CN108318389A - 一种新型的颗粒物浓度检测方法 - Google Patents

一种新型的颗粒物浓度检测方法 Download PDF

Info

Publication number
CN108318389A
CN108318389A CN201711475561.7A CN201711475561A CN108318389A CN 108318389 A CN108318389 A CN 108318389A CN 201711475561 A CN201711475561 A CN 201711475561A CN 108318389 A CN108318389 A CN 108318389A
Authority
CN
China
Prior art keywords
laser
photodetector
particle concentration
laser array
array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711475561.7A
Other languages
English (en)
Inventor
李志刚
冯山虎
吴威
杨清永
贾杰
王海超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hanwei Electronics Group Corp
Original Assignee
Hanwei Electronics Group Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hanwei Electronics Group Corp filed Critical Hanwei Electronics Group Corp
Priority to CN201711475561.7A priority Critical patent/CN108318389A/zh
Publication of CN108318389A publication Critical patent/CN108318389A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • G01N15/075Investigating concentration of particle suspensions by optical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N2015/0042Investigating dispersion of solids
    • G01N2015/0046Investigating dispersion of solids in gas, e.g. smoke

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本发明提供一种基于Mie散射理论的颗粒物浓度检测系统,包括由两个或两个以上激光器组成的激光器阵列、透镜、一个光电探测器和用于吸收激光能量的消光陷阱;还包括用于控制所述激光器阵列内的激光器在任何时间段内启闭的控制器;所述激光器阵列发出的激光经过透镜交汇聚焦到所述光电探测器的光敏区上方,所述消光陷阱对应所述激光器设置,所述激光经过所述光电探测器的光敏区后进入所述消光陷阱;使用的时候,先设置检测光路,再控制所述激光器阵列在不同时间内组合发光,最后由所述光电探测器在不同时间内测量分析不同粒径颗粒物的浓度。

Description

一种新型的颗粒物浓度检测方法
技术领域
本发明属于空间颗粒物浓度检测技术领域,具体的说,涉及了一种基于Mie散射理论的颗粒物浓度检测方法。
背景技术
激光颗粒物检测技术广泛应用于环境空气质量检测领域,包括室内空气质量检测、微型气象站、工地扬尘监测和工业粉尘检测等领域,并且大部分应用中要求区分PM2.5、PM10等不同粒径的颗粒物浓度。目前常用的颗粒物检测技术是基于Mie散射理论,通过光散射来测量颗粒物大小。实现方法是使用一个激光器和一个光电探测器,激光器发出的光经过空气中颗粒物后发生散射,依据粒子在照明光束中产生的微弱散射光的强度来辨别粒径的大小。具体来说是依据光电探测器接收到的散射光的电压幅值高低来区分不同颗粒物的粒径,依据光电探测器接收到的散射光脉冲的个数来判断颗粒物浓度,如图1所示。
通常情况下单个颗粒物粒径越大,散射光的能量就越强,粒径越小散射光的能力就越弱。现有的检测技术都是使用一个激光器并且出射光功率是恒定输出的,由于大颗粒散射光的能量强,小颗粒散射光的能量弱,所以既要检测大颗粒的幅值又要检测小颗粒的幅值,这就对光电探测器的灵敏度以及后期的信号放大和软件算法处理都提出了很高的要求,尤其是现在空气质量检测领域对颗粒物提出了检测更小粒径的如PM1.0、PM0.5、PM0.3等更高的要求,如果按照现有的检测技术,从散射光信号中根据不同的脉冲信号电压幅值区分不同的粒径,越小的粒径意味着信号幅值将更低,区分更小的粒径将变得更加困难。
为了解决以上存在的问题,人们一直在寻求一种理想的技术解决方案。
发明内容
本发明的目的是针对现有技术的不足,从而提供了一种基于Mie散射理论的颗粒物浓度检测系统,及其检测方法,使用该方法能够明显提高对小粒径颗粒物的探测和分辨能力。
为了实现上述目的,本发明所采用的技术方案是:一种基于Mie散射理论的颗粒物浓度检测系统,包括由两个或两个以上激光器组成的激光器阵列、透镜、一个光电探测器和用于吸收激光能量的消光陷阱;还包括用于控制所述激光器阵列内的激光器在任何时间段内启闭的控制器;
所述激光器阵列发出的激光经过透镜交汇聚焦到所述光电探测器的光敏区上方,所述消光陷阱对应所述激光器设置,所述激光经过所述光电探测器的光敏区后进入所述消光陷阱。
基于上述,所述激光器阵列的激光器为具有相同稳定出光功率的激光器。
基于上述,所述激光器阵列的激光器为具有不同稳定出光功率的激光器。
一种新型的颗粒物浓度检测方法,包括以下步骤:
步骤1,设置检测光路
由两个或两个以上激光器组成的激光器阵列发出的激光经过透镜交汇聚焦到一个光电探测器的光敏区上方,激光经过所述光电探测器的光敏区后进入设置于光路末端的消光陷阱;
步骤2,控制所述激光器阵列在不同时间内组合发光;
步骤3,所述光电探测器在不同时间内测量分析不同粒径颗粒物的浓度。
本发明相对现有技术具有突出的实质性特点和显著的进步,具体的说,本发明系统采用多个激光器组合,在不同时间段内改变激光器光束到达光电探测器的光敏区的光功率,用不同的光功率测量不同范围内的颗粒物粒径,能够用更大的光功率来检测更小粒径的颗粒物,从而明显提高小粒径颗粒物的检测分辨率和精度。
附图说明
图1为目前常用的颗粒物浓度检测方法的结构示意图。
图2为本发明系统的结构示意图。
图3为本发明方法输出的光束光功率变化示意图。
图中:1激光器;2激光器;3透镜;4透镜;5反光镜;6光电探测器;7消光陷阱;8待测颗粒物;9光敏区。
具体实施方式
下面通过具体实施方式,对本发明的技术方案做进一步的详细描述。
实施例1
一种基于Mie散射理论的颗粒物浓度检测系统,包括由两个或两个以上激光器组成的激光器阵列、透镜、一个光电探测器和用于吸收激光能量的消光陷阱;还包括用于控制所述激光器阵列内的激光器在任何时间段内启闭的控制器;所述激光器阵列发出的激光经过透镜交汇聚焦到所述光电探测器的光敏区上方,所述消光陷阱对应所述激光器设置,所述激光经过所述光电探测器的光敏区后进入所述消光陷阱。
本发明激光器阵列发出的光经过透镜准直或聚焦到光电探测器光敏区上方,并且所有的激光器光线都交汇在同一个光电探测器光敏区上方,也可多个激光器经过相互结合交汇聚焦在不同的光电探测器光敏区上方,激光经过光电探测器光敏区后进入消光陷阱。其中,本发明提出的消光陷阱是一个整体的或多个独立的消光装置,激光进入消光装置后最终能量被吸收。
使用该基于Mie散射理论的颗粒物浓度检测系统进行颗粒物浓度检测时,包括以下步骤:
步骤1,设置检测光路,即设置颗粒物浓度检测系统;
步骤2,控制所述激光器阵列在不同时间内组合发光;
步骤3,所述光电探测器在不同时间内测量分析不同粒径颗粒物的浓度。
采用多个激光器组合成激光器阵列,通过改变不同时间内,激光器阵列发出的光到达光电探测器的光敏区的光功率不同,用不同的光强检测颗粒物的不同粒径。不同时间内,到达光电探测器的光功率不同,用更大的光功率来检测更小粒径的颗粒物,此方法相当于对小粒径颗粒物散射光的能力进行了放大,可明显提高小粒径颗粒物的检测分辨率和精度。
本发明激光器阵列的激光器可以为具有相同稳定出光功率的激光器,还可以为具有不同稳定出光功率的激光器。激光器阵列发出的光束,最终照射在光电探测器的光敏区的光功率,在检测的时间轴上是呈阶梯性变化的,一个相对短的时间内通过使用不同的稳定光功率检测颗粒物的不同粒径。
实施例2
本实施例2与实施例1的区别在于,给出了一种具体的激光器阵列组成方式以及方法实现过程。
如图2和图3所示,激光器阵列由两个激光器组成,分别是激光器1和激光器2。激光器1经过透镜3聚焦到光电探测器6的光敏区9的光功率为W1;激光器2经过透镜4聚焦到光电探测器光敏区9上的光功率为W2;激光器1和激光器2发出的光束经过透镜后交汇聚焦到光电探测器6的光敏区9内,并且激光器1和激光器2同时发光在光电探测器6的光敏区9的光功率为W3。
光功率满足W1<W2<W3,激光器1、激光器2、激光器3在不同时间内组合发光,使得到达光敏区9的光功率基本呈现阶梯变化。例如,用光功率W1的时间段内主要测量分析粒径在2.5~10微米的颗粒物,光功率W2的时间段内主要测量分析粒径在1.0~2.5微米的颗粒物,光功率W3的时间段内主要测量分析粒径在0.3~1.0微米的颗粒物等等。
不同数量的激光器组合以此类推。通过使用更强的光功率测量更小的颗粒粒径,增加了小颗粒物的测量和分辨能力。大大的改善了不同颗粒物粒径的区分能力。
最后应当说明的是:以上实施例仅用以说明本发明的技术方案而非对其限制;尽管参照较佳实施例对本发明进行了详细的说明,所属领域的普通技术人员应当理解:依然可以对本发明的具体实施方式进行修改或者对部分技术特征进行等同替换;而不脱离本发明技术方案的精神,其均应涵盖在本发明请求保护的技术方案范围当中。

Claims (6)

1.一种基于Mie散射理论的颗粒物浓度检测系统,其特征在于:包括由两个或两个以上激光器组成的激光器阵列、透镜、一个光电探测器和用于吸收激光能量的消光陷阱;还包括用于控制所述激光器阵列内的激光器在任何时间段内启闭的控制器;
所述激光器阵列发出的激光经过透镜交汇聚焦到所述光电探测器的光敏区上方,所述消光陷阱对应所述激光器设置,所述激光经过所述光电探测器的光敏区后进入所述消光陷阱。
2.根据权利要求1所述的基于Mie散射理论的颗粒物浓度检测系统,其特征在于:所述激光器阵列的激光器为具有相同稳定出光功率的激光器。
3.根据权利要求1所述的基于Mie散射理论的颗粒物浓度检测系统,其特征在于:所述激光器阵列的激光器为具有不同稳定出光功率的激光器。
4.一种权利要求1所述基于Mie散射理论的颗粒物浓度检测系统的新型的颗粒物浓度检测方法,其特征在于,包括以下步骤:
步骤1,设置检测光路
由两个或两个以上激光器组成的激光器阵列发出的激光经过透镜交汇聚焦到一个光电探测器的光敏区上方,激光经过所述光电探测器的光敏区后进入设置于光路末端的消光陷阱;
步骤2,控制所述激光器阵列在不同时间内组合发光;
步骤3,所述光电探测器在不同时间内测量分析不同粒径颗粒物的浓度。
5.根据权利要求4所述的新型的颗粒物浓度检测方法,其特征在于:所述激光器阵列的激光器为具有相同稳定出光功率的激光器。
6.根据权利要求4所述的新型的颗粒物浓度检测方法,其特征在于:所述激光器阵列的激光器为具有不同稳定出光功率的激光器。
CN201711475561.7A 2017-12-29 2017-12-29 一种新型的颗粒物浓度检测方法 Pending CN108318389A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711475561.7A CN108318389A (zh) 2017-12-29 2017-12-29 一种新型的颗粒物浓度检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711475561.7A CN108318389A (zh) 2017-12-29 2017-12-29 一种新型的颗粒物浓度检测方法

Publications (1)

Publication Number Publication Date
CN108318389A true CN108318389A (zh) 2018-07-24

Family

ID=62894111

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711475561.7A Pending CN108318389A (zh) 2017-12-29 2017-12-29 一种新型的颗粒物浓度检测方法

Country Status (1)

Country Link
CN (1) CN108318389A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109030297A (zh) * 2018-08-22 2018-12-18 佛山融芯智感科技有限公司 一种高集成度空气粒子检测组件
CN109632589A (zh) * 2018-12-30 2019-04-16 江苏苏净集团有限公司 一种大气颗粒物检测装置和方法
CN109975187A (zh) * 2019-04-18 2019-07-05 无锡豪帮高科股份有限公司 一种适于环境颗粒物监测的激光传感器
CN110940623A (zh) * 2018-09-21 2020-03-31 苹果公司 用于便携式电子设备的颗粒物传感器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2729694Y (zh) * 2004-07-30 2005-09-28 中国科学院上海光学精密机械研究所 光散射式尘埃粒子测量仪的光学装置
US20120281215A1 (en) * 2010-01-21 2012-11-08 Rainer Peters Method and device for determining the static and/or dynamic scattering of light
CN106323826A (zh) * 2016-11-15 2017-01-11 上海理工大学 一种超低排放烟尘监测装置及监测方法
CN205958420U (zh) * 2016-08-04 2017-02-15 安徽蓝盾光电子股份有限公司 一种光散射颗粒物浓度检测装置
US20190226965A1 (en) * 2018-01-23 2019-07-25 Hal Technology, LLC Method and system for particle characterization in harsh environments

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2729694Y (zh) * 2004-07-30 2005-09-28 中国科学院上海光学精密机械研究所 光散射式尘埃粒子测量仪的光学装置
US20120281215A1 (en) * 2010-01-21 2012-11-08 Rainer Peters Method and device for determining the static and/or dynamic scattering of light
CN205958420U (zh) * 2016-08-04 2017-02-15 安徽蓝盾光电子股份有限公司 一种光散射颗粒物浓度检测装置
CN106323826A (zh) * 2016-11-15 2017-01-11 上海理工大学 一种超低排放烟尘监测装置及监测方法
US20190226965A1 (en) * 2018-01-23 2019-07-25 Hal Technology, LLC Method and system for particle characterization in harsh environments

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109030297A (zh) * 2018-08-22 2018-12-18 佛山融芯智感科技有限公司 一种高集成度空气粒子检测组件
CN110940623A (zh) * 2018-09-21 2020-03-31 苹果公司 用于便携式电子设备的颗粒物传感器
CN109632589A (zh) * 2018-12-30 2019-04-16 江苏苏净集团有限公司 一种大气颗粒物检测装置和方法
CN109632589B (zh) * 2018-12-30 2024-03-12 江苏苏净集团有限公司 一种大气颗粒物检测装置和方法
CN109975187A (zh) * 2019-04-18 2019-07-05 无锡豪帮高科股份有限公司 一种适于环境颗粒物监测的激光传感器

Similar Documents

Publication Publication Date Title
CN108318389A (zh) 一种新型的颗粒物浓度检测方法
CN205958420U (zh) 一种光散射颗粒物浓度检测装置
JP4871868B2 (ja) 病原体および微粒子検出システム及び検出方法
JP2862253B2 (ja) 粒子の非対称性の分析装置
KR101857950B1 (ko) 고정확 실시간 미세 입자 크기 및 개수 측정 장치
CN108956402B (zh) 一种具有复合多光敏区结构的高灵敏度粉尘浓度检测方法
US20040125371A1 (en) Method and instrumentation for measuring fluorescence spectra of individual airborne particles sampled from ambient air
KR20120013297A (ko) 매질 내의 고체 입자를 분석하는 방법 및 시스템
CN110927025A (zh) 一种气溶胶粒子监测设备
CN102297824A (zh) 一种单光源生物气溶胶粒子检测装置
CN105910968A (zh) 生物气溶胶激光监测预警与鉴别装置及方法
US20120274925A1 (en) Axial light loss sensor system for flow cytometery
CN206557053U (zh) 一种油品质量检测装置
CN101504352A (zh) 厚样品池反傅立叶变换颗粒在线测量装置
CN107478550A (zh) 实时检测微粒大小和性质的三通道融合系统
CN109632589A (zh) 一种大气颗粒物检测装置和方法
CN112903547B (zh) 基于双光源的高浓度云雾颗粒浓度测量装置
CN107219183A (zh) 开放光路式大气痕量气体红外检测装置
CN102323193A (zh) 一种激光散射法空气颗粒分布测量方法及装置
CN106680186B (zh) 一种流式细胞仪多类型散射光探测系统
CN209416865U (zh) 一种油液颗粒物污染检测装置
CN202442939U (zh) 基于光子计数的光子相关光谱法的颗粒测量装置
CN106053303A (zh) 激光前向散射云滴谱探测系统
CN109632588A (zh) 一种油液颗粒物污染检测装置和方法
CN205786218U (zh) 生物气溶胶激光监测预警与鉴别装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20180724

RJ01 Rejection of invention patent application after publication