CN108329846A - 一种用于改善电泳钢结构件连接性能的胶接工艺 - Google Patents

一种用于改善电泳钢结构件连接性能的胶接工艺 Download PDF

Info

Publication number
CN108329846A
CN108329846A CN201810047312.6A CN201810047312A CN108329846A CN 108329846 A CN108329846 A CN 108329846A CN 201810047312 A CN201810047312 A CN 201810047312A CN 108329846 A CN108329846 A CN 108329846A
Authority
CN
China
Prior art keywords
steel structure
structure part
adhesive
electrophoretic
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810047312.6A
Other languages
English (en)
Inventor
孔谅
刘晓东
王敏
陈东
陈一东
吴磊
侯进森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Jiaotong University
Original Assignee
Shanghai Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jiaotong University filed Critical Shanghai Jiaotong University
Priority to CN201810047312.6A priority Critical patent/CN108329846A/zh
Publication of CN108329846A publication Critical patent/CN108329846A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J5/00Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers
    • C09J5/02Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers involving pretreatment of the surfaces to be joined
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2400/00Presence of inorganic and organic materials
    • C09J2400/10Presence of inorganic materials
    • C09J2400/16Metal
    • C09J2400/163Metal in the substrate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2463/00Presence of epoxy resin
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2475/00Presence of polyurethane

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

本发明涉及一种用于改善电泳钢结构件连接性能的胶接工艺,采用高分子胶粘剂将两个电泳钢结构件粘接起来,所述两个电泳钢结构件中的至少一个的粘接面事先经过等离子改性处理。与现有技术相比,本发明可改善胶接接头性能,且操作简单,流程短,可控性强,自动化程度高,能耗低,易实现工业化生产,环境污染小。

Description

一种用于改善电泳钢结构件连接性能的胶接工艺
技术领域
本发明涉及材料连接技术领域,尤其是涉及一种用于改善电泳钢结构件连接 性能的胶接工艺。
背景技术
轻质金属材料及复合材料等非金属材料在汽车车身制造中的应用渐成趋势, 由于材料连接、多层材料连接、不同几何连接、设计空间制约等多种因素的变化, 使得传统的材料连接方式已不再适用,胶接技术作为汽车生产所必需的一类重要制 造方式应用越来越广泛。胶接方法不仅能满足高强金属间或金属与非金属间形成永 久性的高强度连接,还可以提高汽车结构的韧性、耐疲劳性、抗冲击性和耐腐蚀性, 达到增强结构、紧固防锈、隔热减振和内外装饰的作用,实现减轻重量、降低能耗、 简化组装工序、提高制品质量和优化产品结构等其它连接方法(如铆接和焊接等)所 不能实现的效果。电泳涂装工艺已成为最成熟的车身、车轮和车架等底涂技术之 一,使车身获得防锈、防冲击、耐腐蚀等性能。电泳钢结构件之间的连接是车身 制造中的重要环节,如果采用传统的焊接、铆接、螺栓连接等传统连接方式,不但 破环了原有的漆层导致防锈和耐腐蚀性能下降,还由于电泳钢构件的所处安装空间 限制,难以实现自动化操作,极大影响了生产效率。汽车中结构胶连接方式成为解 决电泳钢结构件之间高强度连接的重要工艺。
电泳漆成分一般为水溶性树脂类化合物,常用的是环氧系树脂。在电泳钢胶 接中常出现界面破坏,导致胶接强度较低。针对上述技术问题,目前,国内外学者 采用专用的阴极电泳涂漆的粘合剂或对电泳漆层表面进行处理等方法,以达到改善 电泳钢结构件的胶接性能的目的。中国专利CN 1010592B公布了用于阴极电涂漆 的粘合剂,该粘合剂是以聚加合物/聚缩合物和一种或多种用于这些聚加合物/聚缩 合物的交联剂为基础,上述聚加合物/聚缩合物带有碱性氮基团并能通过酸的质子 化作用变成水可稀释的混合物,在170℃高温下烘烤20分钟后产生交联,该方法 操作复杂且流程长,并对工艺过程要求较高。美国材料和试验协会标准ASTM D2093-03规定了粘合之前塑料表面的制备标准操作流程,采用机械处理方法以 320#砂纸打磨到表面没有明显光泽,这种方法可操作性较差,且不适合自动化大批 量生产。
常压室温等离子体是一种大气压辉光放电冷等离子体源,能够在大气压下产 生温度在25-40℃之间的、具有高活性粒子(包括处于激发态的氦原子、氧原子、 氮原子、OH自由基等)浓度的等离子体射流,在室温下可以引起多种化学反应或 物理刻蚀,或形成致密的交联层,或引入含氧极性基团,使材料表面清洁和活化, 提高表面结合能,表面含氧官能团增加,改善材料表面的亲水性和粘结性等性能, 而基质材料的本体性能不受影响。美国专利US20110223357发明公开了一种使用 常压等离子体对聚酯基板的表面进行高质量表面处理法,该方法能够防止低聚物随 着从表面处理起的时间的推移渗出到基板表面上来连续并且有效地执行,可以提高 基板与功能层之间的粘附力。中国专利CN101638015B公开了一种用等离子体提 高铝版表面能的方法,用将普通铝版通过等离子体发生装置,实现对普通铝版表面 的活化处理,达到提高铝版表面能、附着力活性粒子产生强化学键和附着力的目的。
发明内容
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种用于改善电 泳钢结构件连接性能的胶接工艺。
本发明的目的可以通过以下技术方案来实现:
一种用于改善电泳钢结构件连接性能的胶接工艺,采用高分子胶粘剂将两个电泳钢结构件粘接起来,所述两个电泳钢结构件中的至少一个的粘接面事先经过等离 子改性处理。
优选的,等离子改性处理中所用的等离子为常压室温等离子体,用于在大气压 下产生温度在25-40℃之间的、具有高活性粒子浓度的等离子体射流。
更优选的,所述高活性粒子包括处于激发态的氦原子、氧原子、氮原子或OH 自由基。
更优选的,所述等离子体选自空气、氩气、氮气或功能性气体中的一种或多种 的组合,其中,功能性气体为氨气、氧气、硅烷、硅氧烷气体、丙烯酸和/或甲基 丙烯酸的蒸汽中的一种或几种的组合。
优选的,等离子改性处理的具体工艺为:
喷枪在距离待处理电泳钢结构件表面5-20mm的位置匀速平行移动,等离子体 在电泳钢结构件表面处理功率密度为100~800mJ/cm2,喷枪的平行移动速度为 0.5~10m/s。
优选的,粘接过程具体为:
两块被粘接的电泳钢结构件中至少有一块的表面预先进行等离子表面处理,接着,在其中一块电泳钢结构件的粘接面上均匀涂布高分子胶粘剂,然后,将另一块 电泳钢结构件覆盖到已经涂布有高分子胶粘剂的电泳钢结构件上,即完成粘接。
更优选的,两块电泳钢结构件之间的高分子胶粘剂的厚度为0.1-3mm,其涂布 量大于高分子胶粘剂厚度与粘接面积之积的1.1倍。
进一步更优选的,高分子胶粘剂厚度控制的方法为固定式厚度控制方法或自动厚度控制方法,其中,
固定式厚度控制方法为在电泳钢结构件表面放置玻璃珠或钢珠,或预制凸点, 所述玻璃珠、钢珠或凸点的高度与高分子胶粘剂厚度保持一致。自动厚度控制方法 可选择采用采用伺服或步进电机位置控制、带位移传感器的自动定位装置、由气缸 或油缸带动的带限位机构的自动压紧装置进行胶层厚度控制。
优选的,所述的高分子胶粘剂为环氧胶粘剂和聚氨酯胶粘剂。
优选的,电泳钢结构件上等离子改性处理的面积不小于被粘接面积的110%。
等离子处理的功率密度应在50~1000mJ/cm2,若功率过大,等离子处理将会破 坏电泳漆层与钢的连接,胶接接头断裂出现在钢与电泳漆层,强度降低;若功率过 小,即使多次处理也不能够达到较好的处理效果,胶接接头强度降低。喷枪的平行 移动速度应在0.1~10m/s,移动速度较低时,易引起电泳漆层与钢表面的分离,同 时不利于效率生产;而当移动速度较快时,需要更大的功率来保证对等离子处理效 果。
本发明通过常压室温等离子体在电泳钢表面产生氧化活性粒子,活化电泳漆层材料,提高电泳漆的表面能和润湿性,并清洁电泳漆表面,增强高分子胶粘剂与电 泳漆层之间的结合强度;通过胶粘剂均与涂布及胶粘剂厚度控制,经一定时间的胶 粘剂固化后实现两个电泳钢结构件的高强度粘接。
与现有技术相比,本发明具有以下优点:
(1)本发明可使电泳钢结构件的漆层表面活性基团增多,表面能增加,电泳 钢结构件的表面结构和强度不受影响,可改善胶接接头性能。
(2)本发明工艺过程操作简单,可控性强,自动化程度高,流程时间短,能 耗低,易实现工业化生产,环境污染小。
附图说明
图1-1为本发明经表面改性处理前的XPS官能团分析数据;
图1-2为本发明经表面改性处理后的XPS官能团分析数据;
图2为本发明经表面改性处理前/后的胶接试样拉剪试验数据对比;
图3为本发明经表面改性处理前/后的胶接试样拉剪断口形貌对比;
图4为本发明经表面改性处理前/后的胶接试样的力-位移曲线;
图5为本发明的电泳钢结构件胶接后的主视示意图;
图6为本发明的电泳钢结构件胶接后的俯视示意图;
图中,1-电泳钢板,2-被粘接面。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。
如图5和图6所示的胶接起来的电泳钢结构件,包括两块在被粘接面2处采用 高分子胶粘剂胶接的电泳钢板1。
其具体制备过程为:
在大气压、室温和开放的环境条件下,一次性完成电泳钢板的表面等离子表面 改性处理;先将常温常压等离子处理用的喷枪对准待处理的电泳钢板的工作部位, 使喷枪距离电泳钢板表面5-20mm的位置相对工件匀速平行移动,在常压、常温和 开放环境下将等离子体束喷射至电泳钢板的工件表面,对电泳钢板工件表面进行常 压、常温等离子体表面改性处理;等离子体在电泳钢板表面处理功率密度可为 100~800mJ/cm2;喷枪的平行移动速度为0.05~0.4m/s;等离子体选自空气、氩气、 氮气或上述气体中的一种或多种组合气体;等离子表面改性处理的面积不小于被粘 接面积的110%。
实施例1
参照上述实施方式,本实施例将电泳钢板厚度为1.6mm,按图5所示加工成 尺寸100mm×180mm的试板,测试时,按图5所示加工成5块拉剪试样进行拉剪 测试;选取等离子体表面处理功率密度为100~800mJ/cm2,喷嘴直径为8mm,样 品距离喷嘴距离8mm,等离子体喷枪以50mm/s的速度行进,往复运动,处理时间 6秒,重叠处理区域3mm。
本实例对等离子表面改性处理后的区域进行测试,应用表面能和XPS表面官 能团来衡量改性处理效果。表面能是评价材料表面活性的指标,是影响高分子胶粘 剂与电泳漆层结合的重要因素,一般认为表面的活性能越大,则电泳漆层树脂与高 分子胶粘剂的结合强度越高。表面能不能直接精确测量,通常采用浸润角测试精确 测量或者用表面能墨水近似测量;本实例通过表面能墨水进行表面能近似值测定, 并且辅以水浸润角测量,每个样品表面取5个点分别对本发明改性处理的电泳钢表 面测表面能及水浸润角,结果取平均值;表1分别经表面改性处理前/后的表面能 对比分析结果,从表1中看出,经表面改性处理前/后的表面能分别为55/72(mN/m)。 XPS表面官能团是评价材料表面具有高活性粒子的指标,高活性粒子所占份额越 多,表面的活性能越大,则电泳漆层树脂与高分子胶粘剂的结合强度越高。采用X 射线光电子能谱仪(AXIS UltraDLD)对本发明改性处理的电泳钢进行XPS分析,图 1-1和图1-2分别经表面改性处理前/后的XPS图谱对比分析结果,从图1-1和图1-2中看出,经表面改性处理前/后,氧元素的结合能明显增加,说明表面拥有了大 量含氧官能团,这可以促进环氧漆与高分子胶黏剂的结合。表面能和XPS表面官 能团两个指标可以看出,处理后的电泳钢表面的粘结性能大幅度增加。
表1本发明经表面改性处理前/后的表面能及水浸润角变化
处理前 处理后
水浸润角 45° 17°
表面能(BYNE值)mN/m 55 >72
表2本发明经表面改性处理前/后的XPS元素变化
C O N
处理前 86.10 11.79 2.11
处理后 79.19 16.70 4.11
本实施例对等离子表面改性处理前/后的电泳钢试板参照图6所示分别进行胶接,采用的高分子胶粘剂为环氧胶粘剂;经固化后,将100mm×180mm的试板参 照ASTM标准切割成25mm宽的拉伸试样,在万能拉伸试验机上对试样进行拉剪 性能测试,图2为本发明经表面改性处理前/后的胶接试样拉剪试验数据对比;图3 为本发明经表面改性处理前/后的胶接试样拉剪断口形貌对比,图3a代表改性前, 图3b代表改性后;图4为本发明经表面改性处理前/后的胶接试样的力-位移曲线, 其中,a代表改性前,b代表改性后;可以看出:通过本发明所用的表面改性处理 后,胶接接头拉剪强度为14.02MPa;电泳钢发生了塑性变形,最终电泳漆发生了 脱落。通过本发明的等离子处理,胶接接头强度得到明显上升,已经完全发挥了漆 层的性能。相比不处理的胶接接头,强度上升达100%以上。
实施例2
与实施例1有所不同的是,本实施例采用的高分子胶粘剂为聚氨酯胶粘剂。
实施例3
与实施例1有所不同的是,本实施例在等离子处理过程中:
喷枪在距离待处理电泳钢结构件表面5mm的位置匀速平行移动,等离子体在 电泳钢结构件表面处理功率密度为100~800mJ/cm2,喷枪的平行移动速度为 10m/s。
实施例4
与实施例1有所不同的是,本实施例在等离子处理过程中:
喷枪在距离待处理电泳钢结构件表面20mm的位置匀速平行移动,等离子体 在电泳钢结构件表面处理功率密度为100~800mJ/cm2,喷枪的平行移动速度为 2m/s。
实施例5
与实施例1有所不同的是,本实施例的高分子胶粘剂的厚度控制为0.1mm。
实施例6
与实施例1有所不同的是,本实施例的高分子胶粘剂的厚度控制为3mm。
实施例7
与实施例1有所不同的是,本实施例的高分子胶粘剂的厚度控制为1mm。
上述的对实施例的描述是为便于该技术领域的普通技术人员能理解和使用发明。熟悉本领域技术的人员显然可以容易地对这些实施例做出各种修改,并把在此 说明的一般原理应用到其他实施例中而不必经过创造性的劳动。因此,本发明不限 于上述实施例,本领域技术人员根据本发明的揭示,不脱离本发明范畴所做出的改 进和修改都应该在本发明的保护范围之内。

Claims (10)

1.一种用于改善电泳钢结构件连接性能的胶接工艺,其特征在于,采用高分子胶粘剂将两个电泳钢结构件粘接起来,所述两个电泳钢结构件中的至少一个的粘接面事先经过等离子改性处理。
2.根据权利要求1所述的一种用于改善电泳钢结构件连接性能的胶接工艺,其特征在于,等离子改性处理中所用的等离子为常压室温等离子体,用于在大气压下产生温度在25-40℃之间的、具有活性粒子的等离子体射流。
3.根据权利要求2所述的一种用于改善电泳钢结构件连接性能的胶接工艺,其特征在于,所述活性粒子包括处于激发态的氦原子、氧原子、氮原子或OH自由基。
4.根据权利要求2所述的一种用于改善电泳钢结构件连接性能的胶接工艺,其特征在于,所述等离子体选自空气、氩气、氮气或功能性气体中的一种或多种的组合,其中,功能性气体为氨气、氧气、硅烷、硅氧烷气体、丙烯酸和/或甲基丙烯酸的蒸汽中的一种或几种的组合。
5.根据权利要求1所述的一种用于改善电泳钢结构件连接性能的胶接工艺,其特征在于,等离子改性处理的具体工艺为:
喷枪在距离待处理电泳钢结构件表面5-20mm的位置匀速平行移动,等离子体在电泳钢结构件表面处理功率密度为100~800mJ/cm2,喷枪的平行移动速度为0.5~10m/s。
6.根据权利要求1所述的一种用于改善电泳钢结构件连接性能的胶接工艺,其特征在于,粘接过程具体为:
两块被粘接的电泳钢结构件中至少有一块的表面预先进行等离子表面处理,接着,在其中一块电泳钢结构件的粘接面上均匀涂布高分子胶粘剂,然后,将另一块电泳钢结构件覆盖到已经涂布有高分子胶粘剂的电泳钢结构件上,即完成粘接。
7.根据权利要求6所述的一种用于改善电泳钢结构件连接性能的胶接工艺,其特征在于,两块电泳钢结构件之间的高分子胶粘剂的厚度为0.1-3mm,其涂布量大于高分子胶粘剂厚度与粘接面积之积的1.1倍。
8.根据权利要求7所述的一种用于改善电泳钢结构件连接性能的胶接工艺,其特征在于,高分子胶粘剂厚度控制的方法为固定式厚度控制方法或自动厚度控制方法,其中,
固定式厚度控制方法为在电泳钢结构件表面放置玻璃珠或钢珠,或预制凸点,所述玻璃珠、钢珠或凸点的高度与高分子胶粘剂厚度保持一致。
9.根据权利要求1所述的一种用于改善电泳钢结构件连接性能的胶接工艺,其特征在于,所述的高分子胶粘剂为环氧胶粘剂和聚氨酯胶粘剂。
10.根据权利要求1所述的一种用于改善电泳钢结构件连接性能的胶接工艺,其特征在于,电泳钢结构件上等离子改性处理的面积不小于被粘接面积的110%。
CN201810047312.6A 2018-01-18 2018-01-18 一种用于改善电泳钢结构件连接性能的胶接工艺 Pending CN108329846A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810047312.6A CN108329846A (zh) 2018-01-18 2018-01-18 一种用于改善电泳钢结构件连接性能的胶接工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810047312.6A CN108329846A (zh) 2018-01-18 2018-01-18 一种用于改善电泳钢结构件连接性能的胶接工艺

Publications (1)

Publication Number Publication Date
CN108329846A true CN108329846A (zh) 2018-07-27

Family

ID=62925201

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810047312.6A Pending CN108329846A (zh) 2018-01-18 2018-01-18 一种用于改善电泳钢结构件连接性能的胶接工艺

Country Status (1)

Country Link
CN (1) CN108329846A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110922898A (zh) * 2019-12-30 2020-03-27 石家庄格力电器小家电有限公司 一种硅酮胶粘胶工艺

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0433513A1 (fr) * 1988-12-05 1991-06-26 Association Pour La Recherche Et Le Developpement Des Methodes Et Processus Industriels (Armines) Procédé d'assemblage, par collage, de deux pièces ou substrats
US20100151236A1 (en) * 2008-12-11 2010-06-17 Ford Global Technologies, Llc Surface treatment for polymeric part adhesion
CN102080145A (zh) * 2011-01-22 2011-06-01 中国船舶重工集团公司第七二五研究所 一种常压等离子体改性船体钢表面的方法
CN102493986A (zh) * 2011-12-06 2012-06-13 中国科学院长春光学精密机械与物理研究所 一种胶层厚度精确可控的粘接工装
CN103635552A (zh) * 2011-05-06 2014-03-12 德莎欧洲公司 通过等离子体处理提高压敏粘合剂化合物在基底上的粘合性质的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0433513A1 (fr) * 1988-12-05 1991-06-26 Association Pour La Recherche Et Le Developpement Des Methodes Et Processus Industriels (Armines) Procédé d'assemblage, par collage, de deux pièces ou substrats
US20100151236A1 (en) * 2008-12-11 2010-06-17 Ford Global Technologies, Llc Surface treatment for polymeric part adhesion
CN102080145A (zh) * 2011-01-22 2011-06-01 中国船舶重工集团公司第七二五研究所 一种常压等离子体改性船体钢表面的方法
CN103635552A (zh) * 2011-05-06 2014-03-12 德莎欧洲公司 通过等离子体处理提高压敏粘合剂化合物在基底上的粘合性质的方法
CN102493986A (zh) * 2011-12-06 2012-06-13 中国科学院长春光学精密机械与物理研究所 一种胶层厚度精确可控的粘接工装

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
未命名278: "常压室温等离子体", 《HTTPS://BAIKE.BAIDU.COM/HISTORY/%E5%B8%B8%E5%8E%8B%E5%AE%A4%E6%B8%A9%E7%AD%89%E7%A6%BB%E5%AD%90%E4%BD%93/17561827/97049667》 *
赵化侨: "《等离子体化学与工艺》", 28 February 1993, 中国科学技术大学出版社 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110922898A (zh) * 2019-12-30 2020-03-27 石家庄格力电器小家电有限公司 一种硅酮胶粘胶工艺

Similar Documents

Publication Publication Date Title
Balakrishnan et al. Potential repair techniques for automotive composites: A review
WO2006075994A3 (en) Cold gas-dynamic spraying of wear resistant alloys on turbine blades
Ecault et al. A study of composite material damage induced by laser shock waves
Li et al. A study of laser surface treatment in bonded repair of composite aircraft structures
CN110508563A (zh) 一种激光清洗铝合金基体蒙皮漆层过程中保护基体表面阳极氧化膜的方法
MX2008011226A (es) Proceso para la reparacion y restauracion de componentes tensionados dinamicamente que comprenden aleaciones de aluminio para aplicaciones de avion.
CN106755945B (zh) 一种基于激光冲击波技术改变裂纹扩展路径的方法及装置
CN108329846A (zh) 一种用于改善电泳钢结构件连接性能的胶接工艺
Seeliger Manufacture of aluminum foam sandwich (AFS) components
CN102513942A (zh) 单、双曲度整体壁板的超声波喷丸成形方法
CN104762586A (zh) 一种工件热喷涂工艺及其喷涂装置
Peng et al. Development of clinching process for various materials
CN110129698A (zh) 一种适用于镍基高温合金的湿喷丸表面改性处理方法
Vodicka Thermoplastics for airframe applications: a review of the properties and repair methods for thermoplastic composites
Chen et al. Improvement of Ni-CFRP interfacial properties using compound coupling agent treatment
CN106956079A (zh) 一种激光微熔凝弥合金属表面微裂纹的方法
CN109604415A (zh) 一种激光冲压成形方法及装置
CN106626715B (zh) 一种纤维-金属超混杂复合层板机械喷丸成形及强化方法
CN108745826A (zh) 镁及镁合金轮毂涂装工艺
Giridharan et al. Experimental analysis of fibre metal laminates
CN104846155A (zh) 利用超声冲击与电火花复合加工装置进行加工的方法
CN114406476A (zh) 一种激光冲击强化标印方法
CN110044965A (zh) 一种金属粘接接头在温度环境中的老化影响程度计算方法
CN109822206A (zh) 一种超薄铝-铜超声波焊接工艺
CN103343188A (zh) 一种激光冲击强化用吸收层及其夹紧装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20180727

RJ01 Rejection of invention patent application after publication