CN108347188B - 电动汽车用六相电动机低开关损耗svpwm控制方法 - Google Patents

电动汽车用六相电动机低开关损耗svpwm控制方法 Download PDF

Info

Publication number
CN108347188B
CN108347188B CN201810214661.2A CN201810214661A CN108347188B CN 108347188 B CN108347188 B CN 108347188B CN 201810214661 A CN201810214661 A CN 201810214661A CN 108347188 B CN108347188 B CN 108347188B
Authority
CN
China
Prior art keywords
voltage vector
sector
plane
maximum
vector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810214661.2A
Other languages
English (en)
Other versions
CN108347188A (zh
Inventor
张志锋
吴雪松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenyang University of Technology
Original Assignee
Shenyang University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenyang University of Technology filed Critical Shenyang University of Technology
Priority to CN201810214661.2A priority Critical patent/CN108347188B/zh
Publication of CN108347188A publication Critical patent/CN108347188A/zh
Application granted granted Critical
Publication of CN108347188B publication Critical patent/CN108347188B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

本发明提供一种电动汽车用六相电动机低开关损耗SVPWM控制方法,涉及电动汽车用多相电动机的控制技术领域。该方法首先划分空间和扇区,然后选择每一个扇区内相邻的三个电压矢量,满足在αβ空间合成参考电压,在z1z2平面合成为零;进一步针对期望矢量在αβ平面上位于12个最大电压矢量附近时,直接使用该最大和次大两个电压矢量合成与期望电压矢量幅值相同的电压矢量来替代参考电压矢量,并且保证在z1z2平面上合成为零。本发明保持了双三相电机控制的高性能,降低了六相逆变器的开关损耗,从而降低了逆变器的发热。

Description

电动汽车用六相电动机低开关损耗SVPWM控制方法
技术领域
本发明涉及电动汽车用多相电动机的控制技术领域,尤其涉及一种电动汽车用六相电动机低开关损耗SVPWM(Space Vector Pulse Width Modulation,即空间矢量脉宽调制)控制方法。
背景技术
由传统汽车尾气带来的环境污染以及石油能源枯竭带来的问题,使得以电动机、电池和电控组成的“三电”系统为核心的电动汽车有极为广阔的发展前景。然而,目前的电动汽车的很多技术尚不成熟,存在着续航能力差、损耗严重、电池体积和质量较大等问题。多相电动机适用于低压大功率场合,可有效降低电池体积,而且具有转动脉动小、容错性能好、谐波小而得到关注,特别合适用于电动汽车用电动机。
由六相逆变器控制的具有两个独立定子节点的双Y移30°六相电动机是多相电动机研究最为广泛多相电动机种类。冗余的电压矢量为六相电动机的矢量控制提供了优势,然而传统的六相电动机SVPWM控制方法,为了提高电动机的控制性能,在每一个PWM周期内使用了较多的电压矢量,从而导致逆变器的开关管导通和关断的次数较多,产生较大的逆变器开关损耗。这样不仅降低了开关管的使用寿命,导致电动汽车的电机控制系统中逆变器发热严重。因此,针对电动汽车用六相电动机提出一种可以降低六相逆变器开关损耗而且又不降低直流侧母线电压利用率的SVPWM控制方法就很有意义。
发明内容
本发明要解决的技术问题是针对上述现有技术的不足,提供一种电动汽车用六相电动机低开关损耗SVPWM控制方法,利用多相电动机电压矢量冗余的特点,解决六相逆变器开关损耗较大的问题,同时保证了直流侧母线电压没有降低。
为解决上述技术问题,本发明所采取的技术方案是:
一种电动汽车用六相电动机低开关损耗SVPWM控制方法,包括以下步骤:
步骤1:根据对六相电动机的谐波分析,将所有电压矢量分成一个含有机电能量转换的αβ空间和只有谐波的z1z2、o1o2空间;
步骤2:划分扇区;
以α轴为起始位置,每隔30°作为一个扇区,分为12个扇区,标号为1~12;然后依照每一个扇区的角平分线为中分线再左右偏移2°划分12个扇区,标号为13~24;1~12扇区每一个扇区包含26°,每一个扇区包含两部分;13~24扇区每一个扇区包含4°,该4°的范围又被平面内最大电压矢量平均分成左右各偏移2°;
步骤3:相邻最大三矢量SVPWM;
步骤3.1:当参考电压矢量位于1~12扇区中的任一个扇区内时,选择扇区内相邻的三个最大的电压矢量合成参考电压矢量;
步骤3.2:计算步骤3.1所选择的电压矢量作用时间,如下式所示;
Figure GDA0002208886630000021
式中,t1、t2和t3分别是扇区内选择的三个电压矢量作用时间;u、u、uiz1、uiz2为第i个电压矢量分别在各个轴上的投影,
Figure GDA0002208886630000022
为参考电压矢量在各个轴上的投影,Ts为PWM控制周期;
通过计算伪逆矩阵的方法,计算得到三个电压矢量作用时间;
步骤4:同向两矢量SVPWM;
步骤4.1:当参考电压矢量位于13~24扇区内时,选择扇区内同方向的最大和次大两个电压矢量合成参考电压矢量,定义幅值最大的电压矢量为V1,幅值次大的电压矢量为V2,V1和V2在z1z2谐波平面上方向相反;
步骤4.2:计算步骤4.1所选择的电压矢量作用时间;
根据V1和V2在z1z2谐波平面上方向相反,首先根据V1和V2在z1z2谐波平面上的幅值计算出其作用时间的比例,然后根据伏秒平衡原理计算出合成虚拟期望电压矢量的作用时间;
在z1z2谐波平面上满足:
Figure GDA0002208886630000023
其中,|V1|和|V2|是选择的同向电压矢量中最大和次大电压矢量V1和V2在z1z2谐波平面上的幅值;定义
Figure GDA0002208886630000024
计算得到λ=cos15°;t1′和t2′分别是同向电压矢量中最大和次大电压矢量作用时间;
在αβ平面上满足:
Figure GDA0002208886630000025
其中,|V1′|和|V2′|是选择的同向电压矢量中的最大和次大电压矢量V1和V2在αβ平面上的幅值,t0是零电压矢量作用时间;|uref|是参考电压矢量的幅值;
根据上两式得到同向电压矢量中最大和次大电压矢量作用时间,以及计算零电压矢量作用时间为:
Figure GDA0002208886630000031
采用上述技术方案所产生的有益效果在于:本发明提供的一种电动汽车用六相电动机低开关损耗SVPWM控制方法,利用多相电动机电压矢量冗余的特点,降低了电动汽车用六相电压源逆变器的开关管通断次数,从而降低了开关损耗,提高了逆变器的使用寿命,减少了控制器发热,而且没有降低逆变器对直流侧母线电压的利用率。
附图说明
图1为本发明实施例提供的划分的24个扇区示意图;
图2为本发明实施例提供的第一扇区内基于相邻最大三矢量αβ平面上电压矢量分布图;
图3为本发明实施例提供的第一扇区内基于相邻最大三矢量z1z2平面上电压矢量分布图;
图4为本发明实施例提供的第十三扇区内基于同向两矢量αβ平面上电压矢量分布图;
图5为本发明实施例提供的第一扇区内基于相邻最大三矢量开关管导通和关断作用顺序产生的相电压变化情况示意图;
图6为本发明实施例提供的第十三扇区内基于同向两矢量z1z2平面上电压矢量分布图;
图7为本发明实施例提供的第十三扇区内基于同向两矢量开关管导通和关断作用顺序产生的相电压变化情况示意图。
具体实施方式
下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。以下实施例用于说明本发明,但不用来限制本发明的范围。
以具有两个独立定子节点的双Y移30°六相永磁同步电机为例,其功率为28kw,逆变器的直流母线电压为300v。本实施例的方法如下所述。
步骤1:根据对六相电动机的基波和谐波分析,将所有电压矢量分成一个含有机电能量转换的αβ空间和只有谐波的z1z2、o1o2空间,按照电压矢量的幅值大小将所有矢量分成四组分别为:umax、umid、ubas、umin,幅值的大小分别为:
Figure GDA0002208886630000041
步骤2:新型扇区划分。
将αβ平面分成24个扇区,具体的方法是,首先以α轴为起始位置,每隔30°作为一个扇区,分为12个扇区,标号为1~12;然后依照每一个扇区的角平分线为中分线再左右偏移2°划分12个扇区,标号为13~24。扇区划分结果如图1所示,可以发现,1~12扇区每一个扇区包含26°,每一个扇区包含两部分;13~24扇区每一个扇区包含4°,而这4°的范围又被平面内最大电压矢量平均分成左右各偏移2°。
步骤3:相邻最大三矢量SVPWM。
步骤3.1:当参考电压矢量位于1~12扇区中的任一个扇区内时,选择扇区内相邻的三个最大的电压矢量合成参考电压矢量。
如图2所示,当参考电压矢量位于第一扇区内时,选择电压矢量V45、V44、V64合成参考电压矢量。图3是电压矢量V45、V44、V64在z1z2平面上的投影。
步骤3.2:计算步骤3.1所选择的电压矢量作用时间。
如图4所示,当期望电压矢量位于第一扇区时,在αβ平面选择V45、V44、V64三个电压矢量,在z1z2谐波平面上时使用这三个电压矢量合成为零。每一个电压矢量的作用时间可以通过式(2)计算。
Figure GDA0002208886630000042
式中,t1、t2和t3分别是扇区内选择的三个电压矢量作用时间;u、u、uiz1、uiz2为第i个电压矢量分别在各个轴上的投影,
Figure GDA0002208886630000043
为参考电压矢量在各个轴上的投影,Ts为PWM控制周期;
根据式(2)可以求得每一个扇区内的三个电压矢量分别作用时间。由于式(2)中求逆的方程是对4*3的矩阵求逆,常规的求逆方法无法求得计算结果。对于非方阵没有逆矩阵,但是可以通过计算其伪逆矩阵,本实施例要求的4*3的矩阵的逆,属于m>n(m为行数,n为列数,行数大于列数)的列满秩情况,存在左逆矩阵:
AL=(ATA)-1AT (3)
式中,AL是左逆矩阵,AT是矩阵的转置。本实施例中使用MATLAB的pinv()指令求解其伪逆阵,可以得到一个3*4的伪逆矩阵,可以计算得到三个电压矢量的作用时间。
使用相邻最大三矢量SVPWM,功率管的通断顺序如图5所示,在每一个PWM周期内,开关管的通断次数为16次。
步骤4:同向两矢量SVPWM。
步骤4.1:当参考电压矢量位于13~24扇区内时,选择扇区内同方向的两个最大电压矢量合成参考电压矢量。
如图4所示,如果使用相邻最大三个电压矢量V44、V45和V64合成参考矢量,计算结果是V45和V64作用时间很短,当计算的V45和V64作用时间大于设置的死区时间,得到的两个电压矢量的脉宽很窄。开关管在很短的时间内导通和关断,将会出现很大的电流,且认为这一次导通和关断可以忽略,这样增加了损耗与发热而且没有实现作用效果。因此在13~24扇区内选择同向的最大和次大两个电压矢量合成参考电压矢量。
步骤4.2:计算步骤4.1所选择的电压矢量作用时间。
考虑到有效的电压矢量作用时间过短对逆变器造成的不利影响,如图6所示,本实施例采用的处理方法是直接使用V44和V65两个电压矢量去合成与uref等幅值的电压矢量。由于从13到24扇区与每一个扇区的中分线夹角小于4°,即期望电压矢量与虚拟的期望电压矢量夹角小于2°,直接使用V44和V65来合成虚拟的期望电压矢量与实际的期望电压矢量等效。使用这种方法可以增加V44和V65的占空比,而且这个过程中对称排列是七段式,减少了开关管的通断次数,从而减少了开关损耗。
为了降低z1z2平面上的谐波,根据V44和V65在z1z2谐波平面上方向相反,首先根据V1和V2在z1z2谐波平面上的幅值计算出其作用时间的比例,然后根据伏秒平衡原理计算出合成虚拟期望电压矢量的作用时间,这个虚拟矢量的特点就是在αβ平面上有幅值,在z1z2谐波平面上没有幅值。
在z1z2谐波平面上满足:
Figure GDA0002208886630000061
式中,|V44|和|V65|是V44和V65在z1z2谐波平面上的幅值;定义
Figure GDA0002208886630000062
计算得到λ=cos15°;t44和t65分别是同向电压矢量中最大和次大电压矢量V44和V65作用时间;
在αβ平面上满足:
Figure GDA0002208886630000063
式中,|V44′|和|V65′|是V44和V65在αβ平面上的幅值,t0是零电压矢量作用时间;|uref|是参考电压矢量的幅值。
将式(4)和式(5)联立,可得到两个电压矢量作用时间,以及计算零电压矢量作用时间,如式(6)所示。
Figure GDA0002208886630000064
使用同向两矢量SVPWM,功率管的通断顺序如图7所示,在每一个PWM周期内,开关管的通断次数为12次。
通过以上对实施例的介绍,可以得出的结论是,本发明提出的电动汽车用六相电动机低开关损耗SVPWM控制方法,该方法根据对双三相电动机控制算法的原因分析,得出了为了提高控制性能使用较多的电压矢量是导致逆变器开关损耗较大的主要原因,相比于传统的SVPWM控制方法降低了每一个PWM周期内开关管的动作次数,并且对于参考电压矢量处于扇区边缘的情况做了等效处理,进一步的降低了开关管的导通和关断次数,提高了六相电压源逆变器的使用寿命,降低了逆变器的温度。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明权利要求所限定的范围。

Claims (1)

1.一种电动汽车用六相电动机低开关损耗SVPWM控制方法,其特征在于:该方法包括以下步骤:
步骤1:根据对六相电动机的谐波分析,将所有电压矢量分成一个含有机电能量转换的αβ空间和只有谐波的z1z2、o1o2空间;
步骤2:划分扇区;
以α轴为起始位置,每隔30°作为一个扇区,分为12个扇区,标号为1~12;然后依照每一个扇区的角平分线为中分线再左右偏移2°划分12个扇区,标号为13~24;1~12扇区每一个扇区包含26°,每一个扇区包含两部分;13~24扇区每一个扇区包含4°,该4°的范围又被平面内最大电压矢量平均分成左右各偏移2°;
步骤3:相邻最大三矢量SVPWM;
步骤3.1:当参考电压矢量位于1~12扇区中的任一个扇区内时,选择扇区内相邻的三个最大的电压矢量合成参考电压矢量;
步骤3.2:计算步骤3.1所选择的电压矢量作用时间,如下式所示;
Figure FDA0002208886620000011
式中,t1、t2和t3分别是扇区内选择的三个电压矢量作用时间;u、u、uiz1、uiz2为第i个电压矢量分别在各个轴上的投影,
Figure FDA0002208886620000012
为参考电压矢量在各个轴上的投影,Ts为PWM控制周期;
通过计算伪逆矩阵的方法,计算得到三个电压矢量作用时间;
步骤4:同向两矢量SVPWM;
步骤4.1:当参考电压矢量位于13~24扇区内时,选择扇区内同方向的最大和次大两个电压矢量合成参考电压矢量,定义幅值最大的电压矢量为V1,幅值次大的电压矢量为V2,V1和V2在z1z2谐波平面上方向相反;
步骤4.2:计算步骤4.1所选择的电压矢量作用时间;
根据V1和V2在z1z2谐波平面上方向相反,首先根据V1和V2在z1z2谐波平面上的幅值计算出其作用时间的比例,然后根据伏秒平衡原理计算出合成虚拟期望电压矢量的作用时间;
在z1z2谐波平面上满足:
Figure FDA0002208886620000021
其中,|V1|和|V2|是选择的同向电压矢量中最大和次大电压矢量V1和V2在z1z2谐波平面上的幅值;定义
Figure FDA0002208886620000022
计算得到λ=cos15°;t1′和t2′分别是同向电压矢量中最大和次大电压矢量作用时间;
在αβ平面上满足:
Figure FDA0002208886620000023
其中,|V′1|和|V2′|是选择的同向电压矢量中的最大和次大电压矢量V1和V2在αβ平面上的幅值,t0是零电压矢量作用时间;|uref|是参考电压矢量的幅值;
根据上两式得到同向电压矢量中最大和次大电压矢量作用时间,以及计算零电压矢量作用时间为:
Figure FDA0002208886620000024
CN201810214661.2A 2018-03-15 2018-03-15 电动汽车用六相电动机低开关损耗svpwm控制方法 Active CN108347188B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810214661.2A CN108347188B (zh) 2018-03-15 2018-03-15 电动汽车用六相电动机低开关损耗svpwm控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810214661.2A CN108347188B (zh) 2018-03-15 2018-03-15 电动汽车用六相电动机低开关损耗svpwm控制方法

Publications (2)

Publication Number Publication Date
CN108347188A CN108347188A (zh) 2018-07-31
CN108347188B true CN108347188B (zh) 2020-03-17

Family

ID=62957663

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810214661.2A Active CN108347188B (zh) 2018-03-15 2018-03-15 电动汽车用六相电动机低开关损耗svpwm控制方法

Country Status (1)

Country Link
CN (1) CN108347188B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109217765B (zh) * 2018-09-17 2021-06-15 沈阳工业大学 一种双三相永磁同步电机直接转矩控制方法
CN109617496B (zh) * 2019-02-18 2021-09-28 哈尔滨工程大学 一种基于同轴线双矢量合成中间矢量的六相svpwm方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107070361B (zh) * 2017-03-30 2019-02-12 沈阳工业大学 一种降低六相电动机共模电压的svpwm控制方法
CN107666261B (zh) * 2017-10-27 2019-12-10 沈阳工业大学 一种低共模电压的双三相电动机svpwm控制方法

Also Published As

Publication number Publication date
CN108347188A (zh) 2018-07-31

Similar Documents

Publication Publication Date Title
CN109039207B (zh) 一种n相n+1桥臂逆变器及其调制方法
CN105827176B (zh) 抑制双y移30度六相电机共模电压的空间矢量调制方法
CN111726046B (zh) 一种计及占空比优化的非对称六相pmsm模型预测磁链控制方法
Ding et al. Common-mode voltage reduction for parallel CSC-fed motor drives with multilevel modulation
CN113271027B (zh) 一种二极管钳位的三电平逆变器高性能同步过调制算法
GHolinezhad et al. Application of cascaded H-bridge multilevel inverter in DTC-SVM based induction motor drive
CN108347188B (zh) 电动汽车用六相电动机低开关损耗svpwm控制方法
Menshawi et al. Voltage vector approximation control of multistage—Multilevel inverter using simplified logic implementation
Lee et al. Advanced DPWM method for switching loss reduction in isolated DC type dual inverter with open-end winding IPMSM
CN115714565A (zh) 用于eps双三相电机逆变器的24扇区中心对称pwm调制方法
CN114189189B (zh) 一种基于谐波抑制的双三相电机混合式脉宽调制方法
Ren et al. Model predictive torque control for a dual three-phase PMSM using modified dual virtual vector modulation method
CN107666261B (zh) 一种低共模电压的双三相电动机svpwm控制方法
Deng et al. An Enhanced Discrete Virtual Vector-Based Direct Torque Control of PMSM Drives
Sarker et al. A Modified PWM Technique to Reduce Harmonic Content of Multi-level NPC Topology for Medium Voltage Electric Vehicle (EV) Applications
CN112260605B (zh) 五相永磁同步电机缺一相故障直接转矩控制方法
CN115528969A (zh) 一种固定开关频率的双三相电机模型预测电流控制方法
Chinmaya et al. Analysis of space vector PWM techniques for dual three-phase induction machine
Sheianov et al. Highly efficient three level sparse NPC inverter for ultra-high-speed PMSM
CN111464082A (zh) 兼备低开关损耗和共模干扰的六相电机svpwm控制方法
Wang et al. A nine-switch three-level inverter for electric vehicle applications
Wang et al. Direct torque control with space vector modulation for induction motors fed by cascaded multilevel inverters
Kadir et al. Direct torque control permanent magnet synchronous motor drive with asymmetrical multilevel inverter supply
CN112713841B (zh) 一种单极性电机驱动器转矩损耗比控制方法
Dong et al. Comparative Study on Topologies of Three-Level and Open-Winding Converters for PMSM Drives

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant