CN108342730A - 一种在X光下可视的NiTi合金及其制备方法 - Google Patents

一种在X光下可视的NiTi合金及其制备方法 Download PDF

Info

Publication number
CN108342730A
CN108342730A CN201810286168.1A CN201810286168A CN108342730A CN 108342730 A CN108342730 A CN 108342730A CN 201810286168 A CN201810286168 A CN 201810286168A CN 108342730 A CN108342730 A CN 108342730A
Authority
CN
China
Prior art keywords
niti alloys
niti
ray
tungsten powder
visual
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810286168.1A
Other languages
English (en)
Other versions
CN108342730B (zh
Inventor
阎小军
葛毓立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University
Original Assignee
Dalian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University filed Critical Dalian University
Priority to CN201810286168.1A priority Critical patent/CN108342730B/zh
Publication of CN108342730A publication Critical patent/CN108342730A/zh
Application granted granted Critical
Publication of CN108342730B publication Critical patent/CN108342730B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/10Coating starting from inorganic powder by application of heat or pressure and heat with intermediate formation of a liquid phase in the layer
    • C23C24/103Coating with metallic material, i.e. metals or metal alloys, optionally comprising hard particles, e.g. oxides, carbides or nitrides
    • C23C24/106Coating with metal alloys or metal elements only

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

本发明涉及一种在X光下可视的NiTi合金及其制备方法。本发明以纯度为99.99%的钨粉、NiTi合金为材料,用激光熔覆的方法在NiTi合金中合金化8at.%的钨,增加其可视性。与现有技术相比,本发明具有以下优点:本发明制备的熔覆层在提高NiTi合金可视性同时,还满足NiTi合金力学性能和功能性的使用要求。本发明的制备方法简单、可操作性强,原料价廉易得,节约成本,具有很好的应用前景。

Description

一种在X光下可视的NiTi合金及其制备方法
技术领域
本发明涉及一种提高NiTi合金在X光下可视性的方法。
背景技术
近年来,随着介入医疗的发展,NiTi形状记忆合金介入性器械的优势日益明显,发展非常迅速。目前NiTi形状记忆合金已广泛用于消化系统、心血管系统、泌尿系统和肿瘤等各个领域。但NiTi形状记忆合金在X光下的可视性较差,这会给手术过程中植入器械的精准定位和放置带来很大的困难,甚至导致手术的失败,特别是当植入器械比较细小的时候。现有技术中通常在NiTi形状记忆合金植入器械的不同部位附着一些可视性好的重金属标记(例如金、铂或钽等制成的细丝或薄带)来提高其可视性。但是这些附着的重金属标记一方面会引发电偶腐蚀,加剧Ni离子的释放,造成人体的不良反应和NiTi合金植入器械的早期失效;另一方面,所用的重金属标记一般价格都比较昂贵,造成NiTi合金植入器械成本的增加。迄今为止还没有理想的解决办法,如何提高NiTi合金在X光下的可视性一直备受材料学家和工程师的关注。
发明内容
为弥补现有技术的不足,解决NiTi合金在X光下的可视性较差这一难题,本发明采用激光熔覆金属钨的方法,改善NiTi合金在X光下可视性。该方法得到的熔覆样品不仅可视性好,还可满足实际应用的力学性能和功能性。
本发明的技术方案如下:以纯度为99.99%的钨粉、NiTi合金为材料,用激光熔覆的方法在NiTi合金中合金化8%(原子百分比)的钨,增加其可视性。室温下将聚乙烯醇粉末在去离子水中溶化完全,过滤去多余的聚乙烯醇,得到聚乙烯醇水溶液;将钨粉加入到聚乙烯醇水溶液中并进行搅拌,形成悬浮液。将NiTi合金放入丙酮溶液中经过超声波清洗后取出烘干,然后在其表面涂一层钨粉的悬浮液,厚度为100μm。涂好钨粉的样品放入烘干炉进行烘干,烘干温度60℃,烘干时间5小时。将烘干好的样品进行激光熔覆处理,其中激光器的脉冲宽度为1-10ms、频率为20-100Hz、扫描速度为300-1000mm/min。最后制备出可视性好的熔覆层。
优选的,所述钨粉颗粒度在2.5μm以下。
进一步的,在激光熔覆的过程中,为了防止NiTi合金的氧化,用氩气作为保护气体,氩气流量10-20L/min。
本发明同时请求保护采用上述方法制备的NiTi合金。
激光熔覆技术是20世纪70年代随着大功率激光器的发展而兴起的一种材料改性新技术。通过激光熔覆不同材料,可以提高材料表面的耐磨、耐腐蚀、抗氧化等性能。较其他改性工艺,激光熔覆具备诸多优势,如:结合强度高、不易变形、组织致密、适合小区域的改性需求、材料消耗少、适用范围广等优点。
本发明的技术要点在于:在NiTi合金表面激光熔覆钨粉,这一技术方案不仅能显著提高NiTi合金在X光下的可视性,还能节约加工成本;在涂覆钨粉过程中加入的聚乙烯醇起到粘接剂的作用,使合金烘干时,钨粉可以更好地粘在材料表面。发明人在探索工艺时发现,钨粉的颗粒度、涂层的厚度、激光熔覆条件对NiTi合金的可视性及力学性能起到重要作用。钨粉的颗粒度不能太大,应控制在2.5μm以下,颗粒度过大一方面不容易形成稳定的钨/聚乙烯醇悬浮液,另一方面对熔覆层的力学性能产生负面影响。涂层的厚度优选在100μm,厚度过薄合金的可视性差,厚度过厚导致熔覆合金的力学性能变差。在激光熔覆过程中使用氩气作为保护气体既可以防止粉末被吹跑,又可以防止合金被氧化,提高NiTi合金的综合性能。
与现有技术相比,本发明具有以下优点:本发明制备的熔覆层在提高NiTi合金可视性同时,还满足NiTi合金力学性能和功能性的使用要求。本发明的制备方法简单、可操作性强,原料价廉易得,节约成本,具有很好的应用前景。
附图说明
图1为本发明实施例1制备的熔覆样品的扫描电镜照片,其中所使用钨粉颗粒度为2.5μm,激光脉冲宽度1.5ms,频率为50Hz、扫描速度为600mm/min;
图2为本发明实施例1制备的熔覆样品及母材的应力-应变曲线;
图3为本发明实施例1制备的熔覆样品及母材在X光下的可视性照片;
图4为本发明采用不同颗粒度的钨粉和激光工艺参数制备的熔覆样品及母材在X光下的可视性照片。
具体实施方式
下面通过具体实施例详述本发明,但不限制本发明的保护范围。如无特殊说明,本发明所采用的实验方法均为常规方法,所用实验器材、材料、试剂等均可从商业途径获得。实施例中激光熔覆工艺中激光器型号为:JHM-1GXY-700B多功能激光加工机,购自于武汉楚天工业激光设备有限公司。
实施例1
以纯度为99.99%的钨粉、商用0.1mm厚NiTi薄板为材料,室温下将聚乙烯醇粉末在去离子水中溶化完全,过滤去多余的聚乙烯醇,得到饱和聚乙烯醇水溶液;将颗粒度为2.5μm的钨粉加入到饱和聚乙烯醇水溶液中并进行搅拌,形成钨粉悬浮液,饱和聚乙烯醇水溶液与钨粉的质量比为2:1;将NiTi薄板放入丙酮溶液中经过超声波清洗后取出烘干。然后在NiTi薄板表面涂一层厚度为100μm钨粉悬浮液。将涂好钨粉悬浮液的NiTi薄板放入烘干炉进行烘干,烘干温度60℃,烘干时间5小时。然后将烘干好的NiTi薄板进行激光熔覆,脉冲宽度1.5ms,频率为50Hz、扫描速度为600mm/min,氩气作为保护气体,氩气流量20L/min。最后制备出可视性好的熔覆样品。
将实施例1制备的激光熔覆钨的NiTi合金样品用扫描电镜进行组织分析,相貌如图1所示。组织为NiTi合金基体上分布着许多白色细小的颗粒。进一步分析表明,白色细小的颗粒是一种富含钨的析出相。整个熔覆层的含钨量为8at.%。
将实施例1制备的激光熔覆钨的NiTi合金样品用万能电子拉伸机进行强度分析,并与母材和不添加钨的熔覆样品进行对比,结果如2图所示。由图2可以看出,钨的加入使熔覆样品的抗拉强度和伸长率降低,熔覆样品的断裂发生在平台应力范围。但熔覆样品仍然呈现出与母材相近的平台应力和应变,由此可知,采用本发明方法向NiTi合金中合金化一定量的钨,不会导致其机械强度下降,使NiTi合金可以满足实际应用的力学性能和功能性的要求。
将实施例1制备的激光熔覆钨的NiTi合金样品在X光下进行可视性分析,结果如图3所示。由图3可以看出,NiTi合金基体在X光下看起来比较模糊,而加入钨后的熔覆层则清晰可见,说明钨的加入大大提高了NiTi合金在X光下的可视性。
实施例2
以纯度为99.99%的钨粉、商用0.1mm厚NiTi薄板为材料,室温下将聚乙烯醇粉末在去离子水中溶化完全,过滤去多余的聚乙烯醇,得到饱和聚乙烯醇水溶液;将颗粒度为2.5μm的钨粉加入到饱和聚乙烯醇水溶液中并进行搅拌,形成钨粉悬浮液,饱和聚乙烯醇水溶液与钨粉的质量比为2:1;将NiTi薄板放入丙酮溶液中经过超声波清洗后取出烘干。然后在NiTi薄板表面涂一层钨粉悬浮液,厚度为100μm。将涂好钨粉的NiTi薄板放入烘干炉进行烘干,烘干温度60℃,烘干时间5小时。将烘干好的NiTi薄板进行激光熔覆,脉冲宽度1.7ms,频率为50Hz、扫描速度为400mm/min,最后制备出可视性好的熔覆样品。在激光熔覆的过程中,为了防止NiTi合金的氧化,用氩气作为保护气体,氩气流量20L/min。
实施例3
本实施例与实施例1的区别在于改变钨粉的颗粒度制备熔覆样品:钨粉的颗粒度分别为1.7μm,激光器的频率50Hz,脉冲宽度1.5ms,扫描速度600mm/min。
实施例4
本实施例与实施例1的区别在于改变钨粉的颗粒度和激光器参数制备熔覆样品:钨粉的颗粒度分别为1.7μm,激光器的扫描速度分别为400mm/min;脉冲宽度为1.7ms,频率为50Hz。
如图4所示为本发明实施例中不同颗粒度的钨粉和激光工艺参数制备的熔覆样品及母材在X光下的可视性照片。从图4可知:钨粉颗粒度为2.5μm,熔覆层可视性好。
以上所述,仅为本发明创造较佳的具体实施方式,但本发明创造的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明创造披露的技术范围内,根据本发明创造的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明创造的保护范围之内。

Claims (4)

1.一种在X光下可视的NiTi合金的制备方法,其特征在于,包括以下步骤:
S1.室温下将聚乙烯醇粉末于去离子水中溶化完全,得到饱和聚乙烯醇水溶液;
S2.将钨粉加入到饱和聚乙烯醇水溶液搅拌形成悬浮液;饱和聚乙烯醇水溶液与钨粉的质量比为2:1;
S3.将NiTi合金先进行超声清洗、烘干,然后在其表面涂覆一层厚度为100μm悬浮液,放入烘干炉内烘干,烘干温度60℃,烘干时间5h;
S4.将烘干好的NiTi合金进行激光熔覆处理,其中激光器的脉冲宽度为1-10ms、频率为20-100Hz、扫描速度为300-1000mm/min,熔覆层的含钨量为8at.%,最后制备出X光下可视的NiTi合金。
2.根据权利要求1所述的方法,其特征在于,所述钨粉纯度为99.99%,颗粒度在2.5μm以下。
3.根据权利要求1所述的方法,其特征在于,在激光熔覆的过程中,用氩气作为保护气体,氩气流量10-20L/min。
4.一种在X光下可视的NiTi合金是按照权利要求1-3任一种方法制备的。
CN201810286168.1A 2018-04-03 2018-04-03 一种在X光下可视的NiTi合金及其制备方法 Active CN108342730B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810286168.1A CN108342730B (zh) 2018-04-03 2018-04-03 一种在X光下可视的NiTi合金及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810286168.1A CN108342730B (zh) 2018-04-03 2018-04-03 一种在X光下可视的NiTi合金及其制备方法

Publications (2)

Publication Number Publication Date
CN108342730A true CN108342730A (zh) 2018-07-31
CN108342730B CN108342730B (zh) 2020-02-14

Family

ID=62957318

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810286168.1A Active CN108342730B (zh) 2018-04-03 2018-04-03 一种在X光下可视的NiTi合金及其制备方法

Country Status (1)

Country Link
CN (1) CN108342730B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113403618A (zh) * 2021-06-21 2021-09-17 吉林大学 一种控制参数改善激光选区熔覆NiTi性能的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1680622A (zh) * 2005-01-31 2005-10-12 武汉理工大学 镍钛合金复合化学镀载药镍钴钨薄膜的镀液和工艺方法
CN101532141A (zh) * 2009-04-14 2009-09-16 山东大学 一种在铝合金表面原位生成铝化物强化层的方法
CN201870613U (zh) * 2010-11-09 2011-06-22 麻树人 内窥镜导丝
US20140163556A1 (en) * 2012-12-06 2014-06-12 Tama Medical Co., LTD. Graduated guide pin for use in medical treatment
CN104999085A (zh) * 2015-07-02 2015-10-28 哈尔滨工程大学 纳米片层相增强TiNi基合金复合板材的制备方法
CN105848611A (zh) * 2013-12-24 2016-08-10 尼普洛株式会社 支架

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1680622A (zh) * 2005-01-31 2005-10-12 武汉理工大学 镍钛合金复合化学镀载药镍钴钨薄膜的镀液和工艺方法
CN101532141A (zh) * 2009-04-14 2009-09-16 山东大学 一种在铝合金表面原位生成铝化物强化层的方法
CN201870613U (zh) * 2010-11-09 2011-06-22 麻树人 内窥镜导丝
US20140163556A1 (en) * 2012-12-06 2014-06-12 Tama Medical Co., LTD. Graduated guide pin for use in medical treatment
CN105848611A (zh) * 2013-12-24 2016-08-10 尼普洛株式会社 支架
CN104999085A (zh) * 2015-07-02 2015-10-28 哈尔滨工程大学 纳米片层相增强TiNi基合金复合板材的制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113403618A (zh) * 2021-06-21 2021-09-17 吉林大学 一种控制参数改善激光选区熔覆NiTi性能的方法

Also Published As

Publication number Publication date
CN108342730B (zh) 2020-02-14

Similar Documents

Publication Publication Date Title
CN103668390B (zh) 具有微米-纳米粗糙结构表面的钛或钛合金材料及制备方法
CN110684978A (zh) 一种高熵合金涂层及其制备方法
CN109487199B (zh) 一种表面改性涂层及其制备方法和应用
CN110195248A (zh) 一种改性的金属材料及金属表面的改性方法
CN108559942A (zh) 一种在锆基合金表面制备黑色陶瓷层的方法
CN107937874B (zh) 一种在铌合金表面制备Pt-Al高温防护涂层的方法
CN106757013A (zh) 一种钛合金激光表面硅化物增强多元高温合金化层及其制备方法
Zhao et al. Microstructure and properties of plasma-sprayed bio-coatings on a low-modulus titanium alloy from milled HA/Ti powders
CN106825552A (zh) 3d打印用石墨烯包覆合金粉末复合材料的制备方法
CN108342730A (zh) 一种在X光下可视的NiTi合金及其制备方法
CN109234784A (zh) 一种医用镁合金复合材料的制备方法
CN103046100A (zh) 三步法制备双级孔隙微弧氧化陶瓷涂层的方法
Huan et al. Synthesis and characterization of hybrid micro/nano-structured NiTi surfaces by a combination of etching and anodizing
CN101988182A (zh) 耐磨蚀牙科正畸弓丝表面改性方法及所得的耐磨蚀弓丝
CN101660124A (zh) 一种多孔氧化钨薄膜的制备方法
Hosseini et al. Electrochemical dealloying of porous NiTi alloy: Porosity evolution, corrosion resistance, and biocompatibility behavior
Peláez-Abellán et al. Electrochemical stability of anodic titanium oxide films grown at potentials higher than 3 V in a simulated physiological solution
CN106064829B (zh) 一种负载氧化锡的花状氧化镁的制备方法
CN111979541B (zh) 一种带Ti-Nb合金涂层的钛合金及其制备方法和应用
CN106435691A (zh) 一种一步制备TiAl系合金微弧氧化BN复合膜的方法
CN109267062A (zh) 一种铌合金表面MoSi2涂层的制备方法
Yen Characterization of electrolytic ZrO2 coating on AISI 316L stainless steel
Kumagai et al. Nanosized TiN–SBR hybrid coating of stainless steel as bipolar plates for polymer electrolyte membrane fuel cells
CN108559952A (zh) 一种Mg/Zn梯度合金的制备方法
CN105543934B (zh) 一种医用钛种植体微弧氧化膜层及制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant