CN108352976B - 用于控制信号传输的方法、设备和计算机可读存储介质 - Google Patents

用于控制信号传输的方法、设备和计算机可读存储介质 Download PDF

Info

Publication number
CN108352976B
CN108352976B CN201780003795.3A CN201780003795A CN108352976B CN 108352976 B CN108352976 B CN 108352976B CN 201780003795 A CN201780003795 A CN 201780003795A CN 108352976 B CN108352976 B CN 108352976B
Authority
CN
China
Prior art keywords
segment
format
subframe format
transmission
segment subframe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201780003795.3A
Other languages
English (en)
Other versions
CN108352976A (zh
Inventor
弗洛伦特·穆尼儿
罗伯特·马克·哈里森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Telefonaktiebolaget LM Ericsson AB
Original Assignee
Telefonaktiebolaget LM Ericsson AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Telefonaktiebolaget LM Ericsson AB filed Critical Telefonaktiebolaget LM Ericsson AB
Priority to CN202110427388.3A priority Critical patent/CN113225173A/zh
Publication of CN108352976A publication Critical patent/CN108352976A/zh
Application granted granted Critical
Publication of CN108352976B publication Critical patent/CN108352976B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/0012Hopping in multicarrier systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0073Allocation arrangements that take into account other cell interferences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/32TPC of broadcast or control channels
    • H04W52/325Power control of control or pilot channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0096Indication of changes in allocation
    • H04L5/0098Signalling of the activation or deactivation of component carriers, subcarriers or frequency bands

Abstract

描述了根据单段子帧格式(21)执行控制信号传输的用户设备(UE)(102)。在一方面,UE(102)选择单段子帧格式(21)而不是多段子帧格式(22)来作为子帧的上行链路传输格式。该选择可以是基于网络节点接收到的对单段子帧格式(21)要被用于发送一个或多个控制信号的指示。另外,UE(102)使用单段子帧格式(21)在上行链路控制信道上发送一个或多个控制信号。

Description

用于控制信号传输的方法、设备和计算机可读存储介质
技术领域
本公开总体上涉及无线通信系统,并且具体涉及无线通信系统内的上行链路控制信道传输。
背景技术
在如今的无线通信系统中,用户设备(UE)与网络节点(如基站、eNB或其他网络设备)进行通信,从而通过与该网络节点相关联的小区中的一个或多个下行链路信道接收数据。为了保持信道及数据传输完整性,UE同样可能会在一个或多个上行链路信道上向网络节点发送控制信令。例如,从UE到网络节点的上行链路控制信令可以包括针对所接收的下行链路数据的混合自动重复请求(HARQ或H-ARQ)应答(acknowledgement)、与用来辅助下行链路调度的下行链路信道条件有关的UE报告和/或指示UE需要用于上行链路数据传输的上行链路资源的调度请求。
例如,可以在物理上行链路控制信道(PUCCH)上发送该上行链路控制信令,该PUCCH目前符合多段子帧结构,而根据该多段子帧结构,网络节点在时域和频域中对上行链路控制信号传输进行调度。具体而言,典型的长期演进(LTE)子帧的长度为1ms,并且包含两个0.5ms时隙,每个时隙具有多个(例如六个或七个)符号。网络侧调度器将与可用系统带宽对应的多个资源元素分配给小区中的一个或多个UE,以用于子帧期间的上行链路控制传输。
在一些子帧中,将子帧的最后一个符号(在第二个时隙中)中的一个或多个资源元素保留来用于UE发送探测参考信号(SRS),该探测参考信号由网络节点接收并进行处理以确定上行链路信道的特征(例如,信道质量、干扰等)。在某些情况下,UE可以配置为执行用于探测参考信号(SRS)传输的跳频。当发生这样的切换时,由于信号放大器将功率电平从与PUCCH传输相关联的第一功率电平调整到与SRS传输相关联的第二功率电平,因而可能会发生SRS传输的延迟。在某些情况下,此延迟不会对控制信号传输或小区中的整体性能产生影响。不过,在延迟达到阈值持续时间(例如,~符号持续时间)的情况下,SRS的延迟可能足以造成在时间和频率上与小区中的调度PUCCH传输发生重叠,引起信号“冲突”。为了避免这种情形(这种情形产生可能使SRS和PUCCH中的一者或其两者无法被接收机识别到的干扰),可以取消或“丢弃”一个或多个后续时隙,由此造成系统资源的浪费和系统吞吐量的降低。
因此,需要用于上行链路信号调度的改进的上行链路控制帧结构和相关技术,以便改善在发生或者可能发生信号冲突的情况下的系统性能。
发明内容
本文的一个或多个实施例可以采用多个不同的潜在单段子帧,这些单段子帧定义了在无线环境中的上行链路控制信道上发送上行链路控制数据的不同的可行技术。因此,一些实施例可以从多个不同的潜在单段子帧格式和多段子帧格式之一中动态地选择用于一个或多个上行链路子帧的格式。在一些示例中,在确定由UE实现SRS跳频和/或在SRS与小区中的其他上行链路数据之间检测到实际的或潜在的冲突事件的情况下,在小区中操作的网络节点或UE可以为子帧选择单段子帧格式。允许以这种方式动态地选择单段子帧可以例如有利地避免小区中上行链路传输之间的冲突以及可能由冲突导致的对一个或多个上行链路传输时隙的潜在丢弃。
更具体地,本文的实施例包括由UE执行的用于控制信号传输的方法,该方法可以包括选择单段子帧格式而不是多段子帧格式来作为子帧的上行链路传输格式。另外,这样的方法可以包括UE使用单段子帧格式在上行链路控制信道上发送一个或多个控制信号。该选择可以是临时的,其中UE在特定时间量内应用单段子帧格式,然后再恢复到多段子帧格式;备选地,可以以开放式的方式来应用单段子帧格式,例如,直到选择了多段子帧格式为止,直到控制传输中断为止,等等。还备选地,根据要发送的上行链路控制信息的大小和/或内容,UE可以决定在发送单段子帧格式(例如,短PUCCH格式)与多段子帧格式(例如,长PUCCH格式)之v进行切换;无论是否要对探测参考信号执行分量载波切换,都可以实现这一点。
本文的实施例还包括对应的装置、计算机程序和载体(例如,计算机程序产品)以及由网络节点执行的网络侧方面。
附图说明
图1是根据一个或多个实施例的无线通信系统的框图。
图2是示出了根据一个或多个实施例的由UE执行的方法的逻辑流程图。
图3是示出了根据一个或多个实施例的由网络节点执行的方法的逻辑流程图。
图4A是根据一个或多个实施例的UE的框图。
图4B是根据一个或多个其他实施例的UE的框图。
图5A是根据一个或多个实施例的无线电节点的框图。
图5B是根据一个或多个其他实施例的无线电节点的框图。
具体实施方式
图1示出了根据一个或多个实施例的无线通信系统10。系统10包括网络节点106(例如但不限于基站、eNB、gNB等)。系统10还包括与网络节点106通信的UE 102(在本文中也被称为“终端”、“用户终端”等)。除了用户/应用数据的上行链路及下行链路传输之外,该通信还可以包括上行链路控制信令20和下行链路控制信令18。在一些示例中,可以通过PUCCH或物理上行链路共享信道(PUSCH)执行上行链路控制信令20。在一些示例中,如果已经向UE102分配了用于当前子帧中的数据传输的资源,则将上行链路控制信息(包括HARQ应答)与数据一起在PUSCH发送。在PUCCH上,如果还未向终端分配用于当前子帧中的数据传输的资源,则将用户数据与上行链路控制信息分开发送,该发送采用专门分配用于此目的的资源块。上行链路控制信令20可以包括针对接收到的下行链路数据的HARQ应答、与下行链路信道条件有关的终端报告、上行链路调度请求和/或SRS传输。下行链路控制信令18可以包括上行链路控制信道调度数据、与UE 102在特定子帧期间要在上行链路传输中利用的子帧格式有关的一个或多个指示、或者与UE 102或发生通信的小区中的任何其他UE有关的任何其他控制信令。
本公开至少涉及UE 102在PUCCH上发送的上行链路控制信令。在一些示例中,PUCCH时频资源位于总可用小区带宽的边缘处,在这里,每个这样的资源由上行链路子帧的两个段(例如两个时隙)中的每个段内的十二个子载波(例如,一个资源块)组成。为了提供频率分集,这些频率资源在时隙边界上经历跳频,即,一个“资源”由在子帧的第一时隙内的频谱上部的12个子载波以及在该子帧的第二时隙期间频谱下部的相同大小的资源组成(或反之亦然)。如果上行链路层1/层2(L1/L2)控制信令需要更多的资源(例如,在支持大量用户的极其大的总传输带宽的情况下),可以紧邻先前分配的资源块分配附加的资源块。
如上所述,上行链路L1/L2控制信令包括混合ARQ应答、信道状态报告以及调度请求。可以通过使用能够携带不同数量的比特的可用多段子帧格式22中的一个来实现这些类型的消息的不同组合。
对于单个终端的控制信令需求而言,在一个子帧期间的一个资源块的带宽太大。因此,为了高效地利用为控制信令预留的资源,多个终端可以共享同一个资源块。这是通过为这些不同的终端分配长度为12的小区特定频域序列的不同正交相位旋转来完成的。因此,PUCCH所使用的资源在时-频域中不仅由资源块对指定,而且还由所应用的相位旋转指定。类似于参考信号的情况,指定了多达12个不同的相位旋转,由此根据每个小区特定序列提供多达12个不同的正交序列。然而,在频率选择性信道的情况下,如果要保留正交性,那么并不是全部十二个相位旋转都可以使用。通常,在一个小区中最多有六个旋转被视为可使用的。
层1/层2用于PUCCH上的混合ARQ应答和调度请求。除了不连续传输(DTX)之外,它还能够携带多达两个信息比特,这样一来,如果在下行链路中没有检测到信息传输,则在上行链路中不会生成应答。因此,根据是否在下行链路上使用MIMO,存在有三种或五种不同的组合:
Figure GDA0002844522130000051
目前,在特定LTE版本13子帧中将若干PUCCH“格式”用于PUCCH通信。出于本公开的目的,这些当前利用的PUCCH格式在本文中被称为“传统”PUCCH格式、版本13PUCCH格式、多段(或多时隙)子帧格式22,或者简单地被称为PUCCH格式。下面将结合当前提出的单段(例如,单时隙)子帧格式21来描述这些传统格式。
例如,传统PUCCH格式1(在当前规范中存在有三种格式:1、1a和1b,但是为了简单起见,它们在本文中都被称为格式1)在子帧的两个段(例如,时隙、符号等)中采用相同的结构。对于混合ARQ应答的传输,使用单个混合ARQ应答比特来生成BPSK符号(在下行链路空间复用的情况下,使用两个应答比特来生成正交相移键控(QPSK)符号)。另一方面,对于调度请求,二进制相移键控(BPSK)/QPSK符号由在eNodeB处被视为否定应答的星座点所取代。然后,使用调制符号来生成要在两个PUCCH时隙中的每一个中发送的信号。
信道状态报告用于向eNodeB提供对终端处信道特性的估计,以辅助取决于信道的调度。信道状态报告由每个子帧多个比特组成。能够实现每个子帧最多两个比特的信息的PUCCH格式1显然不能用于此目的。信道状态报告在PUCCH上的传输代之由PUCCH格式2处理,PUCCH格式2能够实现每个子帧多个信息比特(实际上,LTE规范中存在有三种变型:格式2、格式2a和格式2b,其中后两种格式用于如下所讨论的混合ARQ应答的同时传输,为了简单起见,它们在本文中均被称为格式2)。PUCCH格式2基于与格式1相同的小区特定序列的相位旋转。
PUCCH格式3是设计来实现载波聚合的目的。对多个ACK/NACK比特进行编码形成48个编码比特。然后使用小区特定(并且可能是取决于离散傅里叶变换扩频正交频分复用(DFTS-OFDM)符号的)序列对编码比特进行加扰。在PUCCH格式3中,在第一时隙内发送24比特,而在第二时隙内发送另外的24比特。每个时隙24比特被转换成12个QPSK符号,进行离散傅里叶变换(DFT)预编码,分布在五个DFTS-OFDM符号上并且在一个资源块(带宽)和5个DFTS-OFDM符号(时间)内进行发送。另外,PUCCH格式3UE特定扩频序列使得能够在同一资源块内实现多达五个用户的复用。
PUCCH格式4和5是格式3的扩展并允许发送更多的HARQ数据。这是由版本13中载波聚合的扩展所产生的,由此允许多达32个分量载波。格式4使用分布在两个时隙上的144个QPSK符号块。不采用循环移位,这样便使得每个符号可以发送2个HARQ编码比特。每个块对应于频域中的一个资源块(12个子载波)。在时域中,第一时隙由6个数据OFDM符号和1个参考信号OFDM符号占用,而第二时隙包含5个数据符号和2个参考符号。
PUCCH格式5与格式4类似并使用分布在两个时隙上的72个QPSK符号。Size 2码分复用允许对用户进行复用。格式5在频域中占用一个资源块(12个子载波)。在时域中,两个时隙各自被6个数据OFDM符号和1个参考信号OFDM符号占用。
此外,使用在版本10中引入的并在版本11中得到增强的LTE载波聚合(CA)能够通过聚合来自多个载波的无线电资源来提供提高峰值数据速率、增大系统容量和改善用户体验的手段,该多个载波可以驻留在相同频带或不同频带中,并且对于带间TDD CA的情况可以配置有不同的UL/DL配置。在版本12中,引入了TDD和FDD服务小区之间的载波聚合,以支持UE同时连接到这些服务小区。
在版本13中,LAA(授权辅助接入)已经引起了人们的极大兴趣,这是因为它有可能将LTE载波聚合特性扩展到捕捉5GHz频带内未授权频谱的频谱机会。在5GHz频带中操作的WLAN已经支持现场80MHz,并且将在IEEE 802.11ac的Wave 2部署中继续使用160MHz。除了已经广泛用于LTE的频带之外,还存在有其他频带(例如3.5GHz),在该其他频带中在相同频带上对一个以上的载波进行聚合是可能的。结合作为IEEE 802.11ac Wave 2的LAA,实现了对LTE的至少类似带宽的利用将会支持用于将载波聚合框架扩展到支持5个以上载波的需求。将CA框架扩展到超过5个载波已被批准为LTE版本13的一项工作项目。目的是在UL和DL二者中支持多达32个载波。
与单载波操作相比,利用CA来操作的UE必须上报针对一个以上DL分量载波的反馈。与此同时,UE无需同时支持DL CA和UL CA。例如,市场上能够支持CA的UE的第一版仅支持DL CA(并不支持UL CA)。这也是3GPP RAN4标准化的根本性假设。因此,在版本10时间框架期间,为CA引入了增强UL控制信道,即PUCCH格式3。但是,为了在版本13中支持更多的分量载波,UL控制信道容量却成为了限制。
在载波聚合中,可以采用两种不同的方式来完成PUCCH传输。第一种方法基于使用基于DFTS-OFDM的PUCCH格式3。第二种CA PUCCH方法被称为信道选择。基本原理是为UE分配PUCCH格式1a/1b资源集合。然后,UE根据UE应该发送的ACK/NACK序列来选择资源之一。在其中一个所分配的资源上,UE随后将会发送QPSK或BPSK。eNB检测UE使用哪个资源以及UE在所使用的资源上反馈哪个QPSK或BPSK值,并将其组合到针对相关联的DL小区的HARQ响应中。
如上面简要论述的,已知与SRS传输相关联的延迟(例如,在SRS跳频场景下)会导致满足某个标准的延迟(例如,具有大于(或者有时也等于)阈值持续时间的持续时间)。如果该标准得到满足,则使网络节点106和/或UE 102确定应该丢弃一个或多个时隙(即,在PUCCH上的针对该一个或多个时隙的上行链路控制数据传输被取消或延迟)。尽管这些延迟有助于确保冲突得到避免,但它们会导致性能损失,并且可能导致数据传输的完全丢失(例如,随后不会发送针对被丢弃的时隙的传输)。
与基于SRS的载波切换/跳频有关的讨论开始于RAN1#84b[1-3]。在本发明中,讨论了对冲突(在另一个CC上发送SRS与从其完成切换的CA CC中的PUCCH或PUSCH信道之间的冲突)进行处理的影响,并提出了几种处理时隙丢弃的新方案。
冲突的影响很大程度上取决于SRS切换所导致的中断时间有多长。几微秒可以在需求层级上作为RAN4问题进行处理。需求规范(如3GPP36.101)规定了过渡延迟容差,以允许功率放大器在PUCCH和SRS功率电平之间切换。如果切换时间在相同的数量级内,则RAN4可以调整需求。如果切换延迟满足标准(例如,处于SC-OFDM符号长度或更大的量级上,等等),则至少在PUCCH/PUSCH吞吐量方面可能对网络性能和容量造成影响,这进而导致网络用户容量的降低。基于SRS的载波切换目前没有标准化解决方案来处理时隙的丢弃(这些时隙由于分量载波之间的切换所需的中断时间而不能发送)。
因此,本文描述的示例性实施例的一个非限制性目的在于:当两个段(例如,时隙、符号等)中的一个段必须被丢弃时,维持控制信号子帧的尽可能多的有效载荷(即,不发送为被丢弃的段/时隙调度的传输)。为了实现这个目的,本申请描述了利用一个段而不是两个段的几个非限制性子帧结构(例如,其中该段可以是诸如版本13子帧的时隙,但是这并不是限制性方面)。这样的结构在图1的子帧N中示出,其中,上行链路控制传输发生在其中一个时隙中(在图1中,子帧N的时隙0,但是它们可以备选地出现在时隙1中),并且不发生在另一个时隙中(在图1中,子帧N的时隙0)。比如,在本文的一些实施例中,将PUCCH格式1、1a、1b、3、4和5(如上所述)压缩到版本13PUCCH格式所占用的两个时隙中的其中一个(参见例如图1的子帧N-1的时隙0和时隙1,根据例如目前在版本13实现中利用的那些格式,子帧N-1具有多段(具体地,多时隙)子帧格式)。在一些实施例中,将PUCCH信道状态信息(CSI)报告有效载荷减半来补偿一半PUCCH资源的损失,并且功率偏移可以补偿第二时隙的损失。版本13参考信号设计、信道编码、交织、速率匹配和时隙结构可以结合上述方面一起使用。这样,当UE必须丢弃一个时隙时(如在基于SRS载波的切换中的情况那样),本实施例允许UE/网络节点在子帧中的单个段(例如,单个时隙)期间传送控制信息。
相应地,下面的描述说明了几个潜在的单段子帧格式21。例如,通过在UE 102的控制信号管理器32或网络节点的调度器28中所执行的处理,这些单段子帧格式21可以被网络节点106或UE 106选择为在一个或多个子帧中使用。出于本公开的目的,术语“段”(如在单段、多段等术语中所用的)可以指代用于对无线通信信道进行建模的任何时间和/或频率资源组,例如但不限于本领域已知的时隙、符号或任何其他有关实体。
在本文描述的一些示例中,网络节点106和UE 102可以就将利用单段子帧格式21或多段子帧格式22中的哪一个进行协商,或者网络节点106或UE 102中的一个可以负责做出这样的确定。在一些示例中,该确定可以包括确定在特定段和/或子帧期间UE是否要发送SRS,UE102是否要利用段/子帧之间的跳频,和/或与SRS传输或跳频相关联的延迟是否导致或者是否可以导致满足选择单段子帧格式21而不是多段子帧格式22的特定标准的延迟。
在其他方面,控制信号管理器32和/或调度器28可以配置为在为子帧选择单段子帧格式21的时隙期间调整与传输相关联的功率电平。如下面进一步详细描述的,这可以包括在子帧的单个段期间将传输功率提高与不会用于子帧的另一个时隙中的传输的功率相对应的剩余量。
另外,如上所述,当选择单段子帧格式21而不是多段子帧格式22时,网络节点106和/或UE 102可以在可利用的多个潜在单段子帧格式21之间进行选择。现在将详细描述这些可用的单段子帧格式的示例,其中一些结合上述多段子帧格式22(即,版本13双时隙子帧格式)进行描述。在某些示例性实施例中,单段PUCCH格式1、1a和1b中携带的肯定应答/否定应答(A/N或ACK/NACK)比特的数量与对应的版本13(即,“传统”)格式相同,这是因为第二时隙可以携带与时隙1相同的信息。当为UE配置或不配置信道选择时,这可以是真实情形。另外,功率可被调整为考虑被丢弃的时隙的可用功率,即,第一时隙现在按照先前可用于第二时隙的附加功率进行缩放。
另外,根据本公开,格式2、2a和2b可以携带20到22比特的有效载荷(CSI的20个编码比特加上最多两比特的HARQ-ACK),对应于10个CSI比特和2比特的HARQ-ACK。为了在单段(如单个时隙)上携带该有效载荷,建议在时隙中使用来自PUCCH格式3的编码和时隙结构。
PUCCH格式3的时隙结构和编码可以代替格式2、2a和2b,因此被标记为‘PUCCH格式2c’。同样的11比特Reed-Muller码将用于CSI,且CSI+最高2比特A/N。如果用于TDD,则可以在仅需要主小区的A/N的子帧中使用格式2c,并且当UE在信道选择的情况下配置有HARQ-ACK捆绑、HARQ-ACK复用或PUCCH格式1b时,在该情况下,A/N比特的数量可以是2。功率可以进行调整,以考虑被丢弃的时隙的可用功率,即,第一时隙现在以先前可用于第二时隙的附加功率进行缩放。
单段PUCCH格式3(新格式3b或2d)
在本公开的示例性实施例中,如果在版本13LTE系统中期望与CSI复用2个以上的A/N比特,则可以使用传统PUCCH格式3。但是,如果必须丢弃时隙,则可以使用单段格式3。对于此单段子帧格式,采用的是格式3的PUCCH丢弃规则(例如,如3GPP 36.213的第7.3.2节中所定义的),不同之处在于:将22比特处的PUCCH内容加以丢弃的规则现在丢弃12比特。此外,作为如传统PUCCH格式3中的具有1比特SR的20比特HARQ-ACK的替代,在本公开的单段PUCCH 3上最多携带10比特HARQ-ACK和1比特SR。在一些实施例中,仍然可以使用11比特Reed-Muller码,对应的新规则对包含A/N和CSI的少于11个的比特进行编码,因为在版本13中对于少于11个的比特而言,A/N不与CSI复用。此外,功率可以进行调整,以考虑被丢弃的时隙的可用功率,即,第一时隙现在以先前可用于第二时隙的附加功率进行缩放。
在任何情况下,单段PUCCH格式3中所发送的HARQ-ACK比特的最大值小于传统PUCCH格式3中所发送的HARQ-ACK比特的最大值,因此可以被认为是PUCCH格式3的较小版本,例如,‘格式3b’。备选地,鉴于有效载荷大小与PUCCH格式2相似,可以将其视为允许CSI和HARQ-ACK被复用的新PUCCH格式2,例如‘格式2d’。
单段PUCCH格式4和5
PUCCH格式5(具有正常CP)可以携带12个子载波/2个CDM用户×6个符号/时隙×2个时隙×2比特QPSK=144个信道比特。如果只使用一个时隙,则可以携带72个信道比特。
因此,当PUCCH格式5缩短为一个时隙时的信道比特数可以略微超过PUCCH格式3中的48比特。于是,简易解决方案(类似于上面的‘格式2c’)将是使用PUCCH格式5的单段来创建新的PUCCH格式,而关于编码和CSI丢弃规则,该PUCCH格式5的单段完全遵循PUCCH格式3的行为。这种新格式将携带不超过21比特的有效载荷。该新格式可以用于构建PUCCH格式3的第二版本,例如‘PUCCH格式3a’,并且在UE需要发送PUCCH格式3(但还必须仅在给定子帧中的一个时隙中发送)时可以用来代替PUCCH格式3。例如,当针对PUCCH格式3、4或5配置的UE确定了应该使用PUCCH格式3(根据版本13),但是仅有一个时隙可用于发送PUCCH时,则将改为使用PUCCH格式3a。
类似于PUCCH格式5,格式4允许每个时隙有若干144个比特(72个QPSK符号)的块,或者每个子帧288个编码比特。
基于PUCCH格式4和5的单段子帧格式(例如,‘格式4a’和‘格式5a’)的行为可以相类似,仅在一个时隙中进行发送,同时使用版本13丢弃规则,该版本13丢弃规则被改变为补偿一半可被用作有效载荷的RE。例如,针对配置有两种大小的PUCCH格式4呈现的具有HARQ-ACK和CSI的丢弃标准改变为:
Figure GDA0002844522130000111
其中,引入了新参数
Figure GDA0002844522130000112
对于PUCCH格式4或5,此参数被设置为:在UE仅可以在服务小区的一个段(例如,一个时隙)中进行发送的子帧中,
Figure GDA0002844522130000113
否则
Figure GDA0002844522130000114
在本公开的一些实施例中,仅在一个时隙中使用传统(即,版本13)PUCCH格式4或格式5进行发送仍然被认为是PUCCH格式4或格式5。在这样的情况下,UE可以配置有PUCCH格式4或PUCCH格式5,并且可以被网络告知如下内容:它应在某些子帧(例如UE可切换到另一个载波以发送SRS的那些子帧)中使用一个段来发送PUCCH格式4或格式5。网络可以通过向UE指示应在某些子帧(例如,切换子帧)中使用
Figure GDA0002844522130000121
来向UE告知此内容。另外,功率可以进行调整,以考虑被丢弃的时隙的可用功率,例如使得第一段以先前可用于传统子帧格式中的第二段的附加功率进行缩放。
此外,因为传统PUCCH格式5支持各种码率(从0.08到0.8),所以,如本文所述的单段PUCCH格式5可以实现从4比特到48比特的有效载荷(例如,信息比特)。因此,如果UE使用传统PUCCH格式3(20比特HARQ加上1比特调度请求)进行发送,但却被限制为仅能使用一个段,那么可以将单段格式5用作对现有格式的可行改进。
如上所述,网络节点106和UE 102中的一个或两个可以调整单段子帧格式中的单个使用时隙中用于控制信号传输的传输功率。对功率进行调整以考虑被丢弃的时隙的可用功率的实施例可以在UE功率控制计算中采用附加因子。一个这样的实施例采用了因子Δslot(i),相对于其中UE发送版本13PUCCH格式的子帧而言,该因子在其中UE发送单段PUCCH格式的子帧中提高了PUCCH的发送功率。这可以表示为:
Figure GDA0002844522130000122
其中:
·min{a,b}是a和b的最小值,其中a和b是实数,
·P′PUCCH(i)是UE在被调整为以所配置的单PUCH时隙格式操作之后应发送的以dB为单位的功率,以及
·PPUCCH(i)是根据3GPP TS 36.213版本13.2.0的第5.1.2.1节进行计算的。
此外,Δslot(i)在UE发送版本13PUCCH格式的子帧中为0,并且在UE发送单段PUCCH格式时的子帧中为非零值。在一些实施例中,该非零值可以是3dB。在其他实施例中,Δslot(i)在UE发送单段PUCCH格式的子帧中的值由高层进行设置,例如使用RRC配置参数或MAC控制元素中提供的值。
另外,上面的P′PUCCH(i)等式可以通过在PPUCCH(i)的版本13功率控制表达式中并入Δslot(i)来等效地表示。例如,如果服务小区c是主小区,则对于PUCCH格式1/1a/1b/2/2a/2b/3,在版本13中如下地定义服务小区c的子帧i中的物理上行链路控制信道(PUCCH)传输的UE发送功率PPUCCH的设置:
Figure GDA0002844522130000131
这可以扩展为支持何时单段PUCCH格式可以如下所示地通过包括Δslot(i)而由UE进行发送:
Figure GDA0002844522130000132
除了调整单段子帧控制信号传输的功率电平之外,网络节点106(或者在一些情况下,基于预定模式/定时基准的UE 102)可以选择其间发生了控制信号传输的特定时隙(例如,图1的子帧的时隙0或时隙1),并且相应地选择其间没有发生这种控制信号传输的时隙。例如,由于现有的PUCCH格式(包括格式1、1a、1b、2、2a、2b、3、4和5)每个时隙进行一次跳频,因此,无法支持一个子帧中的PUCCH跳频。然而,可以使用版本13PUCCH资源原理,其中在偶数时隙中的PUCCH传输处于频带的低端,而在奇数时隙中处于频带的高端,也即根据以下内容:
Figure GDA0002844522130000133
在这种情况下,发送单段PUCCH格式1、1a、1b、4或5或者新格式2c、3a、4a或5a的UE可以被分配有偶数或奇数时隙,以便在给定子帧中发送PUCCH,并且因此分别仅在ns mod 2=0或ns mod 2=1时可以进行发送。因此,单段PUCCH资源可以被定义为版本13PUCCH格式1、1a、1b、3、4或5资源,再加上在ns mod 2=0或ns mod 2=1时UE是否在给定子帧中发送单段PUCCH格式。然后,可以使用现有的PUCCH资源分配机制(隐式分配、ARI和ARO)来确定两个时隙的PRB,并且RRC配置时隙选择UE将在哪个RB上进行发送。
因此,如上所述,当前公开的实施例和技术的各方面包括选择和利用单段子帧格式,其中每一个单段子帧格式可以构成相对于现有或“传统”格式的缩短格式。这样做允许网络节点106和UE 102将可以在给定时间框架内进行传送的信令有效载荷最大化,同时还有利地利用已用来将设备配置为进行通信的编码方法。另外,本公开的各方面引入了用于优化单个子帧时隙期间的传输的传输功率以及用于选择时隙以便在小区范围的基础上(即,针对特定小区中的多个用户)使时隙的高效使用得到最大化的技术。
图2示出了由一个或多个UE 102执行的用于控制信号传输的示例性方法200。方法200可以包括在框202处选择单段子帧格式而不是多段子帧格式来作为子帧的上行链路传输格式。另外,在框204处,UE可以使用该单段子帧格式在上行链路控制信道上发送一个或多个控制信号。
另外,尽管在图2中没有明确地进行叙述,但是,方法200可以包括一个或多个其他方面,例如,UE通过以下方式选择子帧格式:识别出要在多段子帧中对探测参考信号(SRS)执行分量载波(CC)切换,确定CC切换将会造成满足持续时间标准的传输延迟,以及响应于确定该持续时间标准被满足,选择上行链路传输格式。在一个方面,单段子帧格式包括至少一种类型的多段子帧格式的比特缩减版本。此外,单段子帧格式利用由至少一种类型的多段子帧格式所利用的编码方法。该选择可以包括从单段子帧格式集合中选择单段子帧格式。方法200还可以包括:根据单段子帧格式,通过利用传输功率来设置发送一个或多个控制信号的功率电平,传输功率原本被分配给不用于发送一个或多个控制信号的子帧的段,并且以该功率电平发送所述一个或多个控制信号。功率电平可以包括大于以下功率电平的功率电平:在利用多段子帧格式时用于一个或多个控制信号的相关联的传输的另一功率电平。此外,使用单段子帧格式发送一个或多个控制信号可以包括:选择子帧的两个可能段(例如,时隙、符号等)中的单个段,在该单个时隙期间要发送一个或多个控制信号。方法200还可以包括:从网络节点接收对应使用单段子帧格式在多个段中的哪个段发送上行链路控制信道的指示;从网络节点接收对要被用于发送一个或多个控制信号的控制信道频率资源的指示,该指示包括以下中的一个或多个:UE接收的下行链路控制信道的位置和在下行链路控制信道上的下行链路控制信息内携带的资源指示。此外,该方法可以包括使用对控制信道资源的指示和要发送控制信道的时隙来确定应使用单段子帧格式来发送一个或多个控制信号的物理资源块。
图3示出了由一个或多个网络节点106执行的用于控制UE 102发送一个或多个控制信号的示例性方法300。例如,在框302处,方法300包括网络节点106选择单段子帧格式而不是多段子帧格式来作为UE在子帧中发送一个或多个控制信号的上行链路传输格式。另外,在框304处,网络节点106向UE发送指示,该指示对要使用单段子帧格式在上行链路控制信道上发送一个或多个控制信号进行指示。此外,在框306处,网络节点106例如基于网络节点106在框304处向UE发送指示,根据单段子帧格式在上行链路控制信道上接收一个或多个控制信号。
图4A示出了根据一个或多个实施例实现的UE 102。如图所示,UE102包括处理电路400(其可以包括至少一个处理器)以及通信电路410。通信电路410配置为经由任何通信技术向一个或多个网络节点106发送信息和/或从一个或多个网络节点106接收信息。这样的通信可以经由UE 102内部或外部的一根或多根天线来发生。处理电路400配置为例如通过执行存储在存储器420中的指令来执行例如以上在图2中所描述的处理。在这方面,处理电路400可以实现某些功能装置、单元或模块。
图4B示出了根据一个或多个其他实施例实现的UE 102。如图所示,UE 102例如经由图4A中的处理电路400和/或经由软件代码来实现各种功能装置、单元或模块。例如,用于实现图2中的方法的这些功能装置、单元或模块包括例如用于选择单段子帧格式来作为子帧的上行链路传输格式的选择单元或模块430。还包括有发送单元或模块440,用于使用该单段子帧格式在上行链路控制信道上发送一个或多个控制信号。
图5A示出了根据一个或多个实施例实现的网络节点106,例如基站、eNB或其他网络侧设备。如图所示,网络节点106包括处理电路500以及通信电路510。通信电路510配置为经由任何通信技术向一个或多个UE 102发送信息和/或从一个或多个UE 102接收信息。这样的通信可以经由网络节点106内部或外部的一根或多根天线来发生。处理电路500配置为例如通过执行存储在存储器520中的指令来执行例如以上在图3中所描述的处理。在这方面,处理电路500可以实现某些功能装置、单元或模块。
图5B示出了根据一个或多个其他实施例实现的网络节点106。如图所示,网络节点106例如经由图5A中的处理电路500和/或经由软件代码来实现各种功能装置、单元或模块。例如,用于实现图3中的方法的这些功能装置、单元或模块包括例如用于选择单段子帧格式来作为UE的针对子帧的上行链路传输格式的选择单元或模块530。还包括有发送单元或模块540,用于向UE 102发送指示,该指示对要使用单段子帧格式在上行链路控制信道上发送一个或多个控制信号进行指示。另外,还包括有接收单元或模块550,用于在上行链路控制信道上接收一个或多个控制信号。
本领域技术人员还将认识到的是,本文的实施例还包括对应的计算机程序。计算机程序包括指令,这些指令在节点的至少一个处理器或处理电路上执行时使得节点执行以上所述的相应处理中的任何处理。就此而言,计算机程序可以包括与上述装置或单元相对应的一个或多个代码模块。实施例还包括包含该计算机程序的载体。该载体可以包括电子信号、光学信号、无线电信号或计算机可读存储介质中的一种。就此而言,本文的实施例还包括存储在非暂时性计算机可读(存储或记录)介质上并包括指令的计算机程序产品,这些指令在由网络节点或UE的处理器或处理电路执行时使得节点或UE如上所述地执行。实施例还包括计算机程序产品,该计算机程序产品包括用于在由计算设备执行计算机程序产品时执行本文的任何实施例的步骤的程序代码部分。此计算机程序产品可以存储在计算机可读记录介质上。
此外,网络节点106的处理或功能可以被认为是由单个实例或设备执行,或者可以跨网络节点106的多个实例进行划分,该多个实例可以存在于给定网络/环境中,使得设备实例可一起执行所有公开的功能。另外,网络节点106可以是与无线通信网络、无线电通信网络或内容发布网络(通常已知执行其给定的已公开过程或功能)相关联的任何已知类型的设备。这种网络节点的示例包括eNB、gNB(或其他类型的基站或接入点)、移动性管理实体(MME)、网关、服务器等。
在以上讨论的任何场景下,本文的UE 102可以是或者可以包括能够与无线通信网络进行无线通信的任何无线通信设备,并且在一些示例中可以包括移动设备,诸如移动电话、PDA、平板电脑、计算机(移动形式的或其他形式的)、膝上型电脑等。另外,UE 102可以包括物联网设备,例如,执行监视或测量并将这些监视测量的结果发送给另一设备或网络的设备。这种机器的具体示例是功率计、工业机械或者家用电器或个人用品(例如,冰箱、电视机、手表之类的个人可穿戴设备等)。在其他场景下,如本文所述的无线通信设备可以包括在车辆中,并且可以执行车辆的操作状态或与车辆相关联的其他功能的监视和/或上报。
3GPP已经在本公开的最早优先权日和递交日之间发布了涉及5G新空口(NR)术语的协议。NR术语和LTE术语在相当程度上都是相一致的。例如,资源元素(RE)保留1个子载波×1个OFDM符号。然而,LTE中已知的一些术语在NR中已经被赋予了新的含义。包括权利要求在内的本公开应用前缀“LTE”和“NR”是为了阐明相关技术背景。例如,持续1ms的LTE子帧包含针对正常CP的14个OFDM符号,而NR子帧具有1ms的固定持续时间,并且因此可以针对不同的子载波间隔包含不同数量的OFDM符号。LTE时隙对应于针对正常CP的7个OFDM符号,而NR时隙可以对应于7个或14个OFDM符号;在15kHz子载波间隔处,具有7个OFDM符号的时隙占用0.5ms。关于NR术语,参考3GPP技术报告38.802v14.0.0,并参考要出现在38系列中的技术规范。
除非另有说明,否则本公开中的无前缀术语将被理解为具有LTE领域的意义。然而,指明了根据LTE已知的对象或操作的任何术语在功能上预计将在考虑NR规范的情况下被重新解释。例如,考虑到两者都具有10ms的持续时间,LTE无线帧可以在功能上等同于NR帧。LTE子帧可以在功能上等同于具有对应数量的OFDM符号的NR时隙。由于其作为下行链路发射机的功能至少部分地重叠,因此,LTE eNB可以在功能上等同于NR gNB。包括12个子载波×1个时隙的资源块(RB)是LTE中的调度单位,即最小的可分配资源。LTE RB与NR中具有单个OFDM符号的最小可分配资源(最短的微时隙)相当。因此,尽管已经使用了源于LTE的术语来描述本公开的一些实施例,但是它们仍然完全适用于NR技术。
当然,在不脱离本发明的基本特征的情况下,可以以除了本文具体阐述的那些方式之外的其他方式来执行本公开中描述的示例性实施例。本发明的实施例在所有方面都应被认为是说明性的而非限制性的,并且落入所附权利要求的含义和等同范围内的所有变化都旨在被包含在其中。

Claims (30)

1.一种由用户设备UE(102)执行的用于控制信号传输的方法(200),包括:
选择(202)单段子帧格式而不是多段子帧格式(22)来作为子帧的上行链路传输格式,其中,所述单段子帧格式(21)由单个传输段组成,且所述多段子帧格式(22)由所述传输段的多个实例组成;以及
使用所述单段子帧格式在上行链路控制信道上发送(204)一个或多个控制信号。
2.根据权利要求1所述的方法,其中,所述传输段是时隙。
3.根据权利要求1所述的方法,其中,所述传输段是符号。
4.根据权利要求1至3中任一项所述的方法,其中,所述选择(202)还包括:
识别出要在多段子帧中对探测参考信号SRS执行分量载波CC切换;
确定所述CC切换将会造成满足持续时间标准的传输延迟;以及
响应于确定所述持续时间标准被满足,选择上行链路传输格式。
5.根据权利要求1至3中任一项所述的方法,其中,所述单段子帧格式(21)包括至少一种类型的多段子帧格式(22)的比特缩减版本。
6.根据权利要求1至3中任一项所述的方法,其中,所述单段子帧格式(21)利用由至少一种类型的多段子帧格式所利用的编码方法。
7.根据权利要求1至3中任一项所述的方法,其中,选择所述单段子帧格式(21)包括从单段子帧格式集合中选择所述单段子帧格式(21)。
8.根据权利要求1至3中的任一项所述的方法,其中,所述单段子帧格式(21)具有由至少一个多段子帧格式(22)所利用的相关联的编码方案。
9.根据权利要求1至3中任一项所述的方法,其中,发送所述一个或多个信号包括:
根据所述单段子帧格式(21),通过利用传输功率来设置发送所述一个或多个控制信号的功率电平,所述传输功率原本被分配给不用于发送所述一个或多个控制信号的子帧的段;以及
以所述功率电平发送所述一个或多个控制信号。
10.根据权利要求9所述的方法,其中,所述功率电平包括大于以下功率电平的功率电平:在利用所述多段子帧格式(22)时用于所述一个或多个控制信号的相关联的传输的另一功率电平。
11.根据权利要求1所述的方法,其中,使用所述单段子帧格式(21)发送所述一个或多个控制信号包括:选择子帧的两个可能时隙中的单个时隙,在所述单个时隙期间要发送所述一个或多个控制信号。
12.根据权利要求1所述的方法,还包括:
从网络节点接收对应使用所述单段子帧格式(21)在多个时隙中的哪个时隙发送上行链路控制信道的指示;
从所述网络节点(106)接收对要被用于发送所述一个或多个控制信号的控制信道频率资源的指示,所述指示包括以下中的一个或多个:
所述UE(102)接收的下行链路控制信道的位置,以及
在所述下行链路控制信道上的下行链路控制信息内携带的资源指示;以及
使用对所述控制信道资源的指示和要发送所述控制信道的段来确定应使用所述单段子帧格式来发送所述一个或多个控制信号的物理资源块。
13.根据权利要求11所述的方法,其中,所述多段子帧格式(22)包括导频时隙。
14.根据权利要求12所述的方法,其中,所述多段子帧格式(22)包括上行链路导频时隙和下行链路时隙以及可选的保护时段。
15.根据权利要求13或14所述的方法,其中,所述单段子帧格式(21)包括所述一个或多个控制信号的传输以及不需要UE传输的至少一个重调谐时段。
16.根据权利要求13或14所述的方法,其中,将未被选择的多段子帧格式(22)的一个时隙剩余部分的至少一部分用来发送下行链路导频信号或上行链路导频信号。
17.根据权利要求16所述的方法,其中,所述一个时隙剩余部分还包括不需要UE传输的重调谐时段。
18.根据权利要求13或14所述的方法,其中,所述一个或多个控制信号是SRS。
19.根据权利要求18所述的方法,其中,在所述单段子帧格式(21)的非最终和/或非初始符号中发送所述SRS。
20.根据权利要求13或14所述的方法,还包括:根据针对时分双工TDD配置的CC,识别出要执行CC切换。
21.根据权利要求13或14所述的方法,还包括识别所述UE(102)属于从多个预定义类别中选择的中断时间类别,其中,所述UE(102)所属的所述中断时间类别指定小于350μs的最大中断时间或者指定小于5个符号的最大中断时间。
22.一种用户设备UE(102),配置为:
选择单段子帧格式而不是多段子帧格式(22)来作为子帧的上行链路传输格式,其中,所述单段子帧格式(21)由单个传输段组成,且所述多段子帧格式由所述传输段的多个实例组成;以及
使用所述单段子帧格式(21)在上行链路控制信道上发送一个或多个控制信号。
23.一种用户设备UE(102),包括:
处理电路(400)和存储器(420),所述存储器(420)包含指令,所述指令能够由所述处理电路(400)执行,由此所述UE(102)被配置为:
选择单段子帧格式而不是多段子帧格式(22)来作为子帧的上行链路传输格式,其中,所述单段子帧格式(21)由单个传输段组成,且所述多段子帧格式(22)由所述传输段的多个实例组成;以及
使用所述单段子帧格式(21)在上行链路控制信道上发送一个或多个控制信号。
24.一种用户设备UE(102),包括:
第一模块(430),用于选择单段子帧格式(21)而不是多段子帧格式(22)来作为子帧的上行链路传输格式,其中,所述单段子帧格式(21)由单个传输段组成,且所述多段子帧格式(22)由所述传输段的多个实例组成;以及
第二模块(440),用于使用所述单段子帧格式(21)在上行链路控制信道上发送一个或多个控制信号。
25.一种计算机可读存储介质,存储包括指令的计算机程序,所述指令在由用户设备UE(102)的至少一个处理器(400)执行时使得所述UE(102):
选择单段子帧格式(21)而不是多段子帧格式(22)来作为子帧的上行链路传输格式,其中,所述单段子帧格式(21)由单个传输段组成,且所述多段子帧格式(22)由所述传输段的多个实例组成;以及
使用所述单段子帧格式(21)在上行链路控制信道上发送一个或多个控制信号。
26.一种由网络节点(106)执行的用于控制用户设备UE(102)发送一个或多个控制信号的方法,包括:
选择单段子帧格式(21)而不是多段子帧格式(22)来作为所述UE在子帧中发送所述一个或多个控制信号的上行链路传输格式,其中,所述单段子帧格式(21)由单个传输段组成,且所述多段子帧格式(22)由所述传输段的多个实例组成;
向所述UE(102)发送指示,所述指示对要使用所述单段子帧格式(21)在上行链路控制信道上发送所述一个或多个控制信号进行指示;以及
根据所述单段子帧格式(21)在所述上行链路控制信道上接收所述一个或多个控制信号。
27.一种网络节点(106),配置为:
选择单段子帧格式(21)而不是多段子帧格式(22)来作为UE在子帧中发送一个或多个控制信号的上行链路传输格式,其中,所述单段子帧格式(21)由单个传输段组成,且所述多段子帧格式(22)由所述传输段的多个实例组成;
向所述UE(102)发送指示,所述指示对要使用所述单段子帧格式(21)在上行链路控制信道上发送所述一个或多个控制信号进行指示;以及
根据所述单段子帧格式(21)在所述上行链路控制信道上接收所述一个或多个控制信号。
28.一种网络节点(106),包括:
处理电路(500)和存储器(520),所述存储器(520)包含指令,所述指令能够由所述处理电路(500)执行,由此所述网络节点(106)被配置为:
选择单段子帧格式(21)而不是多段子帧格式(22)来作为UE(102)在子帧中发送一个或多个控制信号的上行链路传输格式,其中,所述单段子帧格式(21)由单个传输段组成,且所述多段子帧格式(22)由所述传输段的多个实例组成;
向所述UE(102)发送指示,所述指示对要使用所述单段子帧格式(21)在上行链路控制信道上发送所述一个或多个控制信号进行指示;以及
根据所述单段子帧格式(21)在所述上行链路控制信道上接收所述一个或多个控制信号。
29.一种网络节点(106),包括:
第一模块(530),用于选择单段子帧格式(21)而不是多段子帧格式(22)来作为UE在子帧中发送一个或多个控制信号的上行链路传输格式,其中,所述单段子帧格式(21)由单个传输段组成,且所述多段子帧格式(22)由所述传输段的多个实例组成;
第二模块(540),用于向所述UE(102)发送指示,所述指示对要使用所述单段子帧格式(21)在上行链路控制信道上发送所述一个或多个控制信号进行指示;以及
第三模块(550),用于根据所述单段子帧格式(21)在所述上行链路控制信道上接收所述一个或多个控制信号。
30.一种计算机可读存储介质,存储包括指令的计算机程序,所述指令在由网络节点(106)的至少一个处理器(500)执行时使得所述网络节点(106):
选择单段子帧格式(21)而不是多段子帧格式(22)来作为UE(102)在子帧中发送一个或多个控制信号的上行链路传输格式,其中,所述单段子帧格式(21)由单个传输段组成,且所述多段子帧格式(22)由所述传输段的多个实例组成;
向所述UE(102)发送指示,所述指示对要使用所述单段子帧格式(21)在上行链路控制信道上发送所述一个或多个控制信号进行指示;以及
根据所述单段子帧格式(21)在所述上行链路控制信道上接收所述一个或多个控制信号。
CN201780003795.3A 2016-08-12 2017-08-14 用于控制信号传输的方法、设备和计算机可读存储介质 Active CN108352976B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110427388.3A CN113225173A (zh) 2016-08-12 2017-08-14 用于控制信号传输的方法、设备和计算机可读存储介质

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201662374495P 2016-08-12 2016-08-12
US62/374,495 2016-08-12
US201662401490P 2016-09-29 2016-09-29
US62/401,490 2016-09-29
PCT/SE2017/050818 WO2018030950A1 (en) 2016-08-12 2017-08-14 One-segment pucch formats

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN202110427388.3A Division CN113225173A (zh) 2016-08-12 2017-08-14 用于控制信号传输的方法、设备和计算机可读存储介质

Publications (2)

Publication Number Publication Date
CN108352976A CN108352976A (zh) 2018-07-31
CN108352976B true CN108352976B (zh) 2021-05-07

Family

ID=59684002

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202110427388.3A Pending CN113225173A (zh) 2016-08-12 2017-08-14 用于控制信号传输的方法、设备和计算机可读存储介质
CN201780003795.3A Active CN108352976B (zh) 2016-08-12 2017-08-14 用于控制信号传输的方法、设备和计算机可读存储介质

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN202110427388.3A Pending CN113225173A (zh) 2016-08-12 2017-08-14 用于控制信号传输的方法、设备和计算机可读存储介质

Country Status (10)

Country Link
US (3) US10454647B2 (zh)
EP (1) EP3345331B1 (zh)
JP (2) JP6895958B2 (zh)
CN (2) CN113225173A (zh)
CL (1) CL2018001103A1 (zh)
DK (1) DK3345331T3 (zh)
ES (1) ES2734998T3 (zh)
PL (1) PL3345331T3 (zh)
RU (2) RU2019139685A (zh)
WO (1) WO2018030950A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY197321A (en) * 2016-09-30 2023-06-13 Nokia Solutions & Networks Oy Nr pucch coverage extension
US11166262B2 (en) * 2017-01-05 2021-11-02 FG Innovation Company Limited Long physical uplink control channel (PUCCH) design for 5th generation (5G) new radio (NR)
US10582454B2 (en) 2017-09-27 2020-03-03 Ofinno, Llc Power control for uplink control channel
US11153127B2 (en) * 2017-11-24 2021-10-19 Lg Electronics Inc. Method for transmitting and receiving SRS and communication device therefor
CN110166207B (zh) * 2018-02-14 2021-08-27 华为技术有限公司 一种资源确定方法和装置
US11395270B2 (en) * 2018-04-27 2022-07-19 Qualcomm Incorporated Uplink control information payload size
SG11202101075XA (en) 2018-08-03 2021-03-30 Beijing Xiaomi Mobile Software Co Ltd Slot format indication method, apparatus and system, and device and storage medium
WO2020034120A1 (zh) * 2018-08-15 2020-02-20 北京小米移动软件有限公司 时隙格式指示方法、装置、设备、系统及存储介质
CN113475030B (zh) * 2019-07-31 2023-09-26 Oppo广东移动通信有限公司 上行信道传输方式的确定方法、装置、设备及介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101594683A (zh) * 2009-06-19 2009-12-02 中兴通讯股份有限公司 一种载波聚合时的信号传输方法及系统
CN104303573A (zh) * 2012-05-10 2015-01-21 高通股份有限公司 用于协作多点操作的探测参考信号与上行链路信道的交互
CN105846963A (zh) * 2010-11-02 2016-08-10 Lg电子株式会社 在无线通信系统中发射/接收上行链路控制信息的方法和装置

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8855062B2 (en) 2009-05-28 2014-10-07 Qualcomm Incorporated Dynamic selection of subframe formats in a wireless network
US8265642B2 (en) * 2009-06-16 2012-09-11 Qualcomm Incorporated Systems, apparatus and methods for physical random access channel processing
US9515773B2 (en) * 2010-04-13 2016-12-06 Qualcomm Incorporated Channel state information reporting in a wireless communication network
MY164713A (en) * 2010-08-20 2018-01-30 Ericsson Telefon Ab L M Arrangement and method for identifying pucch format 3 resources
CN102457348B (zh) * 2010-10-22 2015-12-16 中兴通讯股份有限公司 一种实现伪线控制字能力协商的方法及系统
CN102467348B (zh) 2010-11-03 2016-01-20 北京普源精电科技有限公司 从测量仪器接收数据的方法及系统
KR101867311B1 (ko) 2010-12-21 2018-07-19 주식회사 골드피크이노베이션즈 Ack/nack 자원 할당 방법 및 장치와 이를 이용한 ack/nack 신호 전송 방법
WO2013067430A1 (en) * 2011-11-04 2013-05-10 Interdigital Patent Holdings Inc. Method and apparatus for power control for wireless transmissions on multiple component carriers associated with multiple timing advances
US8923432B2 (en) * 2011-12-02 2014-12-30 Qualcomm Incorporated Systems and methods for communication over a plurality of frequencies and streams
JP5859683B2 (ja) * 2012-01-27 2016-02-10 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおけるアップリンク制御情報転送方法及び装置
US9265037B2 (en) * 2012-09-14 2016-02-16 Kt Corporation Transmitting and receiving uplink control channel
KR102364695B1 (ko) * 2013-08-17 2022-02-18 엘지전자 주식회사 무선 통신 시스템에서 사운딩 참조 신호의 전송 전력 제어 방법 및 이를 위한 장치
WO2015170923A1 (ko) * 2014-05-08 2015-11-12 엘지전자 주식회사 단말간 직접 통신을 지원하는 통신 시스템에서 복수의 신호를 처리하는 방법 및 이를 위한 장치
US10298359B2 (en) * 2014-12-28 2019-05-21 Lg Electronics Inc. Method and apparatus for performing uplink transmission for user equipment requiring coverage enhancements in wireless communication system
US11818717B2 (en) * 2014-12-31 2023-11-14 Texas Instruments Incorporated Method and apparatus for uplink control signaling with massive Carrier Aggregation
US10098099B2 (en) 2015-01-26 2018-10-09 Qualcomm Incorporated Low latency group acknowledgements
WO2017023146A1 (en) * 2015-08-06 2017-02-09 Innovative Technology Lab Co., Ltd. Apparatus and method for transmitting uplink control information through a physical uplink control channel
MX2018005526A (es) * 2015-11-05 2018-08-01 Ntt Docomo Inc Terminal de usuario, estacion base de radio y metodo de comunicacion de radio.
CA3019371C (en) 2016-03-30 2023-10-24 Interdigital Patent Holdings, Inc. Reducing latency in physical channels in an lte network
US10862727B2 (en) 2016-06-16 2020-12-08 Lg Electronics Inc. Method for transmitting and receiving physical uplink control channel in wireless communication system, and device for supporting same
KR102355797B1 (ko) 2016-08-09 2022-01-26 삼성전자 주식회사 무선 셀룰라 통신 시스템에서 채널 전송 방법 및 장치

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101594683A (zh) * 2009-06-19 2009-12-02 中兴通讯股份有限公司 一种载波聚合时的信号传输方法及系统
CN105846963A (zh) * 2010-11-02 2016-08-10 Lg电子株式会社 在无线通信系统中发射/接收上行链路控制信息的方法和装置
CN104303573A (zh) * 2012-05-10 2015-01-21 高通股份有限公司 用于协作多点操作的探测参考信号与上行链路信道的交互

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"PUCCH transmission for MTC";Ericsson;《3GPP TSG RAN WG1 Meeting #81 R1-152505》;20150529;全文 *

Also Published As

Publication number Publication date
RU2018117704A (ru) 2019-11-14
DK3345331T3 (da) 2019-06-11
JP2018533304A (ja) 2018-11-08
US20190394006A1 (en) 2019-12-26
EP3345331B1 (en) 2019-04-10
CN108352976A (zh) 2018-07-31
CN113225173A (zh) 2021-08-06
PL3345331T3 (pl) 2019-09-30
RU2709170C2 (ru) 2019-12-16
US20210273765A1 (en) 2021-09-02
JP7145899B2 (ja) 2022-10-03
US20180294938A1 (en) 2018-10-11
JP6895958B2 (ja) 2021-06-30
JP2020074603A (ja) 2020-05-14
ES2734998T3 (es) 2019-12-13
CL2018001103A1 (es) 2018-07-06
RU2019139685A (ru) 2021-10-15
US11757591B2 (en) 2023-09-12
US11012216B2 (en) 2021-05-18
US10454647B2 (en) 2019-10-22
RU2018117704A3 (zh) 2019-11-14
WO2018030950A1 (en) 2018-02-15
EP3345331A1 (en) 2018-07-11

Similar Documents

Publication Publication Date Title
CN108352976B (zh) 用于控制信号传输的方法、设备和计算机可读存储介质
US20210352660A1 (en) Uplink control information transmitting method and apparatus
JP7073378B2 (ja) 物理アップリンクデータチャンネルで制御情報多重化
JP6949094B2 (ja) ユーザ機器、アクセスネットワークデバイス、ならびにフィードバック情報送信および受信方法
CN107113096B (zh) 在无线通信系统中发送ack/nack的方法和使用该方法的设备
CN107465491B (zh) 确定控制信道资源的方法和用户设备
EP3251268B1 (en) Communicating control data in a wireless communication network
CN107683576B (zh) 对于上行链路控制信息的自适应传送方法
US10587387B2 (en) Method and apparatus for transmitting uplink control information (UCI) in wireless communication system
EP2777205B1 (en) Physical uplink control channel resource allocation for multiple channel state indicators colliding in same subframe
EP3665989A1 (en) Dynamic management of uplink control signaling resources in wireless network
EP3499773A1 (en) Method and apparatus for transmitting uplink channel
US11101960B2 (en) Method for transmitting uplink control information and apparatus
CN107637004B (zh) 报告信道状态信息的方法和使用该方法的设备
CN112787772A (zh) Sps pdsch的harq反馈方法、装置及存储介质
JP6564052B2 (ja) チャネル状態情報の伝送方法、ユーザ機器、及びアクセス・ネットワーク・デバイス
EP2519050A1 (en) Mobile station, wireless base station, and mobile communication method
US20160345346A1 (en) Method and apparatus for reporting channel status in cellular radio communication system
WO2011052782A1 (ja) 移動通信方法、移動局及び無線基地局
KR20190116751A (ko) 무선 통신 시스템에서 상향제어채널의 전송자원 결정방법 및 장치

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant