CN108365005A - 一种非对称双栅场效应晶体管结构 - Google Patents

一种非对称双栅场效应晶体管结构 Download PDF

Info

Publication number
CN108365005A
CN108365005A CN201810081143.8A CN201810081143A CN108365005A CN 108365005 A CN108365005 A CN 108365005A CN 201810081143 A CN201810081143 A CN 201810081143A CN 108365005 A CN108365005 A CN 108365005A
Authority
CN
China
Prior art keywords
gate
region
conducting channel
gate electrode
effect transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810081143.8A
Other languages
English (en)
Other versions
CN108365005B (zh
Inventor
辛艳辉
袁合才
刘明堂
袁胜
夏振伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
North China University of Water Resources and Electric Power
Original Assignee
North China University of Water Resources and Electric Power
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North China University of Water Resources and Electric Power filed Critical North China University of Water Resources and Electric Power
Priority to CN201810081143.8A priority Critical patent/CN108365005B/zh
Publication of CN108365005A publication Critical patent/CN108365005A/zh
Application granted granted Critical
Publication of CN108365005B publication Critical patent/CN108365005B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Thin Film Transistor (AREA)

Abstract

本发明公开了一种非对称双栅场效应晶体管结构,包括栅极控制端、源区、漏区、导电沟道以及位于导电沟道上下两侧的厚度不同的前栅栅介质和背栅栅介质,导电沟道位于源区和漏区之间,导电沟道为渐变掺杂应变硅沟道,靠近源区部分为低掺杂区域,靠近漏区部分为高掺杂区域;栅极控制端由前栅电极M1和背栅电极M2构成,前栅电极M1和背栅电极M2由两种不同功函数的金属构成,源区和漏区均为N型重掺杂,引出电极,分别为源极S和漏极D。本发明通过渐变掺杂沟道的设计,在提高载流子的迁移率的同时,提高了对短沟道效应和漏致势垒降低效应的抵抗能力,器件采用高k栅介质层,使栅介质层的物理厚度增大,大大减小栅与导电沟道之间的隧穿电流。

Description

一种非对称双栅场效应晶体管结构
技术领域
本发明涉及电子器件领域,具体涉及一种非对称双栅场效应晶体管结构。
背景技术
随着器件尺寸的减小,各种微观的物理效应相继出现,迁移率降低、短沟道效应等一些物理效应日益加重。提高器件与集成电路的性能,是纳米尺度器件设计的重要课题。传统器件所采用的材料和器件结构将会达到它们的物理极限。很多研究者认为,当微电子技术的特征尺寸小于35nm之后,就是硅技术时代的结束。应变硅作为一种新型的沟道材料,具有迁移率高、能带结构可调等优点,而且与传统的体硅工艺兼容。传统的单栅器件面临的问题是,栅控能力太差,阈值电压漂移增大,大大限制了器件的发展和应用。相比单栅器件,双栅器件具有更优异的性质,对沟道电场的控制能力大大加强,亚阈值斜率更为理想,载流子迁移率大大提高。
随着CMOS器件栅的长度不断减小,面临的一项挑战是提高载流子迁移率的同时,控制好短沟道效应。
发明内容
为解决上述问题,本发明提供了一种非对称双栅场效应晶体管结构。
为实现上述目的,本发明采取的技术方案为:
一种非对称双栅场效应晶体管结构,包括栅极控制端、源区、漏区、导电沟道以及位于导电沟道上下两侧的厚度不同的前栅栅介质和背栅栅介质,所述导电沟道位于源区和漏区之间,所述导电沟道为渐变掺杂应变硅沟道,分为两部分,靠近源区部分为低掺杂区域,靠近漏区部分为高掺杂区域;该种结构能有效改善器件的性能,提高载流子的迁移率,抑制短沟道效应和漏致势垒降低效应。所述栅极控制端由前栅电极M1和背栅电极M2构成,所述前栅电极M1和背栅电极M2分别由两种不同功函数的金属构成,所述源区和漏区均为N型重掺杂,引出电极,分别为源极S和漏极D。
优选地,所述前栅栅介质和背栅栅介质采用相同介电常数的高K材料填充。
优选地,所述前栅电极M1和背栅电极M2分别采用功函数φM1=4.77eV、φM2=4.97eV的金属材料。
优选地,所述导电沟道的掺杂浓度轻掺杂区域N1=1015cm-3,重掺杂区域N2=5×1016cm-3,源漏掺杂浓度ND=1020cm-3
优选地,所述前栅栅介质层和背栅栅介质层均选用介电常数εf=20的高k材料HfO2,前栅栅介质层厚度为1nm,背栅栅介质层厚度为2nm,硅的介电常数εSl=11.9eV。
优选地,所述低掺杂区域长度为10nm,导电沟道长度L=40nm。
本发明具有以下有益效果:
本发明通过渐变掺杂沟道的设计,在提高载流子的迁移率的同时,提高了对短沟道效应和漏致势垒降低效应的抵抗能力,同时,该器件采用高k栅介质层,使栅介质层的物理厚度增大,大大减小栅与导电沟道之间的隧穿电流。
附图说明
图1为本发明实施例一种非对称双栅场效应晶体管结构的结构示意图。
图2为前栅和背栅阈值电压的模型计算结果和DESSIS仿真结果。
图3为渐变掺杂沟道(N1=1015cm-3,N2=5×1016cm-3)与均匀掺杂沟道(N1=N2=1015cm-3)的阈值电压比较。
图4为渐变掺杂沟道(N1=1015cm-3,N2=5×1016cm-3)与均匀掺杂沟道(N1=N2=1015cm-3)的漏致势垒降低效应(DIBL)比较。
具体实施方式
为了使本发明的目的及优点更加清楚明白,以下结合实施例对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
如图1所示,本发明实施例提供了一种非对称双栅场效应晶体管结构,包括栅极控制端、源区5、漏区6、导电沟道以及位于导电沟道上下两侧的厚度不同的前栅栅介质1和背栅栅介质2,所述导电沟道位于源区5和漏区6之间,所述导电沟道为渐变掺杂应变硅沟道,分为两部分,靠近源区部分为低掺杂区域7,靠近漏区部分为高掺杂区域8;该种结构能有效改善器件的性能,提高载流子的迁移率,抑制短沟道效应和漏致势垒降低效应。所述栅极控制端由前栅电极M13和背栅电极M24构成,所述前栅电极M13和背栅电极M24分别由两种不同功函数的金属构成,所述源区5和漏区6均为N型重掺杂,引出电极,分别为源极S和漏极D。所述前栅栅介质1和背栅栅介质2采用相同介电常数的高K材料填充。所述前栅电极M13和背栅电极M24分别采用功函数φM1=4.77eV、φM2=4.97eV的金属材料。所述导电沟道的掺杂浓度轻掺杂区域N1=1015cm-3,重掺杂区域N2=5×1016cm-3,源漏掺杂浓度ND=1020cm-3。所述前栅栅介质层和背栅栅介质层均选用介电常数εf=20的高k材料HfO2,前栅栅介质层厚度为1nm,背栅栅介质层厚度为2nm,硅的介电常数εSl=11.9eV。所述低掺杂区域7长度为10nm,导电沟道长度L=40nm。
假设沟道处于弱反型层状态,基于沟道表面势抛物线近似的假设,把沟道分为两个区域,通过二维泊松方程计算出前栅、背栅的表面势,根据阈值电压的定义,得到前栅、背栅的阈值电压,其中较小者为该器件的阈值电压,并对该结构进行数值仿真,并和均匀沟道比较验证其优势。如图2所示,根据该模型计算得到的前栅、背栅阈值电压和DESSIS仿真软件得出的结果基本一致。前栅阈值电压较小,为该器件的阈值电压。
从图3可看出,对于均匀掺杂沟道MOSFET器件,当沟道长度小于25nm后,阈值电压随沟道长度的减小有明显的降落,即当沟道长度小于25nm后短沟道效应比较严重。对于渐变掺杂沟道MOSFET器件,当沟道长度小于20nm后,阈值电压随沟道长度的减小有明显的降落。因此,该器件能较好的抑制短沟道效应。
图4表示漏致势垒降低效应(DIBL)(用ΔVth/ΔVds描述)随沟道长度L的变化曲线,其中,该器件能较好的抑制漏致势垒降低效应。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (6)

1.一种非对称双栅场效应晶体管结构,其特征在于,包括栅极控制端、源区(5)、漏区(6)、导电沟道以及位于导电沟道上下两侧的厚度不同的前栅栅介质(1)和背栅栅介质(2),所述导电沟道位于源区(5)和漏区(6)之间,所述导电沟道为渐变掺杂应变硅沟道,分为两部分,靠近源区部分为低掺杂区域(7),靠近漏区部分为高掺杂区域(8);所述栅极控制端由前栅电极M1(3)和背栅电极M2(4)构成,所述前栅电极M1(3)和背栅电极M2(4)分别由两种不同功函数的金属构成,所述源区(5)和漏区(6)均为N型重掺杂,引出电极,分别为源极S和漏极D。
2.如权利要求1所述的一种非对称双栅场效应晶体管结构,其特征在于,所述前栅栅介质(1)和背栅栅介质(2)采用相同介电常数的高K材料填充。
3.如权利要求1所述的一种非对称双栅场效应晶体管结构,其特征在于,所述前栅电极M1(3)和背栅电极M2(4)分别采用功函数φM1=4.77eV、φM2=4.97eV的金属材料。
4.如权利要求1所述的一种非对称双栅场效应晶体管结构,其特征在于,所述导电沟道的掺杂浓度轻掺杂区域N1=1015cm-3,重掺杂区域N2=5×1016cm-3,源漏掺杂浓度ND=1020cm-3
5.如权利要求1所述的一种非对称双栅场效应晶体管结构,其特征在于,所述前栅栅介质层和背栅栅介质层均选用介电常数εf=20的高k材料HfO2,前栅栅介质层厚度为1nm,背栅栅介质层厚度为2nm,硅的介电常数εSi=11.9eV。
6.如权利要求1所述的一种非对称双栅场效应晶体管结构,其特征在于,所述低掺杂区域(7)长度为10nm,导电沟道长度L=40nm。
CN201810081143.8A 2018-01-23 2018-01-23 一种非对称双栅场效应晶体管结构 Expired - Fee Related CN108365005B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810081143.8A CN108365005B (zh) 2018-01-23 2018-01-23 一种非对称双栅场效应晶体管结构

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810081143.8A CN108365005B (zh) 2018-01-23 2018-01-23 一种非对称双栅场效应晶体管结构

Publications (2)

Publication Number Publication Date
CN108365005A true CN108365005A (zh) 2018-08-03
CN108365005B CN108365005B (zh) 2021-06-29

Family

ID=63007193

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810081143.8A Expired - Fee Related CN108365005B (zh) 2018-01-23 2018-01-23 一种非对称双栅场效应晶体管结构

Country Status (1)

Country Link
CN (1) CN108365005B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108388697A (zh) * 2018-01-23 2018-08-10 华北水利水电大学 一种非对称双栅结构mosfet阈值电压解析模型
CN110854183A (zh) * 2019-05-10 2020-02-28 北京大学深圳研究院 一种复合沟道的隧穿双栅场效应器件及其制造方法
CN114093949A (zh) * 2021-11-01 2022-02-25 中国科学院微电子研究所 抑制gidl的mosfet及其制造方法及包括mosfet的电子设备

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103077968A (zh) * 2013-01-04 2013-05-01 南京邮电大学 一种非对称峰值轻掺杂漏结构的石墨烯纳米条带场效应管

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103077968A (zh) * 2013-01-04 2013-05-01 南京邮电大学 一种非对称峰值轻掺杂漏结构的石墨烯纳米条带场效应管

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ZHIHAO DING ET AL: "An analytic model for channel potential and subthreshold swing of the symmetric and asymmetric double-gate MOSFETs", 《MICROELECTRONICS JOURNAL》 *
辛艳辉等: "堆叠栅介质对称双栅单 Halo 应变 Si 金属氧化物半导体场效应管二维模型", 《物理学报》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108388697A (zh) * 2018-01-23 2018-08-10 华北水利水电大学 一种非对称双栅结构mosfet阈值电压解析模型
CN108388697B (zh) * 2018-01-23 2021-08-10 华北水利水电大学 一种非对称双栅结构mosfet阈值电压解析方法
CN110854183A (zh) * 2019-05-10 2020-02-28 北京大学深圳研究院 一种复合沟道的隧穿双栅场效应器件及其制造方法
CN114093949A (zh) * 2021-11-01 2022-02-25 中国科学院微电子研究所 抑制gidl的mosfet及其制造方法及包括mosfet的电子设备
CN114093949B (zh) * 2021-11-01 2024-04-26 中国科学院微电子研究所 抑制gidl的mosfet及其制造方法及包括mosfet的电子设备

Also Published As

Publication number Publication date
CN108365005B (zh) 2021-06-29

Similar Documents

Publication Publication Date Title
Bashir et al. A high-performance source engineered charge plasma-based Schottky MOSFET on SOI
Yadav et al. Impact of channel doping on dgmosfet parameters in nano regime-tcad simulation
Kumar et al. Scaling of dopant segregation Schottky barrier using metal strip buried oxide MOSFET and its comparison with conventional device
Lin et al. Characteristics of planar junctionless poly-Si thin-film transistors with various channel thickness
CN108365005A (zh) 一种非对称双栅场效应晶体管结构
Chen et al. Double jeopardy in the nanoscale court [MOSFET modeling]
Kumar et al. Performance analysis of gate electrode work function variations in double-gate junctionless FET
Kumar et al. A threshold voltage model of short-channel fully-depleted recessed-source/drain (Re-S/D) UTB SOI MOSFETs including substrate induced surface potential effects
Singh et al. A study on modeling and simulation of Multiple-Gate MOSFETs
Low et al. Device physics and design of a L-shaped germanium source tunneling transistor
Das et al. Effect of dielectric pocket for controlling ambipolar conduction in TFET and analysis of noise and temperature sensitivity
Bal et al. A laterally graded junctionless transistor
Kim et al. Impact of gate dielectric constant variation on tunnel field-effect transistors (TFETs)
Pardeshi et al. Investigation of asymmetric effects due to gate misalignment, gate bias and underlap length in III–V heterostructure underlap DG MOSFET
Samuel et al. Analytical modeling and simulation of germanium single gate silicon on insulator TFET
Dhiman et al. Analysis on Variations of Metal Gate Work Function on Junctionless Double Gate MOSFET with High-k Spacers
Kim et al. Impact ionization and tunneling operations in charge-plasma dopingless device
Zhao et al. Superior performance of a negative-capacitance double-gate junctionless field-effect transistor with additional source-drain doping
Mishra et al. Induction of buried oxide layer in substrate FD-SOI MOSFET for improving the digital and analog performance
Bose et al. Analytical Modeling for Parasitics in a Triple Gate MOSFET Device
Doria et al. Effective mobility analysis of n-and p-types SOI junctionless nanowire transistors
Bhushan et al. An analytical surface potential model of strained-si on silicongermanium MOSFET including the effects of interface charge
Lü et al. Random ferroelectric and dielectric phase distribution-induced device variation of negative capacitance field-effect transistors
Shringi et al. Design and analysis of source engineered with high electron mobility material triple gate junctionless field effect transistor
Rajput et al. Effect of Doping Concentration on Electrical Parameter of Tri-Gate Junctionless N-channel FinFET

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20210629

Termination date: 20220123

CF01 Termination of patent right due to non-payment of annual fee