延迟由光纤长度归一化。这在考虑到以光纤长度归一化后的偏移注入的集合的情况下确定了穿过光纤的最快脉冲和最慢脉冲之间的延迟。各DMD度量或DMD值基本上评估模式色散。低DMD值,即通过DMD测量的低模式色散通常导致更高的EMB。
基本上,通过在光纤的中心注入具有给定波长的光脉冲并通过测量给定光纤长度L之后的脉冲延迟来获得DMD图形表示,其中给定波长的光脉冲的引入具有径向偏移以覆盖多模光纤的整个芯。以不同的径向偏移值如此重复各测量,以提供所检查的多模光纤的模式色散的绘图。然后,对这些DMD测量结果进行后处理,以确定光纤的有效传递函数,由此可以确定EMB的值。
目前,所有多模光纤制造商在其整个生产中仅在单一波长处进行DMD测量和EMB评估,该单一波长针对OM4认证通常为850nm+/-2nm、以及针对OM3认证为850nm+/-10nm。
随着新型多模光纤应用的出现,要求在宽操作窗口内实现高EMB,多模光纤制造商的主要考虑之一是能够在宽波长范围(例如在850nm和950nm之间或者更高的波长范围)内容易评估EMB的能力。
使用上述经典测量过程(包括一系列在单一波长处的DMD测量和EMB评估)来在波长范围内(即多个波长处)评估光纤的EMB,这将需要在充分分散在关注的波长范围内的多个波长处进行若干测量过程。然而,在多个波长处进行不同的各DMD测量来鉴定光纤的EMB,这表现出多个缺陷:
-首先,这将暗示在制造商的工厂建造新的测试台,其中各测试台专用于以给定波长进行发射的光源。这将表示复杂且昂贵的操作。
-其次,这将大大增加所制造的多模光纤的测量时间。因而,持续测量多模光纤的整个生产将大大增加光纤的生产成本。可选地,制造商可以决定仅测量其生产的一部分,以将生产成本维持在适当的水平,但这会导致出售的光纤的质量下降。
一个关注的选择是将这些测量限制于最有可能实现这种宽带EMB要求的光纤。实际上,这将使得能够缩短耗费在测量低带宽光纤上的浪费掉的测量时间。
为此,在“Expansion of the EMBc Calculation to a Complete FiberBandwidth Characterization”(Proc.58th Internat.Wire&Cable Sumposium(IWCS’09),Charlotte,NC,USA,2009年)中,Andreas Huth和Harald Hein公开用于仅使用850nm处的DMD测量来预测1300nm处的光纤的过满注入带宽(OFLBW)的技术。这种技术依赖于DMD图的变换。实际上,作者观察到了不同波长处的光纤的DMD测量结果之间的关系,并且从这些观察推导出了采用偏移的形式的变换函数,从而使得能够在得知850nm处光纤的DMD图的情况下预测1300nm处光纤的DMD图。
发明内容
根据本发明的实施例,一种用于鉴定多模光纤在第一波长λ1处的有效带宽的方法,所述方法包括以下步骤:
使用在第二波长λ2处针对所述多模光纤执行的色散模式延迟即DMD的测量来获得DMD数据,其中所述DMD数据包括以不同的径向偏移值r所记录的多个迹线,其中所述径向偏移值r从所述多模光纤的轴即r=0起直到径向偏移值r=a为止,其中a是所述多模光纤的芯半径,
其特征在于,所述方法还包括以下步骤:
根据所述第二波长λ2处的所述DMD数据,确定:
作为所述径向偏移值r的函数的、表示所述多模光纤的径向偏移延迟的被称为ROD数据的数据,其中,0≤r≤a,
作为所述径向偏移值r的函数的、表示所述多模光纤的径向偏移带宽的被称为ROB数据的数据,其中,0≤r≤a,以及
作为所述径向偏移值r的函数的、表示所述多模光纤的相对径向耦合功率的被称为
Figure GDA0002354886760000051
数据的数据,其中,0≤r≤a;
对所述第二波长λ2处的ROD数据和ROB数据进行变换,以获得相应的所述第一波长λ1处的ROD数据和ROB数据;以及
计算所述多模光纤在所述第一波长λ1处的有效带宽,所述计算包括使用所述第一波长λ1处的ROD数据和ROB数据以及所述第二波长λ2处的
Figure GDA0002354886760000052
数据来计算传递函数。
因而,本发明依赖于用于鉴定在没有对光纤执行测量的波长处多模光纤的有效带宽的新的创造性方法。实际上,本发明使得能够仅基于在第二波长λ2处获得的DMD测量数据来评估在第一波长λ1处光纤的有效带宽。因而,由于不再需要针对所制造的所有多模光纤在第一波长λ1处进行DMD测量,因此这有助于大幅节省光纤制造商的测量时间。
制造商可以使用所计算出的在第一波长λ1处的光纤的有效带宽来选择最有可能在λ1处表现出关注的特征和性能的光纤,并且仅针对这些所选择的光纤在该第一波长处执行实际DMD测量(或者任何其它性能测量)。
根据本发明的方法与由于需要太多时间和资源因而大部分情况下几乎无法实现的实际测量相比更快且更便宜。该方法不限于任何波长范围,也不限于任何特殊类型的多模光纤。该方法实际上非常适合50μm渐变折射率的多模光纤,但例如也可应用于10μm~50μm的较小芯直径或者50μm~100μm的较大芯直径。该方法也不限于渐变折射率的多模光纤,而且特别适合在关注的操作波长处维持多于一个模式的任何光纤。
由于对在单个波长(例如,850nm)处所获得的测量结果进行了适当的后处理以在较宽的谱(例如,850~950nm)内确保边缘模式带宽,因此本发明的方法使得能够在将实际测量过程局限于窄波长范围(例如,850+/-2nm)的同时,鉴定多模光纤在宽波长范围(例如,850~950nm)内的有效模式带宽(EMB)。
根据实施例,对所述第二波长λ2处的ROD数据进行变换以获得相应的所述第一波长λ1处的ROD数据包括应用以下的线性函数:
Figure GDA0002354886760000061
其中,p1,r和p2,r是标量。
实验结果实际已表明,第一波长处的ROD数据和第二波长处的ROD数据之间的关系可以通过线性关系来适度地近似,并且允许推导系数p1,r和p2,r的值。通常,
Figure GDA0002354886760000062
具有与λ12相同的符号。
根据实施例,对所述第二波长λ2处的ROB数据进行变换以获得相应的所述第一波长λ1处的ROB数据包括应用以下的公式:
Figure GDA0002354886760000063
其中,p00,r、p10,r、p01,r、p11,r和p02,r是标量。
ROB变换不如ROD变换直接。然而,本发明人评估得出,λ1处的ROB(r)数据可以联系到λ2处的ROB(r)数据以及λ2处的ROD(r)数据相对于半径的导数。与现有技术的方法相比,这种使ROB和ROD相联系的关系使得能够实现对光纤性能评估的更大准确度。
根据另一实施例,对于r>1μm,
Figure GDA0002354886760000064
并且对于r<1μm,
Figure GDA0002354886760000065
为了简单,这种近似是有用的。
根据实施例,计算所述多模光纤在所述第一波长λ1处的有效带宽包括计算传递函数
Figure GDA0002354886760000071
其中:
Figure GDA0002354886760000072
其中:
Figure GDA0002354886760000073
其中:
W(r)是权重函数,其中
Figure GDA0002354886760000074
并且对于任何r,W(r)≥0,以及
L是所述多模光纤的长度。
根据实施例,计算所述多模光纤在所述第一波长λ1处的有效带宽包括计算传递函数
Figure GDA0002354886760000075
其中:
Figure GDA0002354886760000076
其中:
Figure GDA0002354886760000077
其中:
P(r)是表示源在所述多模光纤的输出处的作为单模光纤的径向偏移值r的函数的输出功率的函数,其中
Figure GDA0002354886760000078
并且对于任何r,P(r)≥0,
L是所述多模光纤的长度,以及
OMBc(r)是OMBc权重函数,其中OMBc代表计算出的过满模式带宽。
OMBc权重函数是由Abhijit Sengupta的“Calculated Modal Bandwidths of anOM4 Fiber and the Theoretical Challenges”(International Wire&Cable Symposium,Proceedings of the 58th IWCS/IICIT,第24-29页)中公开的权重函数。
P(r)是VCSEL多模横向源的权重函数。实际上,所计算出的有效带宽事实是包括光源以及一个或多个多模光纤的多模光纤链路的有效带宽。诸如源的输出功率P(r)等的一些源参数影响链路的有效带宽的计算,并且必须在上述公式中考虑到。可以在以本申请人的专利文献WO2015056044中找到与该源参数有关的更多信息。
根据另一实施例,所述多模光纤的有效带宽是所述传递函数
Figure GDA0002354886760000081
的-3dB带宽(根据以上两个公式中的任意公式)。当然,可以使用根据
Figure GDA0002354886760000082
来推导EB的其它方式,例如通过使用-1.5dB的阈值并将所获得的带宽乘以
Figure GDA0002354886760000083
、或者通过使用-6dB的阈值的方式。
根据又一实施例,所述第一波长λ1=950nm,并且所述第二波长λ2=850nm。实际上,如今,大多数多模传输都是在850nm处执行的,而未来几年波分复用(WDM)的出现将要求多模光纤在950nm处也表现出良好性能。然而,本发明不限于这种具体波长,并且还可应用于在已知光纤在850nm处的性能的情况下评估光纤在1050nm处的性能、或者在已知光纤在950nm处的性能的情况下评估光纤在1050nm处的性能,或者更一般地,在已知光纤在任何其它波长处的性能的情况下评估光纤在任何给定波长处的性能。
本发明还涉及一种计算机程序产品,其能够从通信网络下载和/或记录在计算机能够读取的介质上、以及/或者能够利用处理器来执行,所述计算机程序产品包括程序代码指令,所述程序代码指令用于实现以上所述的方法。
本发明还涉及一种非暂时性的计算机可读介质,包括记录在所述计算机可读介质上并且能够利用处理器运行的计算机程序产品,所述计算机程序产品包括程序代码指令,所述程序代码指令用于实现以上所述的方法。
这种计算机程序可以存储在计算机可读存储介质上。如这里所使用的计算机可读存储介质被认为是给出了用以在其中存储信息的固有能力以及用以从其中提供信息检索的固有能力的非暂时性存储介质。计算机可读存储介质例如可以是但不限于:电子、磁性、光学、电磁、红外或半导体系统、设备或装置,或者前述的任何适当组合。应该理解,以下内容虽然提供了可应用本发明的原理的计算机可读存储介质的更具体示例,但如本领域普通技术人员容易理解,这仅仅是例示性而非穷举性的列表:便携式计算机软盘;硬盘;只读存储器(ROM);可擦除可编程的只读存储器(EPROM或闪速存储器);便携式光盘只读存储器(CD-ROM);光学存储装置;磁存储装置;或者前述的任何适当组合。
本发明还涉及一种用于选择至少一个多模光纤的方法,所述至少一个多模光纤有可能满足第一波长λ1处的第一性能指标,所述方法包括以下步骤:
选择满足第二波长λ2处的第二性能指标的一组多模光纤;
按照以上所述的方法来鉴定所述一组多模光纤的有效模式带宽,并且传送所述一组多模光纤在所述第一波长λ1处的有效带宽;
基于所述第一波长λ1处的有效带宽,针对所述一组多模光纤中的各多模光纤,评估该多模光纤满足所述第一波长λ1处的性能指标的概率;以及
在所述一组多模光纤中选择概率高于概率阈值的至少一个多模光纤。
因而,评估多模光纤的EMB所需的测量局限于最有可能满足这种宽带EMB要求的光纤,并且大大减低了耗费在测量低带宽光纤上的浪费掉的测量时间。可以根据制造商在给定时间的测量能力来设置和修改这种概率阈值。该概率阈值例如可以在范围[50%;90%]中进行选择。
根据实施例,所述第二性能指标是第二波长λ2=850nm处的有效模式带宽等于或高于4700MHz-km,以及所述第一性能指标是第一波长λ1=950nm处的有效模式带宽等于或高于2700MHz-km。
因而,所选择的光纤是在波长[850nm;950nm]内具有OM4性能的宽带多模光纤。
本发明还涉及一种用于选择至少一个多模光纤的系统,所述至少一个多模光纤有可能满足第一波长λ1处的第一性能指标,所述系统包括:
台座,其被配置用于选择满足第二波长λ2处的第二性能指标的一组多模光纤;
处理器,其被配置为:
按照以上所述的方法来鉴定所述一组多模光纤的有效模式带宽,并且传送所述一组多模光纤在所述第二波长λ2处的有效带宽;
基于所述第一波长λ1处的有效带宽,针对所述一组多模光纤中的各多模光纤,评估该多模光纤满足所述第一波长λ1处的性能指标的概率;以及
在所述一组多模光纤中选择概率高于概率阈值的至少一个多模光纤。
本发明还涉及一种计算机程序产品,其能够从通信网络下载和/或记录在计算机能够读取的介质上、以及/或者能够利用处理器来执行,所述计算机程序产品包括程序代码指令,所述程序代码指令用于实现如以上所述的用于选择至少一个多模光纤的方法。
本发明还涉及一种非暂时性的计算机可读介质,包括记录在所述计算机可读介质上并且能够利用处理器运行的计算机程序产品,所述计算机程序产品包括程序代码指令,所述程序代码指令用于实现如以上所述的用于选择至少一个多模光纤的方法。
这种计算机程序可以存储在计算机可读存储介质上。如这里所使用的计算机可读存储介质被认为是给出了用以在其中存储信息的固有能力以及用以从其中提供信息检索的固有能力的非暂时性存储介质。计算机可读存储介质例如可以是但不限于:电子、磁性、光学、电磁、红外或半导体系统、设备或装置,或者前述的任何适当组合。应该理解,以下内容虽然提供了可应用本发明的原理的计算机可读存储介质的更具体示例,但如本领域普通技术人员容易理解,这仅仅是例示性而非穷举性的列表:便携式计算机软盘;硬盘;只读存储器(ROM);可擦除可编程的只读存储器(EPROM或闪速存储器);便携式光盘只读存储器(CD-ROM);光学存储装置;磁存储装置;或者前述的任何适当组合。
应当理解,前面的一般说明和以下的详细说明都是示例性的和说明性的,并且不限制所要求保护的本发明。
还必须理解,说明书中对“一个实施例”或“实施例”的引用表示所描述的实施例可以包括特定的特征、结构或特性,但每个实施例可能不一定包括该特定的特征、结构或特性。此外,这样的短语不一定是指相同的实施例。此外,在结合实施例描述特定的特征、结构或特性时,认为该特定的特征、结构或特性在本领域技术人员结合无论是否明确描述的其它实施例来实现这种特征、结构或特性的知识范围内。
附图说明
参考通过示例给出的并且不对保护范围做出限制的以下的说明书和附图,可以更好地理解本发明,其中:
-图1示出实现多模光纤的光通信系统的示例;
-图2提供DMD测量技术的示意例示;
-图3a示出利用根据本发明实施例所表征的对多模光纤的DMD测量而得到的DMD图的示例;
-图3b例示从图3a的DMD图推导出的ROD曲线;
-图3c例示从图3a的DMD图推导出的ROB曲线;
-图3d例示从图3a的DMD图推导出的PDMD曲线;
-图4描绘了针对多模光纤获得的DMD图形表示的示例,其例示根据本发明的特定实施例的ROD曲线的计算;
-图5提供根据本发明的用于鉴定和选择光纤的方法的特定实施例的流程图;
-图6示出针对径向偏移注入r=7μm在λ2=850nm和λ1=950nm这两者处测量到的数十根光纤的ROD数据之间的关系;
-图7示出针对径向偏移注入r=19μm在λ2=850nm和λ1=950nm这两者处测量到的数十根光纤的ROD数据之间的关系;;
-图8示出多个50μm渐变折射率多模光纤的ROB19μm(950nm)与ROB19μm(850nm)以及ROD19μm(850nm)-ROD18μm(850nm)这两者之间的关系;
-图9与图8类似,但针对偏移注入r=7μm的情况;
-图10例示根据在一组50μm的渐变折射率多模光纤在850nm处进行的DMD图计算出的EMB等效和实际EMB之间的关系;
-图11例示在根据本发明实施例计算出的λ1=950nm处的等效EMB与通过针对一批多模光纤的在λ1=950nm处的实际DMD测量所获得的实际EMB之间的关系;
-图12是例示根据本发明实施例的用于选择满足给定性能指标的多模光纤(诸如在950nm表现出高于2700MHz-km的实际EMB的OM4光纤等)的系统的一部分的示意框图。
附图中的组件不一定是按比例绘制的,而是重点在于例示本发明的原理。在本文的所有附图中,相同的数字标记始终指代相同的元件或步骤。
具体实施方式
本发明的一般原理依赖于使用通过在给定波长(例如,850nm,之后称为第二波长)处针对多模光纤执行的DMD测量所获得的数据来评估该多模光纤在另一波长(例如,950nm,之后称为第一波长)处的性能。由于对第二波长处的ROB数据和ROD数据进行变换,从而获得第一波长处的相应的ROB数据和ROD数据、并且基于这些变换得到的ROB数据和ROD数据计算多模光纤在第一波长处的外推有效带宽,因此实现了这种评估。
下面描述的根据本发明实施例的方法适用于芯直径为50μm的OM4多模光纤。当然,本发明不限于这种特定的应用,并且可以应用于任何其它类型的多模光纤。
图1示出包括作为本发明的有效带宽计算方法的对象的多模光纤的光通信系统的示例。多千兆位以太网光通信系统顺次包括发射器1的驱动器8、发射器1的VCSEL源9、注入线2、连接器3、多模光纤4、连接器3、注入线2、接收器5的PIN二极管6和接收器5的放大器7。通过用于直接调制VCSEL源9的驱动器8来生成10Gbps或25Gbps以上的数字信号。
如在标准TIA FOTP-220或IEC 60793-1-49)(TIA-455-220-A,“DifferentialMode Delay Measurement of Multimode Fiber in the Time Domain”)(2003年1月))中所述,根据本发明的实施例,基于DMD测量来表征多模光纤4。
图2例示DMD测量技术。使用单模光纤SMF将超快激光脉冲注入到多模光纤MMF中。径向扫描SMF,并且针对各径向偏移位置(“偏移注入”),使用高带宽光学接收器30和采样示波器记录所发射的脉冲的形状。
更确切地说,850nm处的光参考脉冲sr(t)由源发射并被注入到单模注入光纤SMF的芯直径为5μm的芯10中。从SMF的端部开始,光参考脉冲步进地经过被测多模光纤MMF的芯20。这种MMF通常具有50μm的芯直径。对于芯上的各横向偏移(0~24微米),记录最终得到的输出脉冲的传播延迟。各输出脉冲仅包含在给定输入径向位置处激励的模式。如在图2的右侧部分所示,沿着纵轴标绘了针对各径向偏移的输出波形(也称为DMD图),并且这些输出波形以1微米的增量移位。沿着横轴以皮秒/米(ps/m)为单位标绘了针对各波形的相对脉冲延迟。通过首先使用最快脉冲的前沿和最慢脉冲的后沿测量延迟差值脉冲来确定DMD。从该差值中减去注入脉冲的时间宽度,这样得到光纤的模式色散。
图2所示的DMD图200的示例示出24个记录迹线的集合,各迹线对应于针对给定的相对于光纤芯中心的径向偏移值r而执行的DMD测量。
图5示出根据本发明的选择方法的特定实施例的流程图。
在生产的出口处取一批多模光纤。多模光纤的标准半径为25μm(±1.25μm)。在该具体实施例中,该方法的目的是在一批被测光纤中选择满足OM4标准指标并且具有较高的概率在950nm的波长处展现出等于或高于例如2700MHz-km的有效模式带宽(EMB)的光纤。
在步骤500中,如在FOTP-220标准中阐述的并且如前面根据图2所述,在850nm波长(λ2)处对各多模光纤执行DMD测量。在该步骤结束时,获得各被测光纤的DMD图。图4示出针对一批被测光纤中的给定光纤所获得的DMD图的示例:x轴以纳秒为单位示出时间,并且y轴以微米为单位示出偏移注入。
针对所获得的各DMD图执行以下的步骤510~540,但以下(为了简单)针对被测光纤其中之一的给定DMD图说明这些步骤510~540。
根据本发明的实施例,在步骤510中,根据DMD图计算表征具有芯半径a的多模光纤4的三个曲线:
-示出作为径向偏移值r(0≤r≤a)的函数的多模光纤4的径向偏移带宽ROB(r)的曲线;
-示出作为径向偏移值r(0≤r≤a)的函数的多模光纤4的径向偏移延迟ROD(r)的曲线;
-示出作为径向偏移值r(0≤r≤a)的函数的多模光纤4的径向耦合功率
Figure GDA0002354886760000141
的曲线,所述径向耦合功率
Figure GDA0002354886760000142
可以表示为相对功率。
在包含专利文献EP2207022的多个现有技术文献中描述了径向偏移带宽。如在该专利文献中所述,将径向偏移带宽ROB(r)定义为传递函数的-3dB带宽:
Figure GDA0002354886760000151
其中:sr(t)是在DMD测量中在偏移注入r处记录的迹线、即在DMD测量中注入的入口脉冲se(t)的时间分布,
sREF(t)是在多模光纤的输入处注入的参考脉冲,L是多模光纤4的样本长度,TF指代傅立叶变换算子,并且f表示频率。
因此,得到10·log10[Hr(ROB(r))]=-3。
ROB的值得关注的特性是其对折射率中的局部缺陷的高灵敏性。因而,如果随着径向偏移R的不断增大、ROB过快地减小,则有可能光纤呈现不规则的折射率分布。
ROB在DMD测量中针对光纤长度进行归一化,并且通常以MHz.km或GHz.km表示。
关于ROD,其对应于针对给定延迟的光纤输出响应的平均时间位置。换句话说,ROD是在DMD测量期间记录的相对于参考迹线的“平均”延迟的迹线“平均”延迟。参考迹线可以是与中心注入相对应的迹线(即,r=0μm)。
可以如下所述将“平均”延迟作为迹线的重心来计算:
Figure GDA0002354886760000152
其中:sr(t)与在DMD测量中在[0,T]时间窗内偏移注入r处所记录的迹线相对应,L是被测多模光纤的长度。
ROD曲线是如下所述定义的函数f(r):
f(r)=ROD(r)-ROD(rREF)
其中:rREF是参考偏移值,其中rREF=0μm。
ROD针对在DMD测量中所使用的通常以ps/m为单位表示的光纤长度而进行归一化。
可以通过对在DMD测量期间记录的迹线进行积分来计算相对径向耦合功率
Figure GDA0002354886760000161
Figure GDA0002354886760000162
图3a示出通过经由DMD测量技术表征多模光纤所获得的DMD图。图3b~3d分别示出根据本发明实施例的、作为根据DMD图推导出的径向偏移值的函数的ROD曲线、ROB曲线和PDMD曲线。
图4还示出针对给定的DMD图、径向偏移延迟ROD为多少。各圆使针对给定径向偏移值所计算出的平均延迟形象化。这里例示的示例对应于针对与15μm的径向偏移相对应的DMD迹线所计算出的平均偏移延迟。
在步骤520中,对在步骤510中获得的850nm的波长(λ2)处的ROB数据和ROD数据进行变换,以获得在950nm的波长(λ1)处的新的ROB数据和ROD数据。
关于ROD曲线,可以通过应用以下的线性函数来实现变换:
Figure GDA0002354886760000163
其中:p1,r和p2,r是标量。通常,
Figure GDA0002354886760000164
具有与λ12相同的符号。
图6示出针对径向偏移注入r=7μm在λ2=850nm和λ1=950nm这两者处所测量的数十个光纤的ROD数据之间的关系。x轴示出RODr=7μm(850nm),而y轴示出RODr=7μm(950nm)。
图7示出针对径向偏移注入r=19μm在λ2=850nm和λ1=950nm这两者处所测量的数十个光纤的ROD数据之间的关系。x轴示出RODr=19μm(850nm),而y轴示出RODr=19μm(950nm)。
如在图6和图7这两者上可以观察到,针对同一偏移注入在两个不同的波长处所测量到的ROD值之间的关系可以通过(在这两个图上利用连续线示出的)线性关系来适度地近似,这确认了上述的变换公式。可以根据图6和图7所示的测量容易地推导出标量p1,r和p2,r的值,其中p1,r与连续线的斜率相对应,并且p2,r与RODr(850nm)=0时的ROD(950nm)的值相对应。
关于对ROB数据进行变换,该变换不如ROD变换直接。然而,发明人评估得出,λ1处的ROB(r)数据可以联系至λ2处的ROB(r)数据以及λ2处的ROD(r)数据相对于半径的导数。
因而,在步骤520中,将以下公式应用于850nm处的ROB数据以获得950nm处的ROB数据:
Figure GDA0002354886760000171
其中:p00,r、p10,r、p01,r、p11,r和p02,r是标量。
为了简单,对于r>1μm的情况,可以如下对ROD导数进行近似:
Figure GDA0002354886760000172
对于r<1μm的情况,可以认为该导数等于零:
Figure GDA0002354886760000173
图8示出数十个50μm渐变折射率多模光纤的ROB19μm(950nm)(Yr轴上)与ROB19μm(850nm)(X轴上)以及ROD19μm(850nm)-ROD18μm(850nm)(Xd轴上)之间的关系。利用点示出这些值。可以利用表面(“无标题拟合1”)来对(Yr,X,Xd)空间中的点的分布进行近似,其中该表面对应于前面所述的具有以下系数的模型,其中所述系数具有(在括号内示出的)95%的置信界限:
p00=5574(5245,5904)
p10=-0.09742(-0.126,-0.06887)
p01=-3.828e+05(-4.276e+05,-3.379e+05)
p11=-11.12(-19.57,-2.664)
p02=7.387e+06(3.944e+06,1.083e+07)。
图9与图8相似,但针对偏移注入r=7μm的情况,并且示出数十个50μm的渐变折射率多模光纤的ROB7μm(950nm)(Yr轴上)与和ROB7μm(850nm)(X轴上)以及ROD7μm(850nm)-ROD6μm(850nm)(Xd轴上)之间的关系。
相对耦合功率
Figure GDA0002354886760000181
没有随着波长而大幅改变。因此,在步骤520中不需要对其进行变换。然而,对相对耦合功率
Figure GDA0002354886760000182
应用变换以考虑这些随着波长的细微变化将不会落在本发明的范围外。
在步骤530中,计算被称为EMB等效的以下传递函数
Figure GDA0002354886760000185
Figure GDA0002354886760000183
其中:
Figure GDA0002354886760000184
其中:a是光纤的芯半径(例如,25μm),P(r)是源的权重函数,L是所述多模光纤的长度,并且OMBc(r)是OMBc(其表示“计算出的过满模式带宽”)权重函数。
OMBc权重函数是Abhijit Sengupt的“Calculated Modal Bandwidths of an OMAFiber and the Theoretical Challenges”(International Wire&Cable Symposium,Proceedings of the 58th IWCS/IICIT,第24-29页)中所公开的权重函数。
可以使用在标准TIA-455-220A中报告的并且在以下的表1和表2中描述的权重函数P(r),在表1和表2中,列对应于从1到10排列的激光ID,并且行对应于从0~25μm排列的径向偏移注入r。
如在专利文献WO2015056044中所述,还可以通过以下获得作为VCSEL多模横向源的参数特性的P(r)函数:
利用光源激励标称多模光纤;
从标称光纤的轴即r=0起直到径向偏移值r=a为止,在不同的径向偏移值r处,利用单模光纤扫描标称多模光纤的输出信号,其中a是标称光纤的芯半径;
针对各径向偏移值r,利用谱分析器分析单模光纤的输出光谱,从而推导出表现作为径向偏移值r(0≤r≤a)的函数的源的输出功率P(r)的曲线。
换言之,根据接近DMD测量过程的过程来表征源。首先利用要表征的源激励具有直径为50μm的芯的标称多模渐变折射率光纤。这种标称多模渐变折射率光纤具有与链路中使用的多模光纤4明显相同的芯直径、数值孔径和单个阿尔法渐变折射率分布。单模光纤在λ2=850nm处以与标准DMD测量中使用的方式相同的方式,优选以1微米为步长在0~25μm内扫描标称光纤的输出。配置于单模光纤的输出处的光谱分析器记录针对SMF的各位置的输出光谱。
在不失一般性的情况下,源表征所使用的单模光纤可以与DMD测量中所使用的单模光纤10相同。
通常,使用利用该组十个权重函数获得的最小EMB的1.13倍作为EMB,这意味着针对在标准TIA-455-220A中报告的十个权重函数P(r)中的每个权重函数计算传递函数
Figure GDA0002354886760000191
的-3dB带宽,并且计算在所获得的十个带宽中的最小值乘以1.13处的EMB。
Figure GDA0002354886760000201
表1
Figure GDA0002354886760000211
表2
实际上,如图10所示,可以利用
Figure GDA0002354886760000212
传递函数的-3dB带宽来适度地对多模光纤的EMB进行近似,其中图10报告根据在一组50μm的渐变折射率多模光纤的850nm处进行的DMD图所计算出的EMB等效和实际EMB。如利用适度地对点的分布进行近似的连续线所示,图10确认了根据ROD、ROB和PDMD计算出的EMB等效(在y轴上示出并以MHz-km为单位表示)是对根据TIA-455-220A所计算出的多模光纤的实际EMB(在x轴上示出且以MHz-km为单位表示)的适度近似。
由于可以根据ROB、ROD和PDMD数据计算EMB,因此可以通过在其它波长处对ROB、ROD和PDMD数据进行外推来获得对这些其它波长处的EMB的外推。
因此,在步骤530中,根据以下来计算第一波长λ1=950nm处的EMB:
-如在步骤520中获得的在λ1=950nm处外推的ROD数据;
-如在步骤520中获得的在λ1=950nm处外推的ROB数据;
-如在步骤510中获得的λ2=850nm处的PDMD数据。
在步骤540中,计算该
Figure GDA0002354886760000221
传递函数的-3dB带宽。当然,可以使用根据
Figure GDA0002354886760000222
来推导EB的其它方式,例如通过使用-1.5dB的阈值并将所获得的带宽乘以
Figure GDA0002354886760000223
或者通过使用-6dB的阈值的方式。
图11示出针对一批多模光纤的在步骤540中计算出的λ1=950nm处的等效EMB和根据λ1=950nm处的实际DMD测量所获得的实际EMB之间的关系。在图11的x轴上示出根据λ1=950nm处的实际DMD测量所计算出的多模光纤的实际EMB,而在图11的y轴上示出如通过图5的处理所计算出的同一多模光纤的等效EMB。这两个EMB都以MHz-km为单位表示。在图11上,这两个EMB之间的对应性值被示出为以云的形式聚集在连续线周围的小圆或点。该连续线对应于线性拟合,表明在根据实际DMD测量所推导出的实际EMB与如在步骤540中获得的外推EMB之间存在相当的线性关系。
通过观察图11,可以推知,基于850nm处的单个DMD测量,在步骤540中计算出的950nm处的外推等效EMB是用以预选将给出最大的950nm处实际EMB的光纤的良好标准。
在步骤550中进行这种选择。这例如旨在选择表现出高于2700MHz-km的950nm处EMB的OM4光纤。如利用图11上的垂直虚线和水平虚线所示,表现出(如在步骤540中计算出的)高于1800MHz-km的950nm处外推EMB的多模光纤有可能满足该性能指标。
因此,步骤550可以在于:从(如在图5的处理一开始所考虑的)一批光纤中选择在步骤540中计算出的带宽大于1800MHz-km的所有多模光纤。然后,制造商可以针对并且仅针对这些所选择的光纤,在λ1=950nm处进行实际DMD测量、并且更一般地进行性能测量。因而,必须进行的λ1=950nm处的测量的数量大大减少,从而允许大大节省测量时间。
步骤550还可以依赖于通过满足性能指标的样本中的光纤数量相对于不满足性能指标的样本中的光纤数量的比率,使用根据光纤样本所推导出的概率定律。在测试新的光纤时,如图5所述,计算该光纤的外推EMB,并且根据概率定律来评估该光纤满足性能指标的可能性。
然后,根据其测量能力,制造商可以决定仅针对例如概率高于50%或者高于80%的光纤来在λ1=950nm处执行实际DMD测量。
因而,步骤550允许制造商决定是否对多模光纤实现在λ1=950nm处的实际DMD测量。
图12是示出根据本发明实施例的、用于选择满足给定性能指标的多模光纤(例如表现出高于2700MHz-km的950nm处实际EMB的OM4光纤)的系统的部分的示意框图。
如图2所示,这种系统包括用于对多模光纤进行DMD测量的台座。该系统还包括图12所示的设备1200,其中该设备1200包括通过总线1206连接的处理器1201、存储单元1202、输入装置1203、输出装置1204和接口单元1205。当然,也可以通过除使用总线1206的总线连接以外的连接来对计算机装置1200的构成元件进行连接。
处理器1201控制设备1200的操作。存储单元1202存储要由处理器1201执行的至少一个程序、以及包括由处理器1201进行的计算所使用的参数的各种数据,诸如在步骤510或步骤520中计算的ROB、ROD和PDMD数据以及处理器1201所进行的计算的中间数据等。处理器1201可以由任何已知且适当的硬件或软件或者硬件和软件的组合形成。例如,处理器1201可以由诸如处理电路的专用硬件形成,或者由诸如执行其存储器中所存储的程序的CPU(中央处理单元)等的可编程处理单元形成。
存储单元1202可以由能够以计算机可读方式存储程序或数据等的任何适当的存储器或部件形成。存储单元1202的示例包括诸如半导体存储器装置等的非暂时性计算机可读存储介质、以及加载到读写单元中的磁、光或磁光形式的记录介质。根据如前面所述的本发明的实施例,该程序使处理器1201执行用于鉴定多模光纤的有效带宽并用于选择满足给定性能指标的多模光纤的处理。
输入装置1203可以由键盘或者诸如鼠标等的指示装置等形成,以供用户输入命令使用。输出装置1204可以由显示装置形成,以显示例如根据DMD图推导出的或在步骤520中变换得到的ROB、ROD和PDMD曲线、或者光纤在950nm处的外推EMB带宽的值。例如,输入装置1203和输出装置1204可以由触摸屏面板一体地形成。操作员可以使用输入装置1203来选择与光纤必须满足的性能标准相对应的950nm处的外推EMB带宽的阈值、或者选择波长λ1和λ2的值。然后可以将这些值存储到存储单元1202中。
接口单元1205提供设备1200和诸如台座(在图12中未示出)等的外部设备之间的接口。接口单元1205可以能够经由线缆或无线通信与外部设备进行通信。
尽管在图12中示出仅一个处理器1201,但必须理解,根据本发明的实施例,这样的处理器可以包括体现由设备1200所执行的功能的不同模块和单元,例如:
-用于根据λ2=850nm处的DMD数据来确定λ1=950nm处的ROD、ROB和PDMD数据的模块;
-用于对λ2=850nm处的ROD数据和ROB数据进行变换以获得对应的λ1=950nm处的ROD数据和ROB数据的模块;
-用于计算多模光纤在λ1处的有效带宽、并且用于使用λ1处的ROD数据和ROB数据以及λ2处的
Figure GDA0002354886760000251
数据来计算传递函数的模块;
-用于针对各多模光纤、基于所计算出的λ1处的有效带宽来评估该多模光纤满足λ1处的性能指标(例如,EMB>2700MHz-km)的概率的模块;
-用于选择概率高于用户所设置的概率阈值的至少一个多模光纤的模块。
这些模块和单元也可以体现在彼此通信并协作的多个处理器1201中。

Claims (14)

1.一种用于鉴定多模光纤在第一波长λ1处的有效带宽的方法,所述方法包括以下步骤:
使用在第二波长λ2处针对所述多模光纤执行的色散模式延迟即DMD的测量来获得DMD数据,其中所述DMD数据包括以不同的径向偏移值r所记录的多个迹线,其中所述径向偏移值r从所述多模光纤的轴即r=0起直到径向偏移值r=a为止,其中a是所述多模光纤的芯半径,
其特征在于,所述方法还包括以下步骤:
根据所述第二波长λ2处的所述DMD数据,确定:
作为所述径向偏移值r的函数的、表示所述多模光纤的径向偏移延迟的被称为ROD数据的数据,其中,0≤r≤a,
作为所述径向偏移值r的函数的、表示所述多模光纤的径向偏移带宽的被称为ROB数据的数据,其中,0≤r≤a,以及
作为所述径向偏移值r的函数的、表示所述多模光纤的相对径向耦合功率的被称为
Figure FDA0002354886750000011
数据的数据,其中,0≤r≤a;
对所述第二波长λ2处的ROD数据和ROB数据进行变换,以获得相应的所述第一波长λ1处的ROD数据和ROB数据;以及
计算所述多模光纤在所述第一波长λ1处的有效带宽,所述计算包括使用所述第一波长λ1处的ROD数据和ROB数据以及所述第二波长λ2处的
Figure FDA0002354886750000013
数据来计算传递函数。
2.根据权利要求1所述的方法,其特征在于,对所述第二波长λ2处的ROD数据进行变换以获得相应的所述第一波长λ1处的ROD数据包括应用以下的线性函数:
Figure FDA0002354886750000012
其中,p1,r和p2,r是标量。
3.根据权利要求1或2所述的方法,其特征在于,对所述第二波长λ2处的ROB数据进行变换以获得相应的所述第一波长λ1处的ROB数据包括应用以下的公式:
Figure FDA0002354886750000021
其中,p00,r、p10,r、p01,r、p11,r和p02,r是标量。
4.根据权利要求3所述的方法,其特征在于,对于r>1μm,
Figure FDA0002354886750000022
并且对于r<1μm,
Figure FDA0002354886750000023
5.根据权利要求1或2所述的方法,其特征在于,计算所述多模光纤在所述第一波长λ1处的有效带宽包括计算传递函数
Figure FDA0002354886750000024
其中:
Figure FDA0002354886750000025
其中:
Figure FDA0002354886750000026
Figure FDA0002354886750000027
其中:
f表示频率,W(r)是权重函数,其中
Figure FDA0002354886750000029
并且对于任何r,W(r)≥0,以及
L是所述多模光纤的长度。
6.根据权利要求1或2所述的方法,其特征在于,计算所述多模光纤在所述第一波长λ1处的有效带宽包括计算传递函数
Figure FDA0002354886750000034
,其中:
Figure FDA0002354886750000028
其中:
Figure FDA0002354886750000031
Figure FDA0002354886750000032
其中:
f表示频率,P(r)是表示源在所述多模光纤的输出处的作为单模光纤的径向偏移值r的函数的输出功率的函数,其中
Figure FDA0002354886750000033
并且对于任何r,P(r)≥0,
L是所述多模光纤的长度,以及
OMBc(r)是OMBc权重函数,其中OMBc代表计算出的过满模式带宽。
7.根据权利要求5所述的方法,其特征在于,所述多模光纤的有效带宽是所述传递函数
Figure FDA0002354886750000034
的-3dB带宽。
8.根据权利要求6所述的方法,其特征在于,所述多模光纤的有效带宽是所述传递函数
Figure FDA0002354886750000035
的-3dB带宽。
9.根据权利要求1或2所述的方法,其中,所述第一波长λ1=950nm,并且所述第二波长λ2=850nm。
10.一种非暂时性的计算机可读介质,包括记录在所述计算机可读介质上并且能够利用处理器运行的计算机程序产品,所述计算机程序产品包括程序代码指令,所述程序代码指令用于实现根据权利要求1至9中任一项所述的方法。
11.一种用于选择至少一个多模光纤的方法,所述至少一个多模光纤有可能满足第一波长λ1处的第一性能指标,所述方法包括以下步骤:
选择满足第二波长λ2处的第二性能指标的一组多模光纤;
按照根据权利要求1至8中任一项所述的方法来鉴定所述一组多模光纤的有效模式带宽,并且传送所述一组多模光纤在所述第一波长λ1处的有效带宽;
基于所述第一波长λ1处的有效带宽,针对所述一组多模光纤中的各多模光纤,评估该多模光纤满足所述第一波长λ1处的性能指标的概率;以及
在所述一组多模光纤中选择概率高于概率阈值的至少一个多模光纤。
12.根据权利要求11所述的方法,其特征在于,所述第二性能指标是第二波长λ2=850nm处的有效模式带宽等于或高于4700MHz-km,以及所述第一性能指标是第一波长λ1=950nm处的有效模式带宽等于或高于2700MHz-km。
13.一种用于选择至少一个多模光纤的系统,所述至少一个多模光纤有可能满足第一波长λ1处的第一性能指标,所述系统包括:
台座,其被配置用于选择满足第二波长λ2处的第二性能指标的一组多模光纤;
处理器,其被配置为:
按照根据权利要求1至9中任一项所述的方法来鉴定所述一组多模光纤的有效模式带宽,并且传送所述一组多模光纤在所述第二波长λ2处的有效带宽;
基于所述第一波长λ1处的有效带宽,针对所述一组多模光纤中的各多模光纤,评估该多模光纤满足所述第一波长λ1处的性能指标的概率;以及
在所述一组多模光纤中选择概率高于概率阈值的至少一个多模光纤。
14.一种非暂时性的计算机可读介质,包括记录在所述计算机可读介质上并且能够利用处理器运行的计算机程序产品,所述计算机程序产品包括程序代码指令,所述程序代码指令用于实现根据权利要求11或12所述的方法。
CN201580085434.9A 2015-12-17 2015-12-17 鉴定光纤带宽和选择光纤的系统、方法和介质 Active CN108369154B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/IB2015/002529 WO2017103639A1 (en) 2015-12-17 2015-12-17 Method of qualifying wide-band multimode fiber from single wavelength characterization using emb extrapolation, corresponding system and computer program.

Publications (2)

Publication Number Publication Date
CN108369154A CN108369154A (zh) 2018-08-03
CN108369154B true CN108369154B (zh) 2020-08-14

Family

ID=55353244

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201580085434.9A Active CN108369154B (zh) 2015-12-17 2015-12-17 鉴定光纤带宽和选择光纤的系统、方法和介质

Country Status (5)

Country Link
US (1) US10337956B2 (zh)
EP (1) EP3391008B1 (zh)
CN (1) CN108369154B (zh)
DK (1) DK3391008T3 (zh)
WO (1) WO2017103639A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108370267B (zh) * 2015-12-07 2022-06-07 德拉克通信科技公司 根据单波长表征选择宽带多模光纤的方法
US11249249B2 (en) * 2018-06-14 2022-02-15 Corning Incorporated Method of identifying wideband MMF from 850 nm DMD measurements
US10921513B2 (en) * 2018-11-30 2021-02-16 Corning Incorporated Method of selecting wideband multimode fiber from 850 nm differential mode delays
WO2021231083A1 (en) 2020-05-12 2021-11-18 Corning Incorporated Reduced diameter single mode optical fibers with high mechanical reliability
US20230155681A1 (en) * 2021-11-16 2023-05-18 Panduit Corp. Metric for Determining if a Multimode Optical Fiber is Dispersion Compensating

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7580559B2 (en) * 2004-01-29 2009-08-25 Asml Holding N.V. System and method for calibrating a spatial light modulator
JP2007086578A (ja) * 2005-09-26 2007-04-05 Seiko Epson Corp 電気光学装置の検査方法及び検査装置
FR2933779B1 (fr) * 2008-07-08 2010-08-27 Draka Comteq France Fibres optiques multimodes
FR2940839B1 (fr) 2009-01-08 2012-09-14 Draka Comteq France Fibre optique multimodale a gradient d'indice, procedes de caracterisation et de fabrication d'une telle fibre
US8351027B2 (en) * 2009-06-15 2013-01-08 Panduit Corp. Method and metric for selecting and designing multimode fiber for improved performance
US8489369B2 (en) * 2009-08-28 2013-07-16 Panduit Corp. Methods for calculating multimode fiber system bandwidth and manufacturing improved multimode fiber
FR2953030B1 (fr) * 2009-11-25 2011-11-18 Draka Comteq France Fibre optique multimode a tres large bande passante avec une interface coeur-gaine optimisee
US8705020B2 (en) * 2010-01-30 2014-04-22 Optellios, Inc. Method and apparatus for disturbance detection
FR2966256B1 (fr) * 2010-10-18 2012-11-16 Draka Comteq France Fibre optique multimode insensible aux pertes par
US8531654B2 (en) * 2010-10-21 2013-09-10 Panduit Corp. Method for designing and selecting optical fiber for use with a transmitter optical subassembly
EP3058329B1 (en) 2013-10-15 2020-07-15 Draka Comteq BV A method of characterizing a multimode optical fiber link and corresponding methods of fabricating multimode optical fiber links and of selecting multimode optical fibers from a batch of multimode optical fibers
WO2015116279A2 (en) * 2013-11-27 2015-08-06 Corning Optical Communications LLC Optical fiber cables and modules with modal disperson compensation
CN104006948B (zh) * 2014-06-12 2016-06-22 天津大学 基于多峰分裂周期解调保偏光纤偏振耦合点位置的方法

Also Published As

Publication number Publication date
CN108369154A (zh) 2018-08-03
EP3391008B1 (en) 2020-08-19
EP3391008A1 (en) 2018-10-24
WO2017103639A1 (en) 2017-06-22
DK3391008T3 (da) 2020-11-23
US20190011633A1 (en) 2019-01-10
US10337956B2 (en) 2019-07-02

Similar Documents

Publication Publication Date Title
CN108369154B (zh) 鉴定光纤带宽和选择光纤的系统、方法和介质
EP3058329B1 (en) A method of characterizing a multimode optical fiber link and corresponding methods of fabricating multimode optical fiber links and of selecting multimode optical fibers from a batch of multimode optical fibers
US8576389B2 (en) Multiple-acquisition OTDR method and device
JP5517228B1 (ja) 多コア光ファイバのクロストーク特性の評価方法及びそのシステム
US11768327B2 (en) Optical channel bandwidth analyzer
CN106605135B (zh) 评价多模光纤的emb的方法和选择高emb多模光纤的方法
CN107005305B (zh) 用于表征和制造多模光纤链路的方法及改进其性能的方法
KR20050084946A (ko) 광시영역 반사율 측정기를 이용한 광섬유 편광분산모드의평가 방법
CN108370267B (zh) 根据单波长表征选择宽带多模光纤的方法
JP2024519308A (ja) 光ファイバのモード帯域幅、色分散、および、スキューを測定するための周波数領域法およびそのシステム
JP4109574B2 (ja) 光ファイバ伝送路の損失特性評価方法
Li et al. Modal delay and bandwidth measurements of bi-modal fibers facilitated by analytical transfer function model
US7151249B2 (en) Method for determining the cut-off wavelength of an optical fibre as well as a device suitable for that purpose
JP2006078378A (ja) 光ファイバの測長方法
Matsui et al. Effective mode-field diameter measurement for few-mode fibers
CN117616260A (zh) 用于测量光纤的模态带宽、色散和偏斜的频域方法和系统
JP5957533B2 (ja) 測定装置及び測定方法
Burdin et al. Experimental investigation of differential mode delay in multimode fiber links
JP2006105961A (ja) 光ファイバのモードフィールド径、波長分散特性、およびその長手方向分布測定方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant