CN108359950A - 一种单色器用钌/碳化硼多层膜反射镜制备方法 - Google Patents

一种单色器用钌/碳化硼多层膜反射镜制备方法 Download PDF

Info

Publication number
CN108359950A
CN108359950A CN201810167868.9A CN201810167868A CN108359950A CN 108359950 A CN108359950 A CN 108359950A CN 201810167868 A CN201810167868 A CN 201810167868A CN 108359950 A CN108359950 A CN 108359950A
Authority
CN
China
Prior art keywords
ruthenium
boron carbide
layer
sputter coating
mixed gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810167868.9A
Other languages
English (en)
Other versions
CN108359950B (zh
Inventor
黄秋实
王占山
刘阳
张众
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tongji University
Original Assignee
Tongji University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tongji University filed Critical Tongji University
Priority to CN201810167868.9A priority Critical patent/CN108359950B/zh
Publication of CN108359950A publication Critical patent/CN108359950A/zh
Application granted granted Critical
Publication of CN108359950B publication Critical patent/CN108359950B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0635Carbides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明涉及一种单色器用钌/碳化硼多层膜反射镜制备方法,包括以下步骤:在溅射镀膜腔内的样品架上放置基底,并对溅射镀膜腔进行抽真空,形成溅射镀膜真空腔;在所述溅射镀膜真空腔充入混合气体,所述混合气体由氩气和氮气混合而成,且混合气体的混合比例范围为16%‑30%,所述混合比例指氮气分压占混合气体总压强的百分比;执行钌靶材和碳化硼靶材的预溅射;完成钌膜层和碳化硼膜层交替的钌/碳化硼多层膜反射镜的镀制。与现有技术相比,本发明制备的钌/碳化硼多层膜应力大幅度降低,且不会降低反射率。该方法工艺重复性高,可控性强,在高通量多层膜单色器元件和相应的X射线光学仪器领域有重要应用。

Description

一种单色器用钌/碳化硼多层膜反射镜制备方法
技术领域
本发明属于光学薄膜技术领域,尤其是涉及一种单色器用钌/碳化硼多层膜反射镜制备方法。
背景技术
单色器是X射线成像和光谱学等领域的核心部件。为了满足高灵敏度X射线成像和光谱学等领域的相关实验要求,需要发展具有高通量性能的单色器。和晶体单色器、光栅单色器相比,多层膜单色器具有两个优势。其一,通过改变多层膜的周期厚度,可以使多层膜应用于很宽的波段;其二,多层膜单色器的反射率较高且积分光通量大(多层膜单色器比晶体单色器的光谱带宽大2个量级,实验积分通量比晶体高10倍以上),因此多层膜单色器成为X射线微束荧光分析、纳米成像和微束小角散射等实验中的重要元件。10.0keV-20.0keV的硬X射线波段是开展材料纳米结构成像、元素成分含量和分布测试的重要能段。钌(Ru)/碳化硼(B4C)多层膜在该能段具有很高的理论反射率、较好的膜层界面结构和热稳定性。英国Diamond光源的B16线站采用双多层膜单色器,其中钌/碳化硼多层膜在8.0keV-20.0keV能段内的反射率的平方值能达到63.0%-85.0%。
尽管钌/碳化硼多层膜具有很高的实验反射率,但是目前的研究结果表明钌/碳化硼多层膜具有较大的膜层应力。如Ch.Morawe等人在2010年对周期数为10,周期厚度为4nm的钌/碳化硼多层膜进行了研究,主要探究了不同Γ值(钌层厚度与周期厚度的比值)的钌/碳化硼多层膜的膜层应力,结果显示,在常用的Γ值范围内(Γ=0.4-0.6)钌/碳化硼多层膜具有较大的膜层应力(近-1GPa)。较大的膜层应力会对薄膜造成两种严重的影响,其一,会导致膜层的龟裂、分离或者脱落,影响薄膜材料的微观结构,降低薄膜实际的光学性能;其二,应力的存在影响着薄膜与基底材料的结合度,应力作用在基底上会造成基底面形的形变,增加光学元件的面形误差,影响入射波前形状,严重降低了多层膜单色器的实际反射率和通光效率,使其使用寿命大为缩短,阻碍了薄膜在实际生产中的应用。目前,国际上暂无针对如何降低钌/碳化硼多层膜的膜层应力的研究。
发明内容
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种单色器用钌/碳化硼多层膜反射镜制备方法。
本发明的目的可以通过以下技术方案来实现:
一种单色器用钌/碳化硼多层膜反射镜制备方法,其特征在于,包括以下步骤:
1)在溅射镀膜腔内的样品架上放置基底,并对溅射镀膜腔进行抽真空,形成溅射镀膜真空腔;
2)在所述溅射镀膜真空腔充入混合气体以调节溅射镀膜真空腔内的工作气压,并使所述溅射镀膜真空腔内的混合气体含量高于或等于等离子体启辉的临界值,所述混合气体由氩气和氮气混合而成,且混合气体的混合比例范围为16%-30%,所述混合比例指氮气分压占混合气体总压强的百分比;
3)执行钌靶材和碳化硼靶材的预溅射;
4)将设置有基底的样品架重复交替转到钌靶材和碳化硼靶材上方的溅射区域,控制样品架的停留时间或自转速度,改变钌膜层和碳化硼膜层的厚度,完成钌膜层和碳化硼膜层交替的钌/碳化硼多层膜反射镜的镀制,镀制的同时持续充入所述混合气体。
步骤1)中,所述基底包括硅片或熔融石英玻璃,其表面粗糙度值的范围在0.1-0.3nm。
步骤2)中,所述氩气和氮气的纯度均大于99.99%。
步骤2)中,所述溅射镀膜真空腔的工作气压为0.1-0.4Pa。
步骤3)中,所述预溅射时间范围在5min-30min。
步骤4)中,所述钌膜层和碳化硼膜层的厚度范围均为1-3nm,膜对数范围均为20-120对。
与现有技术相比,利用本发明制备的钌/碳化硼多层膜,其膜层应力大幅度降低,且不会降低反射率,从而保证了钌/碳化硼多层膜单色器在实际应用中良好的光学性能和通光效率。具体地,本发明具有以下有益效果:
(1)相比单独使用氩气作为溅射气体的传统工艺,使用不同比例的氮气和氩气的混合气体作为溅射气体时,制备出的钌/碳化硼多层膜的膜层应力明显降低,最优可实现“零应力”状态。本发明将混合工作气体的混合比例设定为16%-30%,是由于氮和多层膜中作为应力主要来源的碳化硼层充分反应时,会生成氮化硼化合物;在该混合工作气体的混合比例下,才能保证新生成化合物占膜层中所有硼原子的原子比的50%以上,这样才能从根本上改变原碳化硼膜层的微结构,以及和钌膜层的界面结构,从而达到接近零应力的状态,进而提高多层膜反射镜的稳定性,避免因薄膜应力造成的基底面形变形和膜层脱落失效。
(2)使用氮气和氩气的混合气体作为镀制时的溅射气体,氮原子和电离后的氮离子在溅射过程中优先与膜层界面处的部分硼原子反应生成稳定的氮化硼化合物,新生成的氮化硼在原钌膜层和碳化硼膜层的界面处起到阻隔层的作用,抑制了硼原子向钌膜层内部的扩散,从而获得较清晰的多层膜界面结构,保证了较高的反射率。反应溅射过程中氮原子的掺入和氮化硼的生成改变了原来的膜层微结构,使膜层界面处的结构失配和应变得到释放,从而有效降低了多层膜的应力。氮化硼和钌的光学衬度也较好,因此可保证在降低应力的同时,不降低多层膜的反射率。
(3)使用混合气体代替传统的单独使用氩气,不会增加任何制备难度,与常规磁控溅射设备完全兼容,且重复性和可控性高,适于实现多层膜反射镜实用元件的制作。
(4)本发明方法与现有的薄膜制备工艺完全兼容,且工艺重复性好,可控性强,在高通量单色器多层膜元件和相应的同步辐射光学系统领域均有重要应用。
附图说明
图1为本发明的流程示意图;
图2为传统镀制方法和本发明方法(氩气和氮气的混合比例为25.0%)制备的钌/碳化硼多层膜的面形测试结果;
图3为传统镀制方法和本发明方法(氩气和氮气的混合比例为25.0%)制备的钌/碳化硼多层膜的应力测试结果;
图4为传统镀制方法和本发明方法(氩气和氮气的混合比例为25.0%)制备的钌/碳化硼多层膜的一级反射峰的X射线小角反射测试(XRR)曲线。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。本实施例以本发明技术方案为前提进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
实施例1
本实施例提供一种单色器用低应力高反射率的钌/碳化硼多层膜反射镜的制备方法,如图1所示,包括以下步骤:
在步骤1中,将基底清洗干净,利用氮气吹干后放入镀膜溅射腔内的样品架上,该基底的表面粗糙度为0.18nm。对镀膜溅射腔进行抽真空,形成溅射镀膜真空腔。
在步骤2中,向溅射镀膜真空腔内充入由氩气和氮气混合而成的溅射气体,氩气和氮气的纯度均高于99.99%,氩气和氮气的混合比例为25.0%。混合溅射气体通过流量计和管道充入溅射镀膜真空腔内。腔体口径为0.5m-1.0m,高度为0.5m-1.0m,充入混合溅射气体的流量保持在6.0sccm-20.0sccm之间。通过改变真空泵的抽气阀门大小,调整腔内气压到0.17Pa,等待10min-30min,待真空腔内混合气体的气压和比例分布均匀。
在步骤3中,开启直流磁控溅射电源,进行钌靶材和碳化硼靶材的预溅射,预溅射的时间为5min-30min,靶材表面产生氩气和氮气混合气体的等离子体,通过预溅射将钌靶材和碳化硼靶材表面的氧化和污染物去除。钌靶材的直流磁控溅射电源功率为40W,电压为324V-349V;碳化硼靶材的直流磁控溅射电源功率为150W,电压为404V-418V。
在步骤4中,通过命令设置,使装有基底的样品架交替停留在钌靶材和碳化硼靶材上方的溅射区域,通过控制样品架在钌靶材和碳化硼靶材上方溅射区域的停留时间和自转速度,从而改变钌膜层和碳化硼膜层的厚度,往复80次,完成80对钌/碳化硼多层膜反射镜的镀制。此实施例中钌膜层和碳化硼膜层镀制时,均持续同时充入混合气体。
本实施例镀制成的钌/碳化硼多层膜反射镜中,钌膜层和碳化硼膜层交替设置的膜对数为80对,除所述第一层和最后一层外,钌膜层和碳化硼膜层的厚度均为1.5nm,是每个周期厚度相同的周期多层膜。
通过采用X射线掠入射反射测试(XRR)和干涉仪来进行表征,对比利用传统方法(采用高纯氩气为溅射气体)和利用本发明方法(混合溅射气体的混合比例为25.0%)制备的钌/碳化硼多层膜的结构和光学性能。如图2的干涉仪测试结果显示,传统镀制方法制备的钌/碳化硼多层膜,其镀膜前后的面形差距较大;利用本发明方法制备的钌/碳化硼多层膜,其镀膜前后的面形差距有明显减小。将上述面形测试结果带入斯托尼(Stoney)公式,计算得到的多层膜的应力值如图3所示,采用传统镀制方法制备的钌/碳化硼多层膜,其膜层应力约为-1.1GPa;利用本发明方法制备的钌/碳化硼多层膜,其膜层应力有明显减小,约为291.7MPa。图4的一级峰反射率测试结果显示,采用传统方法制备的多层膜的一级峰反射率为53.3%,采用本发明方法制备(混合溅射气体的混合比例为25.0%)的钌/碳化硼多层膜的反射率为65.7%,其反射率提高了约12.0%。
由上述实施例说明采用本发明方法制备的多层膜,其膜层应力大幅度减小,反射率有了较大提高,多层膜的结构质量大为提升。
实施例2
本实施例中,将实施例1中步骤2中氩气和氮气的混合比例由25.0%改为16.0%,其他制备过程和参数均与实施例1相同。实验结果显示膜层应力大幅度减小,反射率有了较大提高,多层膜的结构质量大为提升。
实施例3
本实施例中,将实施例1中步骤2中氩气和氮气的混合比例由25.0%改为30.0%,其他制备过程和参数均与实施例1相同。实验结果显示膜层应力大幅度减小,反射率有了较大提高,多层膜的结构质量大为提升。
以上详细描述了本发明的较佳具体实施例。应当理解,本领域的普通技术人员无需创造性劳动就可以根据本发明的构思作出诸多修改和变化。因此,凡本技术领域中技术人员依本发明的构思在现有技术的基础上通过逻辑分析、推理或者有限的实验可以得到的技术方案,皆应在由权利要求书所确定的保护范围内。

Claims (6)

1.一种单色器用钌/碳化硼多层膜反射镜制备方法,其特征在于,包括以下步骤:
1)在溅射镀膜腔内的样品架上放置基底,并对溅射镀膜腔进行抽真空,形成溅射镀膜真空腔;
2)在所述溅射镀膜真空腔充入混合气体以调节溅射镀膜真空腔内的工作气压,并使所述溅射镀膜真空腔内的混合气体含量高于或等于等离子体启辉的临界值,所述混合气体由氩气和氮气混合而成,且混合气体的混合比例范围为16%-30%,所述混合比例指氮气分压占混合气体总压强的百分比;
3)执行钌靶材和碳化硼靶材的预溅射;
4)将设置有基底的样品架重复交替转到钌靶材和碳化硼靶材上方的溅射区域,控制样品架的停留时间或自转速度,改变钌膜层和碳化硼膜层的厚度,完成钌膜层和碳化硼膜层交替的钌/碳化硼多层膜反射镜的镀制,镀制的同时持续充入所述混合气体。
2.根据权利要求1所述的单色器用钌/碳化硼多层膜反射镜制备方法,其特征在于,步骤1)中,所述基底包括硅片或熔融石英玻璃,其表面粗糙度值的范围在0.1-0.3nm。
3.根据权利要求1所述的单色器用钌/碳化硼多层膜反射镜制备方法,其特征在于,步骤2)中,所述氩气和氮气的纯度均大于99.99%。
4.根据权利要求1所述的单色器用钌/碳化硼多层膜反射镜制备方法,其特征在于,步骤2)中,所述溅射镀膜真空腔的工作气压为0.1-0.4Pa。
5.根据权利要求1所述的单色器用钌/碳化硼多层膜反射镜制备方法,其特征在于,步骤3)中,所述预溅射时间范围在5min-30min。
6.根据权利要求1所述的单色器用钌/碳化硼多层膜反射镜制备方法,其特征在于,步骤4)中,所述钌膜层和碳化硼膜层的厚度范围均为1-3nm,膜对数范围均为20-120对。
CN201810167868.9A 2018-02-28 2018-02-28 一种单色器用钌/碳化硼多层膜反射镜制备方法 Active CN108359950B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810167868.9A CN108359950B (zh) 2018-02-28 2018-02-28 一种单色器用钌/碳化硼多层膜反射镜制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810167868.9A CN108359950B (zh) 2018-02-28 2018-02-28 一种单色器用钌/碳化硼多层膜反射镜制备方法

Publications (2)

Publication Number Publication Date
CN108359950A true CN108359950A (zh) 2018-08-03
CN108359950B CN108359950B (zh) 2019-12-31

Family

ID=63002840

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810167868.9A Active CN108359950B (zh) 2018-02-28 2018-02-28 一种单色器用钌/碳化硼多层膜反射镜制备方法

Country Status (1)

Country Link
CN (1) CN108359950B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112179622A (zh) * 2020-09-10 2021-01-05 同济大学 一种超高精度多层膜厚度漂移误差标定方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103635974A (zh) * 2011-06-22 2014-03-12 卡尔蔡司Smt有限责任公司 制造用于euv光刻的反射光学元件的方法
CN106104317A (zh) * 2014-03-06 2016-11-09 卡尔蔡司Smt有限责任公司 光学元件和具有光学元件的光学布置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103635974A (zh) * 2011-06-22 2014-03-12 卡尔蔡司Smt有限责任公司 制造用于euv光刻的反射光学元件的方法
CN106104317A (zh) * 2014-03-06 2016-11-09 卡尔蔡司Smt有限责任公司 光学元件和具有光学元件的光学布置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
YANG LIU ET AL.: "Structure of Ru/B4C multilayer for high flux monochromator application", 《PROC. OF SPIE 》 *
YIWEN WANG ET AL.: "Nitridated Pd/B4C multilayer mirrors for soft Xray region: internal structure and aging effects", 《OPTICS EXPRESS》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112179622A (zh) * 2020-09-10 2021-01-05 同济大学 一种超高精度多层膜厚度漂移误差标定方法
CN112179622B (zh) * 2020-09-10 2021-09-03 同济大学 一种超高精度多层膜厚度漂移误差标定方法

Also Published As

Publication number Publication date
CN108359950B (zh) 2019-12-31

Similar Documents

Publication Publication Date Title
Zhou et al. The characteristics of aluminium-doped zinc oxide films prepared by pulsed magnetron sputtering from powder targets
Sun et al. Thickness dependence of structure and optical properties of silver films deposited by magnetron sputtering
Ibrahim et al. Annealing effects on microstructural, optical, and mechanical properties of sputtered CrN thin film coatings: experimental studies and finite element modeling
Eren et al. Reflective metallic coatings for first mirrors on ITER
Marot et al. Rhodium coated mirrors deposited by magnetron sputtering for fusion applications
WO2019176552A1 (ja) 酸化物薄膜及び該薄膜を製造するためのスパッタリングターゲット用酸化物焼結体
CN108359950A (zh) 一种单色器用钌/碳化硼多层膜反射镜制备方法
Zhang et al. Investigation of working pressure on the surface roughness controlling technology of glow discharge polymer films based on the diagnosed plasma
Wu et al. The deposition and optical properties of Ge1− xCx thin film and infrared multilayer antireflection coatings
Li et al. Preparation and optical properties of SiCN thin films deposited by reactive magnetron sputtering
Meng et al. Optical and structural properties of down-conversion Bi doped Y2O3 films for potential application in solar cell
TW200401054A (en) Diamond film and method for making the same
Li et al. Effect of temperature fields on optical properties of La2Ti2O7 thin films
CN105441892B (zh) 一种极紫外高反射率的钯/钇多层膜反射镜的制备方法
CN111996506A (zh) 高反射率高纯度x射线多层膜反射镜的制备方法及反射镜
WO2020077705A1 (zh) 调控硬质涂层颜色的方法、硬质涂层及其制备方法
Stamate et al. Optical and surface properties TiO2 thin films deposited by DC magnetron sputtering method
Yi et al. Study on plasma cleaning of surface contaminants on pure copper
Aboraia et al. Structural and optical properties of ZnTe thin films induced by plasma immersion O-ion implantation
Maoyang et al. Preparation of Al-Al2O3 composite coating by dual-target magnetron sputtering and study on deuterium permeability
CN112342506A (zh) 一种低应力低吸收氧化物薄膜的制备方法
TWI411699B (zh) 太陽能選擇性吸收膜及其製造方法
Peng et al. Microstructure and blue photoluminescence of hydrogenated silicon carbonitride thin films
Takahashi et al. Correlation between crystallographic orientations and Raman spectra of TiO 2 sputtered films with changing degrees of plasma exposure
He et al. Influence of CH 4–Ar ratios on the composition, microstructure and optical properties of Be 2 C films synthesized by DC reactive magnetron sputtering

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant