CN108291766A - 液化co2污染的含烃气流的方法 - Google Patents

液化co2污染的含烃气流的方法 Download PDF

Info

Publication number
CN108291766A
CN108291766A CN201680070463.2A CN201680070463A CN108291766A CN 108291766 A CN108291766 A CN 108291766A CN 201680070463 A CN201680070463 A CN 201680070463A CN 108291766 A CN108291766 A CN 108291766A
Authority
CN
China
Prior art keywords
stream
liquid
another
heat exchanger
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201680070463.2A
Other languages
English (en)
Other versions
CN108291766B (zh
Inventor
T·赫鲁嫩代克
R·E·G·波尔特
N·拉格埃文
M·G·范阿肯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shell Internationale Research Maatschappij BV
Original Assignee
Shell Internationale Research Maatschappij BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shell Internationale Research Maatschappij BV filed Critical Shell Internationale Research Maatschappij BV
Publication of CN108291766A publication Critical patent/CN108291766A/zh
Application granted granted Critical
Publication of CN108291766B publication Critical patent/CN108291766B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0035Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0035Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work
    • F25J1/0037Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work of a return stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/004Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by flash gas recovery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0201Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using only internal refrigeration means, i.e. without external refrigeration
    • F25J1/0202Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using only internal refrigeration means, i.e. without external refrigeration in a quasi-closed internal refrigeration loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0203Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle
    • F25J1/0208Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle in combination with an internal quasi-closed refrigeration loop, e.g. with deep flash recycle loop
    • F25J1/0209Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle in combination with an internal quasi-closed refrigeration loop, e.g. with deep flash recycle loop as at least a three level refrigeration cascade
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0203Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle
    • F25J1/0208Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle in combination with an internal quasi-closed refrigeration loop, e.g. with deep flash recycle loop
    • F25J1/0209Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle in combination with an internal quasi-closed refrigeration loop, e.g. with deep flash recycle loop as at least a three level refrigeration cascade
    • F25J1/021Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle in combination with an internal quasi-closed refrigeration loop, e.g. with deep flash recycle loop as at least a three level refrigeration cascade using a deep flash recycle loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/06Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation
    • F25J3/0605Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the feed stream
    • F25J3/061Natural gas or substitute natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/06Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation
    • F25J3/063Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the separated product stream
    • F25J3/0635Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the separated product stream separation of CnHm with 1 carbon atom or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/06Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation
    • F25J3/063Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the separated product stream
    • F25J3/067Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the separated product stream separation of carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/10Processes or apparatus using other separation and/or other processing means using combined expansion and separation, e.g. in a vortex tube, "Ranque tube" or a "cyclonic fluid separator", i.e. combination of an isentropic nozzle and a cyclonic separator; Centrifugal separation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/20Processes or apparatus using other separation and/or other processing means using solidification of components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/30Processes or apparatus using other separation and/or other processing means using a washing, e.g. "scrubbing" or bubble column for purification purposes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/90Mixing of components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/04Mixing or blending of fluids with the feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/04Recovery of liquid products
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/60Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
    • F25J2220/66Separating acid gases, e.g. CO2, SO2, H2S or RSH
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/30Compression of the feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/60Processes or apparatus involving steps for increasing the pressure of gaseous process streams the fluid being hydrocarbons or a mixture of hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/60Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being (a mixture of) hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/80Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/02Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/02Recycle of a stream in general, e.g. a by-pass stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/90Processes or apparatus involving steps for recycling of process streams the recycled stream being boil-off gas from storage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/04Internal refrigeration with work-producing gas expansion loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/88Quasi-closed internal refrigeration or heat pump cycle, if not otherwise provided
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明提供一种液化一污染的含烃气流的方法:(a)提供一CO2污染的含烃气流(20);(b)冷却所述污染的含烃气流以获得一经部分液化流(70);(c)分离所述经部分液化流,获得一液流(90);(d)在一直接接触热交换器(200)中冷却所述液流(90),获得含有至少一液相及一固体CO2相的一多相流(201);(e)在一固液分离器(202)中分离所述多相流,获得一CO2耗乏的液流(141);(f)使所述CO2耗乏的液流(141)传递至另一冷却、减压及分离阶段以产生另一CO2富集的浆料流(206);(g)将至少部分所述另一CO2富集的浆料流(206)传递至所述直接接触热交换器(200)以提供冷却功能并且与所述液流(90)混合。

Description

液化CO2污染的含烃气流的方法
本发明涉及液化污染的含烃气流的方法,所述污染物为CO2。
液化含烃气流的方法在所属领域中众所周知。出于多种原因期望液化如天然气流的含烃气流。作为一个实例,天然气作为液体相比于气态形式能更加容易地储存及运输较长距离,因为其占据较小体积并且不需要在高压下储存。通常,在液化前,处理污染的含烃气流以去除可能在液化工艺期间冻结的一种或多种污染物(如H2O、CO2、H2S等等)。
WO2014/166925描述液化污染的含烃气流的方法,所述方法包含至少以下步骤:
(1)提供污染的含烃气流;
(2)在第一热交换器中冷却污染的含烃气流,从而获得冷却的污染含烃流;
(3)在扩展器中冷却经冷却的污染含烃流,从而获得经部分液化流;
(4)在分离器中分离经部分液化流,从而获得气态流及液流;
(5)使步骤(4)中获得的液流膨胀,从而获得多相流,所述多相流含有至少气相、液相以及固相;
(6)在分离器中分离多相流,从而获得气态流及浆料流(包含固体CO2及液态烃);
(7)在固/液分离器中分离浆料流,从而获得液态烃流及浓缩浆料流;
(8)使步骤(4)中获得的气态流穿过第一热交换器,从而获得经加热气态流;以及
(9)压缩经加热气态流,从而获得压缩气流;以及
(10)合并步骤(9)中获得的压缩气流与步骤(1)中提供的污染的含烃气流。
如WO2014/166925中描述的方法允许用相对低的设备数液化污染的含烃气流,从而提供液化污染的含烃气流,尤其含甲烷的污染的气流如天然气的简单及节约成本的方法。污染物可为CO2。
根据WO2014/166925的方法使用冻结工艺流程去除CO2。在如上文所述的步骤(5)中,步骤(4)中获得的液流中的工艺条件仅在CO2冻结包络线外部(工艺条件为例如20巴,-120℃,1mol%CO2),因此任何进一步温度降低会刺激CO2冻结。温度降低在步骤(5)中通过经焦耳汤姆森(Joule Thomson)阀门的减压实现。减压蒸发部分液体甲烷,因此冷却其余液体。
使用焦耳汤姆森阀门具有几个缺陷。
首先,分子在焦耳汤姆森中的滞留时间极短(<1ms)并且因此存在极少时间用于CO2晶体成长。
第二,仅获得低于CO2冻结温度的适度过冷,通常在1-10℃范围内,其产生适度动力用于CO2结晶。
第三,焦耳汤姆森阀门不提供独立的压力及温度控制,因为下游温度遵从下游压力。
此外,经焦耳汤姆森阀门闪蒸液流产生主要蒸汽、一些液体及少量固体的多相混合物,其中充足气相的存在混合液相,从而干扰CO2晶体的生长过程,因为混合可以造成固体分解。
另外,焦耳汤姆森阀门将在液流上产生相对大的剪切力。在焦耳汤姆森阀门窄间隙中施加的这一剪切力往往会分裂CO2粒子并且因此干扰CO2粒子形成和/或生长。
所有上述缺陷促成形成相对较小的CO2粒子。通常,固体CO2粒子具有小于20微米(<20*10-6米)的尺寸。
小CO2粒子相对难以从液态烃分离,这可以在产物LNG中产生固体CO2残留。
WO2015017357描述用于从天然气生成液化天然气(LNG)的方法及系统。天然气首先通过去除水及其它污染物部分纯化,随后不完全冷却以冻结一些污染物并且允许生成净化流以去除其它污染物。这些污染物可以从流去除。
这一方法通过在急冷塔中等压冷却引起在单个温度位准下的冻结;然而任何由于冷却器中的等压冷却的进一步冻结未从LNG产物中分离。形成于冷却器中的固体可随时间阻塞流动路径,因此使所述方法难以进行。
WO2012068588描述用于通过直接接触热交换从气体分离可凝结蒸汽的系统及方法。如二氧化碳的可凝结蒸汽在工艺流中从轻质气体分离。所述系统及方法采用直接交换热交换器以使来自工艺流的可凝结蒸汽去升华。可凝结蒸汽通过在直接接触热交换器中直接接触热交换液体凝结,同时来自工艺流的不凝结轻质气体形成经分离轻质气流。经分离轻质气流可用于回热式热交换器中冷却工艺流。
WO2012068588提出对单独的非挥发性热交换液体(如甲基环戊烷)的需要,并且因此不适合用于液化含烃气体的方法,即生成LNG),因为这一单独的外来热交换液体会染污LNG。
WO2012162690描述在混合工艺流中从轻质气体或液体分离可凝结蒸汽如二氧化碳的方法及系统。分离在使用一个或多个外部冷却环(ECL)的低温方法中进行,所述冷却环首先冷却含有可凝结蒸汽及轻质气体或液体的混合工艺流,使得可凝结蒸汽去升华并且形成固体。其次,固体从轻质气体或液体分离,形成固体流及轻质气体或液流。随后通过加热分离的固体流及轻质气体或液流冷却ECL的制冷剂,有效回收用于冷却及使可凝结蒸汽去升华的能量。
WO2012068588及WO2012162690不适合液化烃流产生LNG的方法。
本发明的一个目标为解决或至少最大限度地减少根据WO2014/166925鉴别的以上问题。
本发明的另一目标为提供液化污染的含烃气流,尤其含甲烷的污染的气流如天然气的更简单并且更节约成本的方法。
根据一个实施例提供一种液化污染的含烃气流的方法,所述方法包含至少以下步骤:
(a)提供污染的含烃气流(20),所述污染物为CO2;
(b)冷却所述污染的含烃气流(20)以获得经部分液化流(70);
(c)在分离器(5)中分离所述经部分液化流(70),从而获得气态流(80)及液流(90);
(d)通过将所述液流(90)传递至直接接触热交换器(200)冷却步骤(c)中获得的所述液流(90),从而获得多相流(201),所述多相流(201)含有至少一液相及一固相,所述固相含有CO2粒子;
(e)在固液分离器(202)中分离所述多相流(201),从而获得CO2耗乏的液流(141)及CO2富集的浆料流(140);
(f)将所述CO2耗乏的液流(141)传递至另一冷却、减压及分离阶段,所述另一冷却、减压及分离阶段产生气态流(190)、经纯化液流(205)以及另一CO2富集的浆料流(206);
(g)将至少部分所述另一CO2富集的浆料流(206)传递至所述直接接触热交换器(200)以提供冷却功能并且与步骤(c)中获得的所述液流(90)混合。
另一CO2富集的浆料流206优选包含其上能冻结溶解的CO2的固体CO2粒子。这使得在直接接触热交换器(200)中形成较大CO2粒子。
根据一个实施例提供用于液化污染的含烃气流的系统,所述系统包含:
(a)进料管道(20),经布置以提供污染的含烃气流(20),所述污染物为CO2;
(b)冷却及膨胀阶段(3,4),经布置以接收所述污染的含烃气流(20)并且排出经部分液化流(70);
(c)分离器(5),经布置以接收所述经部分液化流(70)并且排出气态流(80)及液流(90);
(d)直接接触热交换器(200),经布置以接收并且冷却步骤(c)中获得的所述液流(90),获得多相流(201),所述多相流(201)含有至少一液相及一固相,所述固相含有CO2粒子;
(e)固液分离器(202),经布置以接收所述多相流(201)并且排出CO2耗乏的液流(141)及CO2富集的浆料流(140);
(f)另一冷却、减压及分离阶段,经布置以接收所述CO2耗乏的液流(141)并且生成气态流(190)、经纯化液流(205)以及另一CO2富集的浆料流(206);
(g)再循环管道(206),其经布置以将包含固体CO2粒子的至少部分所述另一CO2富集的浆料流(206)传递至所述直接接触热交换器(200)。
这一再循环管道经布置以提供固体CO2粒子至直接接触热交换器200,在所述热交换器上能冻结溶解的CO2,因此形成较大CO2粒子,以及提供冷却功能并且与步骤(c)中获得的液流(90)混合。
如上文所述及下文参考实施例所述的方法及系统优选不使用在独立制冷剂循环中流通的独立制冷剂。污染的含烃气流20优选通过膨胀冷却并且通过在热交换器中逆着制冷剂流冷却来冷却,所述制冷剂流由含烃气流20自身形成。
下文将通过以下非限制性附图进一步说明本发明。此处展示:图1a-c示意性展示用于进行根据不同实施例的方法的不同工艺流程,并且
图2示意性描绘CO2及甲烷的二元混合物的冰冻线图。
出于本说明书的目的,参考标号是指流以及携载这一流的管道。
图1a-1c示意性地展示用于进行液化污染的含烃气流的方法的系统或工艺流程。系统通常称为参考编号1。
如图1a中所示的工艺流程1包含压缩机2、热交换器3(“第一热交换器”)、扩展器4、第一分离器5、JT-阀门6、直接接触热交换器200、固液分离器202、(焦耳汤姆森)阀门203、分离器204、另一固液分离器209、末端闪蒸器207、第二热交换器15、扩展器16以及任选的甲醇分离器17。工艺流程可以进一步包含额外硬件,如例如除第一热交换器3及第二热交换器15以外的其它热交换器。优选地,第一热交换器3及第二热交换器15为独立热交换器。
在使用工艺流程1期间,提供污染的含烃气流20(其预先在压缩机2中压缩为流10)。这涉及如上文所述的步骤(a)。
在压缩机2的上游可以发生气体处理,如去除水、去除重烃(庚烷及更重烃)、去除H2S。
污染的含烃气流20通常为天然气流。污染的烃流20通常具有40至120巴范围内的压力及在-30至30℃范围内的温度下。污染的含烃气流20包含至少50vol.%甲烷、优选至少80vol.%。
在下一步骤(b)中冷却污染的含烃气流20获得经部分液化流70。如上文所指示,这优选在不使用独立制冷剂循环的情况下进行,但优选通过逆着如所述工艺流程或方法的部分获得的流10或污染的含烃气流20的一部分的冷却来进行。
根据一个实施例步骤(b)包含
(b1)在第一热交换器3中冷却所述污染的含烃气流20,从而获得冷却的污染含烃流40;
(b2)在扩展器4中冷却所述冷却的污染含烃流40,60,从而获得所述经部分液化流70。
步骤(b1)中获得的冷却的污染含烃流40通常具有至多-40℃、优选至多-50℃、更优选至多-60℃的温度。
第一热交换器3为(如同第二热交换器15)间接热交换器;因此在流之间不发生直接接触,但仅有热交换接触。
如图1a-c中示出的实施例中所示,冷却的污染含烃流40任选地传递至甲醇分离器17以分离预先注入(例如注入流20)以防止水合物形成的甲醇(作为流50)。
在甲醇分离器17后,(甲醇耗乏)冷却的污染含烃气流作为流60在扩展器4中进一步冷却,从而获得经部分液化流70(步骤b2)。这一经部分液化流70在分离器5中分离,从而获得气态流80及液流90(步骤c)。
分离器5可以仅在高于CO2冰冻线时操作,例如对于具有1.0mol%CO2的流在20巴及-120℃下。
如图中所示,液流90可以在JT-阀门6中膨胀,从而获得多相流100。
因此,根据一个实施例将步骤(c)中获得的液流90传递至直接接触热交换器200包含使液流90穿过减压装置。减压装置可为(焦耳汤姆森)阀门6。减压阀门部分闪蒸液流90并且从而冷却其余液相,获得包含液体、蒸汽以及可能存在的固体的多相流。
多相流100可以包含0.001mol%-10mol%CO2范围内的CO2级分。
步骤(c)中获得的液流90通常具有12-30巴范围内的压力,例如15-25巴。减压装置6通常产生1-20巴的压降。减压装置下游的多相流100的压力通常在4-29巴范围内,例如在10-24巴范围内。
多相流100可以具有-100℃至-130℃范围内的温度。
污染的含烃流20因此首先在热交换器3中并且借助于扩展器4冷却(步骤b1及b2)。随后分离流(步骤c)并且任选地通过经减压装置6的闪蒸进一步冷却。
所得冷却的污染含烃流在步骤(d)中在直接接触热交换器200中进一步冷却,从而获得多相流201。多相流201含有至少一液相及一固相,固相含有CO2粒子。
图2示意性地描绘CO2及CH4的二元混合物的相行为。指明两条冰冻线(虚线I及II)并且起泡点曲线由实线指明。
冰冻线I对应于0.2mol%CO2及99.8mol%CH4的二元混合物。冰冻线II对应于1mol%CO2及99mol%CH4的二元混合物。在起泡点曲线上方存在液相,但没有气相。
固体CO2是否存在取决于压力、温度及CO2浓度。设想点D位于0.2mol%CO2的CO2冰冻线上。如果CO2浓度在点D的压力及温度条件下超过0.2mol%,那么存在固体CO2相并且存在包括CH4及CO2的液相。
CO2冰冻线在起泡点曲线处不连续(如可由点B及D两者均在0.2mol%CO2冰冻线上且点A及C两者均在1.0mol%CO2冰冻线上所见)。
点D(即位于起泡点曲线上方,因此在相包络线的液体/固体区域中)的CO2冻结温度比点B(即位于起泡点曲线下方,因此在相包络线的蒸汽/液体/固体区域中)的冻结温度低25℃。
将这一相行为采用于实施例中。作为一个实例,通过在点B的压力及温度条件下操作冻结分离方法,去除如对于在点D的压力及温度条件下操作的方法相同量的CO2。
根据一个实施例针对压力对比温度图中的相关CO2摩尔分数将直接接触热交换器200中的压力及温度的组合控制在起泡点曲线下方(例如图2中的点A或B),对应于相包络线的蒸汽、液体及固体区域。
如图2中可见,点D(即位于起泡点曲线上方,因此在相包络线的液体/固体区域中)的CO2冻结温度比点B(即位于起泡点曲线下方,因此在相包络线的蒸汽/液体/固体区域中)的冻结温度低(大约25℃)。
在起泡点曲线下方,会发生热力学冻结过程,其将至少一些液体CO2冷冻成固体CO2,并且将至少一些气态CO2冷冻成固体CO2粒子。直接接触热交换器200中的温度条件(在任何给定操作压力下)可以通过控制回馈流206的流动速率和/或温度来控制。这允许使呈固相的CO2量最大化,因此优化固液分离器202中的分离条件。回馈流206可以由泵2061驱动。
直接接触热交换器200的冷却功能通过来自多相流201的进一步冷却及分离的回馈流206获得,如将在下文更详细地阐释。
控制流动速率可以例如通过控制泵2061的操作设定来进行。
分离多相流201获得CO2耗乏的液流141及CO2富集的浆料流140(步骤(e)),并且CO2耗乏的液流141进一步经历减压、冷却及分离阶段(步骤(f)),从而获得气态流190、经纯化液流205及另一CO2富集的浆料流206。
术语减压、冷却及分离阶段在本文中以未必暗示逆着制冷剂冷却的方式使用,但可以包括通过膨胀和/或逆着自身冷却来冷却(即如参考图1b-c更详细地解释)。减压、冷却及分离阶段可以替代地称作减压及分离阶段。
所述另一CO2富集的浆料流206用来提供固体CO2粒子,在所述粒子上可以冻结溶解的CO2,因此形成较大CO2粒子,以及充当对直接接触热交换器200的冷却功能(步骤(g))。
浓缩浆料流140必要时可以进一步处理;通常其为CO2富集流。优选地,浓缩浆料流140在浆料加热器12中加热并且分离成液相160及气相150;气相150可以与燃料气流组合(图1a中示意性地展示)。
使用直接接触热交换器200在直接接触热交换器201中获得(步骤d)并且传递至固液分离器202(步骤e)的多相流201中产生较大CO2粒子。
另外,如水及重烃的其它污染物也会在直接接触热交换器200中冻结。微量的这些其它污染物可能仍存在于获自甲醇分离器17的顶部流60中并且也有效地去除。
因此,所述方法具有以下优势,可以处理具有大于2mol%、大于5mol%或甚至高达10mol%的CO2含量的污染的含烃气流。另一优势为形成较大CO2粒子,其更容易被分离。
穿过直接接触热交换器200的流会经历显著小于穿过焦耳汤姆森阀门或类似膨胀装置的流经历的剪切力的剪切力。
根据一个实施例,步骤(d)中获得的多相流201的固相含有平均尺寸大于50微米、优选大于100微米、更优选大于200微米或大于350微米的CO2粒子。
通常,平均尺寸在100-500微米范围内。这有助于步骤f中更容易及改进的分离。
根据一个实施例,形成步骤(c)中获得的液流90的分子及形成步骤f中获得的至少部分另一CO2富集的浆料流206的分子在直接接触热交换器200中的滞留时间大于10秒。
优选地,滞留时间大于30秒。滞留时间更优选在10-60秒范围内。
滞留时间定义为步骤(c)中获得的液流90的分子行进穿过直接接触热交换器200花费的平均时间。
分子的相对较长滞留时间允许多相流201含有的CO2粒子的进一步结晶及生长。
根据一个实施例,步骤(d)中获得的多相流201的温度大于10℃,低于CO2霜点。霜点定义为在给定CO2摩尔分数及给定压力下形成第一固体CO2的温度。因此,CO2霜点为与直接接触热交换器200的操作条件相关,即与CO2摩尔分数相关的CO2霜点。
多相流201可以包含0.01mol%-20mol%CO2范围内的CO2级分。
图2示意性描绘CO2及甲烷的二元混合物的冰冻线图。技术人员将能够测定给定多相流的冰冻温度。
多相流201的温度可以在-110℃至-160℃范围内,例如-135℃,在4-16巴范围内的压力下,优选在8-12巴范围内,例如10巴。这具有以下效果,多相流201不包含气相或仅有相对较小的气相部分,所述气相部分可以干扰多相流201含有的CO2粒子的结晶及生长过程。
根据一个实施例,在步骤(g)中传递至直接接触热交换器200的至少部分另一CO2富集的浆料流206包含在直接接触热交换器200中充当种子颗粒的CO2粒子。
至少部分所述另一CO2富集的浆料流中含有的CO2粒子可以具有100-300微米范围内的平均尺寸。
种子颗粒起始及促进多相流201含有的CO2粒子的生长,在多相流201中产生可以相对容易地分离的较大CO2粒子。
根据一个实施例,选择直接接触热交换器200中的压力及温度使得气相、液相以及固相同时存在。
这是有利的,因为具有给定CO2摩尔分数的进料流的理想条件出现在存在蒸汽/液体/固体的压力及温度(而非液体/固体形式)。这允许实现冻结(在约25℃下)较高温度和/或实现更深入的CO2分离。这优化分离方法。
固/液分离器202可以是任何适合的固/液分离器。
蒸汽可以通过排出管线191从直接接触热交换器200排出,所述排出管线将直接接触热交换器200连接至步骤(f)中获得的气态流190或如步骤(f)中使用的分离器204。两个选择方案由图1a中的虚线展示。
根据一个实施例,步骤(e)的固液分离器202包含一个或多个旋风分离器、一个或多个过滤器或一个或多个基于重力的沉降容器。
可以使用一个或多个串联和/或并联的旋风分离器。在旋风分离器中,使流进行涡流运动,使得较重组分被迫朝外并且至少部分从较轻组分中分离,形成CO2富集的浆料流(140;较重组分)及CO2耗乏的液流(141;较轻组分)。可以使用任何适合的旋风分离器类型,并且可以使用切向入口或内嵌式旋风产生涡流运动,在所述内嵌式旋风中使用内部构件产生涡流。
可以使用一个或多个串联和/或并联的基于重力的沉降容器,可以将多相流201引入其中并且提供足够的滞留时间以允许较重组分沉降,并且获得作为底部流的CO2富集的浆料流140。
根据一个实施例步骤(f)包含
(f1)使所述CO2耗乏的液流141穿过减压装置,如焦耳汤姆森阀门203并且进入分离器204,
(f2)从所述分离器204获得作为顶部流的所述气态流190并且从所述分离器204获得作为底部流的另一多相流208,所述另一多相流208含有至少一液相及一固相,所述固相含有CO2粒子;
(f3)在另一固液分离器209中分离所述另一多相流208,从而获得所述经纯化的液流205及所述另一CO2富集的浆料流206。
分离器204可为旋风分离器或基于重力的分离器。
所述另一固液分离器209可以包含一个或多个并联布置的旋风分离器或一个或多个基于重力的沉降容器。
气态流190可以具有1至10巴的压力。
根据一个实施例,所述方法包含
(h)将所述经纯化液流205传递至末端闪蒸阶段,获得末端闪蒸气流271及液体天然气流170。
末端闪蒸阶段包含阀门2051及末端闪蒸器207并且产生末端闪蒸气流271及作为底部流的液体天然气流170。
液体天然气流170适合储存于LNG储存槽11中,优选在常压或接近常压下(例如在1-1.2巴范围内)。
如图中所示,蒸发气流180获自LNG储存槽11。
根据一个实施例,将部分液体天然气流170回馈至步骤(f)的冷却、减压及分离阶段以提供冷却功能至CO2耗乏的液流141。具体地说,将冷却功能提供至另一多相流208(在步骤f2中获得)。宜可使用来自液体天然气流170的冷却功能。这可以不同方式实施,其实例提供于图1b-1c中。
根据图1b及1c中展示的实施例,在末端闪蒸器207与LNG储存槽11之间提供另一再循环管道171,其经布置以携载作为分流从液体天然气流170获得的另一再循环流。然而,替代地,再循环流171可以直接获自LNG储存槽11。
图1b中的实施例的优势在于另一再循环流171(其具有约-161℃的温度)降低另一固液分离器209中的温度,因此产生更加苛刻的CO2冻结条件,其增加固体CO2的形成并且增加另一固液分离器209中CO2的分离。
根据一个实施例,部分液体天然气流170在步骤(f3)的另一固液分离器209的上游与步骤(f2)中获得的另一多相流208混合。
图1b示意性地描绘其中通过例如借助于混合器添加再循环流171至另一多相流208进行混合的实施例。
根据一个实施例,液体天然气流171与另一多相流208的混合在另一直接接触热交换器211中进行。
这提供从污染的含烃气流获得经部分液化流的有效方式。
这一实施例展示于图1c中并且具有以下优势,另一再循环流171(其具有约-161℃的温度)降低另一直接接触热交换器211中的温度,因此产生更加苛刻的CO2冻结条件,并且在另一直接接触热交换器211中的滞留时间允许CO2固体进一步生长,其进一步增加另一固液分离器209中CO2的分离。可以提供泵1711输送再循环流171。
使在步骤c中分离经部分液化流70以获得气态流80及液流90的分离器5中获得的气态流80穿过第一热交换器3,从而获得经加热气态流270;必要时一些惰性物质(如N2)可以作为(微量)流280从经加热气态流270去除。由于流80用来冷却流30,这是“自动制冷”步骤。
经加热气态流270在压缩机13中压缩,从而获得压缩气流220。压缩气流220的部分230与污染的含烃气流20组合。
如所展示的实施例中可见,使压缩气流220的部分240穿过第二热交换器15(并且在其中冷却),从而获得经冷却压缩气流250。经冷却压缩气流250在扩展器16中膨胀,从而获得膨胀的气流260。随后,膨胀的气流260与气态流80组合以形成流265。
此外,使在步骤(f)中在另一冷却、减压及分离阶段获得的气态流190穿过第二热交换器15,从而获得第二经加热气态流274。第二经加热气态流274在压缩机14中压缩,从而获得第二压缩气流210;这一第二压缩气流210与经加热气态流270组合(以形成流215)。
因此,根据一个实施例,所述方法包含
(i)使步骤(c)中获得的气态流80穿过第一热交换器3,从而获得经加热气态流270;以及
(j)压缩经加热气态流270,从而获得压缩气流220;以及
(k)合并步骤(j)中获得的压缩气流220与步骤(a)中提供的污染的含烃气流20。
根据一个实施例,所述方法进一步包含:通过第二热交换器15冷却步骤(j)中获得的压缩气流220的部分240,从而获得经冷却压缩气流250;使经冷却压缩气流250膨胀,从而获得膨胀的膨胀气流260;以及合并膨胀的气流260与步骤(c)中获得的气态流80。
因此,根据一个实施例所述方法包含:使步骤(f)中获得的气态流190穿过第二热交换器15,从而获得第二经加热气态流274;压缩第二经加热气态流274,从而获得第二压缩气流210;以及合并第二压缩气流210与步骤(i)中获得的经加热气态流270。
根据另一实施例所述方法包含
-通过压缩机272压缩包含末端闪蒸气流271及任选的蒸发气流180的末端气流181,获得末端压缩末端闪蒸气流273,以及
-合并压缩末端闪蒸气流273与待在压缩机14中压缩的第二经加热气态流274,从而获得第二压缩气流210。
压缩末端闪蒸气流273可以在允许与第二经加热气态流274组合的压力下,例如大约4巴。第二压缩气流210可以在20巴压力下。
如图1a-1c中所示,将步骤(g)中获得的液态烃流170储存于LNG储存槽11中,并且使获自所述储存槽11的蒸发气流180与步骤(h)中获得的末端闪蒸气流271组合。
所属领域的技术人员应易于理解,可以在不脱离本发明的范围的情况下进行许多修改。例如,在使用单词一个或多个步骤的情况下,应理解这并不暗示具体顺序。所述步骤可以任何适合的顺序应用,包括同时。

Claims (15)

1.一种液化一污染的含烃气流的方法,所述方法包含至少以下步骤:
(a)提供一污染的含烃气流(20),所述污染物为CO2;
(b)冷却所述污染的含烃气流(20)以获得一经部分液化流(70);
(c)在分离器(5)中分离所述经部分液化流(70),从而获得一气态流(80)及一液流(90);
(d)通过将所述液流(90)传递至一直接接触热交换器(200)冷却步骤(c)中获得的所述液流(90),从而获得一多相流(201),所述多相流(201)含有至少一液相及一固相,所述固相含有CO2粒子;
(e)在一固液分离器(202)中分离所述多相流(201),从而获得一CO2耗乏的液流(141)及一CO2富集的浆料流(140);
(f)将所述CO2耗乏的液流(141)传递至另一冷却、减压及分离阶段,所述另一冷却、减压及分离阶段产生一气态流(190)、一经纯化液流(205)以及另一CO2富集的浆料流(206);
(g)将至少部分所述另一CO2富集的浆料流(206)传递至所述直接接触热交换器(200)以提供冷却功能并且与步骤(c)中获得的所述液流(90)混合。
2.根据权利要求1所述的方法,其中步骤(d)中获得的所述多相流201的所述固相含有平均尺寸大于50微米、优选大于100微米、更优选大于200微米或大于350微米的CO2粒子。
3.根据前述权利要求中任一项所述的方法,其中形成步骤(c)中获得的所述液流(90)的分子及形成步骤(f)中获得的所述至少部分所述另一CO2富集的浆料流(206)的分子在所述直接接触热交换器(200)中的滞留时间大于10秒。
4.根据前述权利要求中任一项所述的方法,其中将步骤(c)中获得的所述液流(90)传递至一直接接触热交换器(200)包含使所述液流(90)穿过一减压装置(6)。
5.根据前述权利要求中任一项所述的方法,其中步骤(d)中获得的所述多相流(201)的温度大于10℃低于所述CO2霜点。
6.根据前述权利要求中任一项所述的方法,其中在步骤(g)中传递至所述直接接触热交换器(200)的所述至少部分所述另一CO2富集的浆料流(206)包含CO2粒子,其在所述直接接触热交换器(200)中充当种子颗粒。
7.根据前述权利要求中任一项所述的方法,其中选择所述直接接触热交换器(200)中的压力及温度使得气相、液相以及固相同时存在。
8.根据前述权利要求中任一项所述的方法,其中步骤(e)的所述固液分离器(202)包含一个或多个旋风分离器、一个或多个过滤器或一个或多个基于重力的沉降容器。
9.根据前述权利要求中任一项所述的方法,其中步骤(f)包含
(f1)使所述CO2耗乏的液流(141)穿过一减压装置,如一焦耳汤姆森(Joule Thomson)阀门(203)并且进入一分离器(204),
(f2)从所述分离器(204)获得作为顶部流的所述气态流(190)并且从所述分离器(204)获得作为底部流的另一多相流(208),所述另一多相流(208)含有至少一液相及一固相,所述固相含有CO2粒子;
(f3)在另一固液分离器(209)中分离所述另一多相流(208),从而获得经纯化的液流(205)及另一CO2富集的浆料流(206)。
10.根据前述权利要求中任一项所述的方法,其中所述方法包含
(h)将所述经纯化液流(205)传递至一末端闪蒸阶段,获得一末端闪蒸气流(271)及一液体天然气流(170)。
11.根据前述权利要求中任一项所述的方法,其中将部分所述液体天然气流(170)回馈到步骤(f)的所述冷却、减压及分离阶段以提供冷却功能至所述CO2耗乏的液流(141)。
12.根据权利要求11所述的方法,其中在步骤(f3)的所述另一固液分离器(209)的上游将部分所述液体天然气流(170)与步骤(f2)中获得的所述另一多相流(208)混合。
13.根据权利要求12所述的方法,其中混合所述液体天然气流(171)及所述另一多相流(208)在另一直接接触热交换器(211)中进行。
14.根据前述权利要求中任一项所述的方法,其中步骤(b)包含
(b1)在一第一热交换器(3)中冷却所述污染的含烃气流(20),从而获得一冷却的污染含烃流(40);
(b2)在扩展器(4)中冷却所述冷却的污染含烃流(40,60),从而获得所述经部分液化流(70)。
15.一种用于液化一污染的含烃气流的系统,所述系统包含:
(a)一进料管道(20),经布置以提供一污染的含烃气流(20),所述污染物为CO2;
(b)一冷却及膨胀阶段(3,4),经布置以接收所述污染的含烃气流(20)并且排出一经部分液化流(70);
(c)一分离器(5),经布置以接收所述经部分液化流(70)并且排出一气态流(80)及一液流(90);
(d)一直接接触热交换器(200),经布置以接收并且冷却步骤(c)中获得的所述液流(90),获得一多相流(201),所述多相流(201)含有至少一液相及一固相,所述固相含有CO2粒子;
(e)一固液分离器(202),经布置以接收所述多相流(201)并且排出一CO2耗乏的液流(141)及一CO2富集的浆料流(140);
(f)另一冷却、减压及分离阶段,经布置以接收所述CO2耗乏的液流(141)并且生成一气态流(190)、一经纯化液流(205)以及另一CO2富集的浆料流(206);
(g)一再循环管道(206),其经布置以将包含固体CO2粒子的至少部分所述另一CO2富集的浆料流(206)传递至所述直接接触热交换器(200)。
CN201680070463.2A 2015-12-03 2016-12-01 液化co2污染的含烃气流的方法 Active CN108291766B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP15197898.8 2015-12-03
EP15197898 2015-12-03
PCT/EP2016/079386 WO2017093377A1 (en) 2015-12-03 2016-12-01 Method of liquefying a co2 contaminated hydrocarbon-containing gas stream

Publications (2)

Publication Number Publication Date
CN108291766A true CN108291766A (zh) 2018-07-17
CN108291766B CN108291766B (zh) 2020-07-07

Family

ID=54782580

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201680070463.2A Active CN108291766B (zh) 2015-12-03 2016-12-01 液化co2污染的含烃气流的方法

Country Status (10)

Country Link
US (1) US10871323B2 (zh)
EP (1) EP3384216B1 (zh)
CN (1) CN108291766B (zh)
AU (1) AU2016363562B2 (zh)
BR (1) BR112018011026A2 (zh)
CA (1) CA3006860A1 (zh)
ES (1) ES2755416T3 (zh)
PL (1) PL3384216T3 (zh)
RU (1) RU2718943C2 (zh)
WO (1) WO2017093377A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG10201802888QA (en) * 2018-01-24 2019-08-27 Gas Tech Development Pte Ltd Process and system for reliquefying boil-off gas (bog)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5216480A (en) * 1975-07-30 1977-02-07 Nippon Sanso Kk Process for production of liquefied air using chilling of liquefied na tural gas
CN1615415A (zh) * 2002-02-27 2005-05-11 柏克德Bwxt爱达荷有限责任公司 天然气液化装置及其相关方法
CN1678412A (zh) * 2002-08-27 2005-10-05 国际壳牌研究有限公司 除去固体二氧化碳的方法
CN1990836A (zh) * 2003-02-07 2007-07-04 国际壳牌研究有限公司 从天然气中除去污染物
CN101283078A (zh) * 2005-09-15 2008-10-08 冷能源有限公司 从天然气物流中除去酸性物质的方法和设备
CN101778931A (zh) * 2007-06-27 2010-07-14 缠绕机公司 自天然气流中除去硫化氢(h2s)的方法和系统
CN102575897A (zh) * 2009-04-21 2012-07-11 林德股份公司 液化富烃馏分的方法
CN102620523A (zh) * 2012-04-16 2012-08-01 上海交通大学 带凝华脱除co2的混合制冷剂循环天然气带压液化工艺
CN103237585A (zh) * 2010-10-26 2013-08-07 国际壳牌研究有限公司 从含ch4的气态进料物流中分离污染物或污染物混合物的方法
CN105121986A (zh) * 2013-04-11 2015-12-02 国际壳牌研究有限公司 使受污染的含烃气流液化的方法
KR20160134348A (ko) * 2015-05-15 2016-11-23 대우조선해양 주식회사 천연가스의 이산화탄소 분리 시스템 및 방법

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3376709A (en) * 1965-07-14 1968-04-09 Frank H. Dickey Separation of acid gases from natural gas by solidification
SU642585A1 (ru) * 1977-07-11 1979-01-15 Московский Ордена Трудового Красного Знамени Институт Химического Машиностроения Способ низкотемпературной очистки газа от влаги и углекислоты
GB0006265D0 (en) * 2000-03-15 2000-05-03 Statoil Natural gas liquefaction process
CA2473949C (en) * 2002-01-18 2008-08-19 Robert Amin Process and device for production of lng by removal of freezable solids
US6564578B1 (en) 2002-01-18 2003-05-20 Bp Corporation North America Inc. Self-refrigerated LNG process
US7673476B2 (en) 2005-03-28 2010-03-09 Cambridge Cryogenics Technologies Compact, modular method and apparatus for liquefying natural gas
KR101393384B1 (ko) 2006-04-12 2014-05-12 쉘 인터내셔날 리써취 마트샤피지 비.브이. 천연 가스 스트림의 액화 방법 및 장치
EP2041507A2 (en) 2006-07-14 2009-04-01 Shell Internationale Research Maatschappij B.V. Method and apparatus for cooling a hydrocarbon stream
CN201028930Y (zh) 2007-04-28 2008-02-27 重庆大山燃气设备有限公司 一种天然气液化的装置
US8899074B2 (en) 2009-10-22 2014-12-02 Battelle Energy Alliance, Llc Methods of natural gas liquefaction and natural gas liquefaction plants utilizing multiple and varying gas streams
US9396854B2 (en) 2008-08-29 2016-07-19 Shell Oil Company Process and apparatus for removing gaseous contaminants from gas stream comprising gaseous contaminants
WO2010079175A2 (en) 2009-01-08 2010-07-15 Shell Internationale Research Maatschappij B.V. Process and apparatus for separating a gaseous product from a feed stream comprising contaminants
WO2012068588A1 (en) 2010-11-19 2012-05-24 Brigham Young University Systems and methods for separating condensable vapors from gases by direct-contact heat exchange
EP2866921A2 (en) 2011-05-26 2015-05-06 Sustainable Energy Solutions, LLC Systems and methods for separating condensable vapors from light gases or liquids by recuperative cryogenic processes
US10655911B2 (en) 2012-06-20 2020-05-19 Battelle Energy Alliance, Llc Natural gas liquefaction employing independent refrigerant path
US9683777B2 (en) 2012-10-08 2017-06-20 Exxonmobil Upstream Research Company Separating carbon dioxide from natural gas liquids
US20150033793A1 (en) 2013-07-31 2015-02-05 Uop Llc Process for liquefaction of natural gas
WO2015084499A2 (en) * 2013-12-06 2015-06-11 Exxonmobil Upstream Research Company Method and system of modifying a liquid level during start-up operations
WO2016064571A1 (en) * 2014-10-22 2016-04-28 Exxonmobil Upstream Research Company Method and system of controlling a temperature within a melt tray assembly of a distillation tower

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5216480A (en) * 1975-07-30 1977-02-07 Nippon Sanso Kk Process for production of liquefied air using chilling of liquefied na tural gas
CN1615415A (zh) * 2002-02-27 2005-05-11 柏克德Bwxt爱达荷有限责任公司 天然气液化装置及其相关方法
CN1678412A (zh) * 2002-08-27 2005-10-05 国际壳牌研究有限公司 除去固体二氧化碳的方法
CN1990836A (zh) * 2003-02-07 2007-07-04 国际壳牌研究有限公司 从天然气中除去污染物
CN101283078A (zh) * 2005-09-15 2008-10-08 冷能源有限公司 从天然气物流中除去酸性物质的方法和设备
CN101778931A (zh) * 2007-06-27 2010-07-14 缠绕机公司 自天然气流中除去硫化氢(h2s)的方法和系统
CN102575897A (zh) * 2009-04-21 2012-07-11 林德股份公司 液化富烃馏分的方法
CN103237585A (zh) * 2010-10-26 2013-08-07 国际壳牌研究有限公司 从含ch4的气态进料物流中分离污染物或污染物混合物的方法
CN102620523A (zh) * 2012-04-16 2012-08-01 上海交通大学 带凝华脱除co2的混合制冷剂循环天然气带压液化工艺
CN105121986A (zh) * 2013-04-11 2015-12-02 国际壳牌研究有限公司 使受污染的含烃气流液化的方法
KR20160134348A (ko) * 2015-05-15 2016-11-23 대우조선해양 주식회사 천연가스의 이산화탄소 분리 시스템 및 방법

Also Published As

Publication number Publication date
AU2016363562B2 (en) 2019-06-20
CN108291766B (zh) 2020-07-07
EP3384216A1 (en) 2018-10-10
AU2016363562A1 (en) 2018-06-14
RU2718943C2 (ru) 2020-04-15
ES2755416T3 (es) 2020-04-22
US10871323B2 (en) 2020-12-22
EP3384216B1 (en) 2019-09-25
CA3006860A1 (en) 2017-06-08
PL3384216T3 (pl) 2020-03-31
WO2017093377A1 (en) 2017-06-08
BR112018011026A2 (pt) 2018-11-21
US20180347901A1 (en) 2018-12-06
RU2018123933A3 (zh) 2020-02-18
RU2018123933A (ru) 2020-01-14

Similar Documents

Publication Publication Date Title
CN102220176B (zh) 在液化天然气的生产中用氮气汽提从天然气流中分离氮气的方法
CN105004139B (zh) 在生产液化天然气时使用制冷热泵一体地移除氮
AU704469B2 (en) An improved closed loop single mixed refrigerant process
AU785419B2 (en) Process for pretreating a natural gas containing acid compounds
JP6561077B2 (ja) 液化前のリーン天然ガスからの重質炭化水素の除去方法及び装置
US8008533B2 (en) Process for regasifying a gas hydrate slurry
CN108291769B (zh) 从受污染的烃物料流去除co2的方法
JP2002508054A (ja) 天然ガスの改良液化方法
CN104271710B (zh) 一种从炼厂燃料气流回收低压气和冷凝物的方法
RU2629047C1 (ru) Комплекс сжижения, хранения и отгрузки природного газа
EP2344821A2 (fr) Procede de production de courants d&#39;azote liquide et gazeux, d&#39;un courant gazeux riche en helium et d&#39;un courant d&#39;hydrocarbures deazote et installation associee
CN104685032A (zh) 从富烃馏分中分离重烃的方法
AU2007259229B2 (en) Method and apparatus for treating a hydrocarbon stream
CN108291766A (zh) 液化co2污染的含烃气流的方法
JP2011020871A (ja) 炭酸ガス中の不純物除去方法
US11097220B2 (en) Method of preparing natural gas to produce liquid natural gas (LNG)
CN107208964A (zh) 减少进入低温蒸馏过程的进料物流的冷冻和脱水负荷
WO2017093381A1 (en) Method of liquefying a contaminated hydrocarbon-containing gas stream

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant