CN108303027A - 一种光学非接触式垂直振动位移检测系统 - Google Patents

一种光学非接触式垂直振动位移检测系统 Download PDF

Info

Publication number
CN108303027A
CN108303027A CN201810300545.2A CN201810300545A CN108303027A CN 108303027 A CN108303027 A CN 108303027A CN 201810300545 A CN201810300545 A CN 201810300545A CN 108303027 A CN108303027 A CN 108303027A
Authority
CN
China
Prior art keywords
speculum
babinet
interference
laser
signal processor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201810300545.2A
Other languages
English (en)
Inventor
刘菲菲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiaogan Rui Chuang Machinery Technology Co Ltd
Original Assignee
Xiaogan Rui Chuang Machinery Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiaogan Rui Chuang Machinery Technology Co Ltd filed Critical Xiaogan Rui Chuang Machinery Technology Co Ltd
Priority to CN201810300545.2A priority Critical patent/CN108303027A/zh
Publication of CN108303027A publication Critical patent/CN108303027A/zh
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02001Interferometers characterised by controlling or generating intrinsic radiation properties
    • G01B9/0201Interferometers characterised by controlling or generating intrinsic radiation properties using temporal phase variation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H9/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)

Abstract

本发明公开了一种光学非接触式垂直振动位移检测系统,包括由激光器、半反半透镜、第一反射镜、相位补偿板、滤光透镜、第二反射镜及可移动反射镜构成的迈克尔逊干涉系统,以及质量块、弹簧、第一平行导轨、第二平行导轨、箱体、CCD相机、信号处理机。在箱体发生垂直振动时,CCD相机采集到的迈克尔逊干涉系统干涉条纹发生移动,经过信号处理机对条纹信息进行帧间强度相关处理,得到干涉条纹的相位变化值,并实时解算干涉条纹的相位变化信息而解算出箱体的实时振动位移。本发明系统设计独特,采用简单的结构可以达到非接触式检测垂直振动位移的目的,具有精度高、响应快及动态范围大等优点。

Description

一种光学非接触式垂直振动位移检测系统
技术领域
本发明涉及一种非接触式垂直振动位移检测系统,尤其涉及一种光学非接触式垂直振动位移检测系统,属于非接触式垂直振动位移检测技术领域。
背景技术
由于抗电磁干扰、高精度、高灵敏度等优点,光纤传感器越来越广泛地应用于各种物理量的测量,如温度、应力、磁场、方位、振动等。而光学传感器主要应用于振动、流量及水平位移的测量,这里提出了一种光学非接触式垂直振动位移检测系统。
发明内容
本发明的目的在于提供一种光学非接触式垂直振动位移检测系统。
为了实现上述目的本发明采用以下技术方案:
一种光学非接触式垂直振动位移检测系统,包括激光器、半反半透镜、第一反射镜、相位补偿板、滤光透镜、第二反射镜、可移动反射镜、质量块、弹簧、第一平行导轨、第二平行导轨、箱体、CCD相机、信号处理机;
所述激光器、半反半透镜、第一反射镜、相位补偿板、滤光透镜及第二反射镜构成迈克尔逊干涉系统,经过第一反射镜的激光光路为参考光路,经过相位补偿板、滤光透镜、第二反射镜及可移动反射镜的激光光路为信号光路,所述滤光透镜对所述激光器产生激光透过率大于90%,所述激光器产生的激光波长为380nm至760nm之间的可见光波段;
所述可移动反射镜固定所述在质量块上,并保持水平;
所述第一平行导轨与第二平行导轨平行固定于所述箱体上,并与箱体垂直;
所述弹簧一端固定于箱体上,另一端固定在所述质量块上;
所述箱体发生垂直振动时,所述第二反射镜与所述箱体一同产生垂直振动,由于质量块的惯性而暂时保持相对静止,所述第二反射镜与所述可移动反射镜之间的距离随着振动的位移发生变化,改变了迈克尔逊干涉系统的光程差,致使迈克尔逊干涉系统的干涉条纹发生移动;
所述CCD相机实时采集迈克尔逊干涉系统的干涉条纹图像,并将干涉条纹图像传递给所述信号处理机;
所述信号处理机对条纹信息进行帧间强度相关处理,得到干涉条纹的相位变化值,因此可以通过信号处理机实时解算干涉条纹的相位变化信息而解算出箱体的实时振动位移。
进一步的,所述信号处理机对干涉条纹图像信息实时进行帧间强度相关处理,即先提取干涉图像的图像系数矩阵,再对相邻干涉图像的系数矩阵进行强度相关运算,通过最小二乘迭代得到每帧干涉图样的相位变化值。
进一步的,所述的第一反射镜与可移动反射镜为镜面反射镜或漫反射镜。
因为本发明采用以上技术方案,所以具备以下有益效果:
一、本发明中的箱体发生垂直振动时,第二反射镜与箱体一同产生垂直振动,由于质量块的惯性而暂时保持相对静止,第二反射镜与可移动反射镜之间的距离随着振动的位移发生变化,改变了迈克尔逊干涉系统的光程差,导致CCD相机采集到的迈克尔逊干涉系统的干涉条纹发生移动,经过信号处理机对条纹信息进行帧间强度相关处理,得到干涉条纹的相位变化值,因此可以通过信号处理机实时解算干涉条纹的相位变化信息而解算出箱体的实时振动位移,系统设计独特。
二、本发明中的帧间强度相关方法在处理干涉图像方面,不仅对干涉图像的对比度要求不高,而且具有相当高的精度和计算速度。
三、系统工作在可见光波长范围内,不仅方便光路调节,及时规避激光对人眼造成伤害,同时在系统光路出现较大偏差时,能够及时对系统进行调整,校正系统至系统正常工作。
四、采用迈克尔逊干涉仪系统,具有精度高、响应快及动态范围大等优点。
五、系统结构设计简单,易于操作,容易实现系统性能提高的相关改进。
附图说明
图1为本发明原理图。
附图说明:1-激光器,2-半反半透镜,3-第一反射镜,4-相位补偿板,5-滤光透镜,6-第二反射镜,7-可移动反射镜,8-质量块,9-弹簧,10-第一平行导轨,11-第二平行导轨,12-箱体,13-CCD相机,14-信号处理机。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明采用一种光学非接触式垂直振动位移检测系统,其特征在于:包括激光器1、半反半透镜2、第一反射镜3、相位补偿板4、滤光透镜5、第二反射镜6、可移动反射镜7、质量块8、弹簧9、第一平行导轨10、第二平行导轨11、箱体12、CCD相机13及信号处理机14。
上述方案中的激光器1、半反半透镜2、第一反射镜3、相位补偿板4、滤光透镜5、第二反射镜6及可移动反射镜7构成迈克尔逊干涉系统,经过第一反射镜3的激光光路为参考光路,经过相位补偿板4、滤光透镜5、第二反射镜6及可移动反射镜7的激光光路为信号光路,所述的第一反射镜3与可移动反射镜7为镜面反射镜或漫反射镜。
上述方案中滤光透镜5对所述激光器1产生激光透过率大于90%。
上述方案中的激光器1产生的激光波长在380nm至760nm的可见光波长范围内。
上述方案中的可移动反射镜7固定所述在质量块8上,并保持水平。
上述方案中的第一平行导轨10与第二平行导轨11平行固定于所述箱体12上,并与箱体12垂直。
上述方案中的弹簧9一端固定于箱体12上,另一端固定在所述质量块8上。
上述方案中的箱体12发生垂直振动时,所述第二反射镜6与所述箱体12一同产生垂直振动,由于质量块8的惯性而暂时保持相对静止,所述第二反射镜6与所述可移动反射镜7之间的距离随着振动的位移发生变化,改变了迈克尔逊干涉系统的光程差,致使迈克尔逊干涉系统的干涉条纹发生移动。上述方案中的CCD相机13实时采集迈克尔逊干涉系统的干涉条纹,并将采集的干涉条纹图像信息传递给信号处理机14。所述信号处理机14对干涉条纹图像信息实时进行帧间强度相关处理,所述帧间强度相关算法原理如下:
由CCD相机13采集到的干涉图像光强分布可以表示为:
其中M为相移次数,N为CCD相机13像素个数,其余为干涉表达式中的系数常量。
而CCD相机13拍摄得到建立的方程个数远大于方程未知数个数,通过使下述代价方程最小化得到方程组的最小二乘解。
进一步将上述方程组矩阵化,定义C(1)是干涉条纹图像的大小为M×M的相关矩阵,干涉图像中相位的移动只是相关矩阵II+的函数。假设光强分布的测量误差服从均值为零的随机统计规律,并且与波前变量无关,C(1)的最小特征值近似与光强误差的方差相等。将其最小特征值从C(1)对角线中去除可以得到一个噪声抑制的相关矩阵C(ns)
其中,定义调制光波为um=exp(iθm),参考光为引入微分矩阵D进一步减少方程和未知数个数,建立帧间强度相关方法矩阵优化模型,
C=DC(ns)DT≈VHV+
其中,
利用等式右侧模型对左侧计算得到的矩阵C进行最小二乘迭代拟合,得到的相位变化大小:
上述方案中信号处理机14对条纹信息进行帧间强度相关处理,得到干涉条纹的相位变化值,从而解算出箱体12的实时振动位移。
上述方案的动态范围和能够检测的位移范围取决于质量块8的质量与弹簧9的弹性系数,假设质量块8质量为m、位移为x,弹簧9的弹性系数为k,则由动力学方程:
求解可得质量块8作简谐振动,其固有频率为:
由上式可知本方案的固有频率与质量块8的开方成反比,与弹簧9的弹性系数开方成正比,如果要测量的振动位移频率较低,则设计中要求质量块8与弹簧9的谐振频率尽量小些,采用质量大的质量块8和弹性系数小的弹簧9;如果要测量的振动位移频率较高,则设计中要求质量块8与弹簧9的谐振频率尽量大些,采用质量小的质量块8和弹性系数大的弹簧9。如果本方案的系统是在平台振动下做受迫振动,而系统只在意相对位移,也不会影响到振动位移的测量。
上述方案所述激光波长为λ,所述信号处理机14解算的干涉条纹相位变化为δ,所述箱体12垂直方向振动位移为ΔH,则有:
ΔH=δλ/2π
以上仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (3)

1.一种光学非接触式垂直振动位移检测系统,其特征在于:包括激光器、半反半透镜、第一反射镜、相位补偿板、滤光透镜、第二反射镜、可移动反射镜、质量块、弹簧、第一平行导轨、第二平行导轨、箱体、CCD相机、信号处理机;
所述激光器、半反半透镜、第一反射镜、相位补偿板、滤光透镜及第二反射镜构成迈克尔逊干涉系统,经过第一反射镜的激光光路为参考光路,经过相位补偿板、滤光透镜、第二反射镜及可移动反射镜的激光光路为信号光路,所述滤光透镜对所述激光器产生激光透过率大于90%,所述激光器产生的激光波长为380nm至760nm之间的可见光波段;
所述可移动反射镜固定所述在质量块上,并保持水平;
所述第一平行导轨与第二平行导轨平行固定于所述箱体上,并与箱体垂直;
所述弹簧一端固定于箱体上,另一端固定在所述质量块上;
所述箱体发生垂直振动时,所述第二反射镜与所述箱体一同产生垂直振动,由于质量块的惯性而暂时保持相对静止,所述第二反射镜与所述可移动反射镜之间的距离随着振动的位移发生变化,改变了迈克尔逊干涉系统的光程差,致使迈克尔逊干涉系统的干涉条纹发生移动;
所述CCD相机实时采集迈克尔逊干涉系统的干涉条纹图像,并将干涉条纹图像传递给所述信号处理机;
所述信号处理机对条纹信息进行帧间强度相关处理,得到干涉条纹的相位变化值,从而解算出箱体的实时振动位移。
2.根据权利要求1所述的一种光学非接触式垂直振动位移检测系统,其特征在于:所述信号处理机对干涉条纹图像信息进行实时处理的核心算法为帧间强度相关算法,所述帧间强度相关算法先提取干涉图像的图像系数矩阵,再对相邻干涉图像的系数矩阵进行强度相关运算,通过最小二乘迭代得到每帧干涉图样的相位变化值。
3.根据权利要求1所述的一种光学非接触式垂直振动位移检测系统,其特征在于所述的第一反射镜与可移动反射镜为镜面反射镜或漫反射镜。
CN201810300545.2A 2018-04-04 2018-04-04 一种光学非接触式垂直振动位移检测系统 Withdrawn CN108303027A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810300545.2A CN108303027A (zh) 2018-04-04 2018-04-04 一种光学非接触式垂直振动位移检测系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810300545.2A CN108303027A (zh) 2018-04-04 2018-04-04 一种光学非接触式垂直振动位移检测系统

Publications (1)

Publication Number Publication Date
CN108303027A true CN108303027A (zh) 2018-07-20

Family

ID=62848236

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810300545.2A Withdrawn CN108303027A (zh) 2018-04-04 2018-04-04 一种光学非接触式垂直振动位移检测系统

Country Status (1)

Country Link
CN (1) CN108303027A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109186821A (zh) * 2018-07-25 2019-01-11 孝感锐创机械科技有限公司 一种非接触式微振动及压力测量装置
CN110514285A (zh) * 2019-07-15 2019-11-29 北京工业大学 一种用于轻质杆件双向耦合振动的非接触测量方法
CN113011439A (zh) * 2021-03-19 2021-06-22 中国科学院长春光学精密机械与物理研究所 一种干涉条纹位移信息提取方法
CN114966105A (zh) * 2022-04-18 2022-08-30 北京华卓精科科技股份有限公司 一种加速度计
CN115014234A (zh) * 2022-07-01 2022-09-06 南京大学 基于分布式光纤声场传感的水下光电复合缆埋深测量方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109186821A (zh) * 2018-07-25 2019-01-11 孝感锐创机械科技有限公司 一种非接触式微振动及压力测量装置
CN110514285A (zh) * 2019-07-15 2019-11-29 北京工业大学 一种用于轻质杆件双向耦合振动的非接触测量方法
CN113011439A (zh) * 2021-03-19 2021-06-22 中国科学院长春光学精密机械与物理研究所 一种干涉条纹位移信息提取方法
CN114966105A (zh) * 2022-04-18 2022-08-30 北京华卓精科科技股份有限公司 一种加速度计
CN115014234A (zh) * 2022-07-01 2022-09-06 南京大学 基于分布式光纤声场传感的水下光电复合缆埋深测量方法
CN115014234B (zh) * 2022-07-01 2023-07-14 南京大学 基于分布式光纤声场传感的水下光电复合缆埋深测量方法

Similar Documents

Publication Publication Date Title
CN108303027A (zh) 一种光学非接触式垂直振动位移检测系统
CN102589416B (zh) 用于非球面测量的波长扫描干涉仪及方法
CN107036552A (zh) 一种基于光学相移的跨尺度表面形貌测量装置及方法
CN203231736U (zh) 一种基于双目视觉的镜面物体测量装置
KR101596290B1 (ko) 두께 측정 장치 및 두께 측정 방법
CN104111036A (zh) 一种基于双目视觉的镜面物体测量装置及方法
CN101936718A (zh) 正弦条纹投影装置以及三维轮廓测量方法
CN104279981B (zh) 一种基于条纹反射的镜面/类镜面物体绝对面形的测量方法及装置
CN101545760A (zh) 光学透射球面检测装置
WO2014074003A1 (ru) Способ контроля линейных размеров трехмерных объектов
CN110702009A (zh) 一种基于逆向Hartmann计算机辅助法的三维测量系统
CN107063122B (zh) 光学非球面面形的检测方法及其装置
CN108387172A (zh) 基于光场探测器的偏振移相动态干涉仪
CN103791844B (zh) 光学位移测量系统
CN103115586A (zh) 一种基于激光干涉条纹的微三维传感装置
CN102288392A (zh) 一种基于二维朗奇光栅的自由曲面眼镜片光焦度测量装置
CN208238729U (zh) 一种光学非接触式垂直振动位移检测系统
CN108801606B (zh) 一种基于光纤干涉投影的镜片屈光度测量装置及方法
CN103471561B (zh) 一种三维小角度测量装置及方法
CN108317959A (zh) 一种基于劈尖干涉的垂直振动位移检测装置
CN108303040B (zh) 基于平面复眼和同轴结构光的三维测量系统及使用方法
CN108225631A (zh) 一种光学非接触式压力传感器
CN105180840A (zh) 基于彩色双频条纹反射的大口径凹镜面面形的测量方法及其装置
CN108414102A (zh) 一种非接触式光学测温系统
Huang et al. Correlation matching method for optical vortex detection using Shack-Hartmann wavefront sensor

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication
WW01 Invention patent application withdrawn after publication

Application publication date: 20180720