CN108286099A - 一种内置微粒材料的纱线成形方法 - Google Patents

一种内置微粒材料的纱线成形方法 Download PDF

Info

Publication number
CN108286099A
CN108286099A CN201810126447.1A CN201810126447A CN108286099A CN 108286099 A CN108286099 A CN 108286099A CN 201810126447 A CN201810126447 A CN 201810126447A CN 108286099 A CN108286099 A CN 108286099A
Authority
CN
China
Prior art keywords
yarn
microparticle material
built
composite strip
twister
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810126447.1A
Other languages
English (en)
Other versions
CN108286099B (zh
Inventor
夏治刚
丁彩玲
刘欣
付驰宇
徐卫林
王灿灿
赵辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan Textile University
Original Assignee
Wuhan Textile University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan Textile University filed Critical Wuhan Textile University
Priority to CN201810126447.1A priority Critical patent/CN108286099B/zh
Publication of CN108286099A publication Critical patent/CN108286099A/zh
Application granted granted Critical
Publication of CN108286099B publication Critical patent/CN108286099B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/02Yarns or threads characterised by the material or by the materials from which they are made
    • D02G3/06Threads formed from strip material other than paper
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01HSPINNING OR TWISTING
    • D01H7/00Spinning or twisting arrangements
    • D01H7/02Spinning or twisting arrangements for imparting permanent twist
    • D01H7/86Multiple-twist arrangements, e.g. two-for-one twisting devices ; Threading of yarn; Devices in hollow spindles for imparting false twist
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/02Yarns or threads characterised by the material or by the materials from which they are made
    • D02G3/04Blended or other yarns or threads containing components made from different materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)

Abstract

本发明涉及一种内置微粒材料的纱线成形方法,属纺织技术领域。本发明采用无纺面材快速成条、双面胶有效粘接微粒材料,将裁切成的纤维条带中部设置双面胶粘满微粒材料,快速形成了内置微粒材料连续分布式的夹心状复合条带,然后采用倍捻机的倍捻盘倍捻作用,将条带状内置微粒材料连续分布式的夹心状复合条带直接转变成为线性圆柱状纱线,改变了复合条带的片状无捻的松散形态结构,实现了微粒材料稳固内置在纱体中心,本发明的成纱方法打破了微粒材料难以传统梳理收集成条的技术瓶颈,免去了并条、粗纱等一系列传统纺纱工序,快速倍捻形成内置微粒材料的纱线,解决了微粒材料难以复合成纱的技术问题。本发明方法工序流程短,易于推广应用。

Description

一种内置微粒材料的纱线成形方法
技术领域
本发明涉及一种内置微粒材料的纱线成形方法,属纺织技术领域。
背景技术
用于服装的纺织面料可分为三大类:机织(梭织)、针织与非织造面料。机织和针织面料是由纱线或长丝经过织造工艺织成的;非织造面料(又称无纺布)是由纺织纤维经粘合、熔合或其它机械、化学方法加工而成。机织面料是经纱与纬纱相互垂直交织在一起形成的织物,织物组织有平纹、斜纹、缎纹以及由上述三种基本组织及由其交相变化所形成的组织。针织面料是将纱线或长丝构成线圈,再把线圈相互串套而成,由于针织物的线圈结构特征,单位长度内储纱量较多,因此大多有很好的弹性。机织和针织都属于传统纺织加工范畴,传统纺织采用先纺、后织工序,具体机织步骤为:散纤维开松除杂、混合、梳理、精梳、一道并条、二道并条、粗纱、细纱、络筒、整经、浆纱、穿结经、纬纱准备、织造;具体纬编针织步骤为:散纤维开松除杂、混合、梳理、精梳、一道并条、二道并条、粗纱、细纱、络筒、热定型、纬编针织。传统纺织加工中,有三大技术问题:首先传统环锭纺由散纤维加工成纱线所需工序多、流程长、用工多,耗时多、成本高,高效质短流程纺纱是解决缩短纺织流程的基础;第二,纺纱细纱工序后的织造准备和织造工序流程较长、运行速度高,对纱线耐磨、强度、毛羽等品质要求较高,纱线毛羽多易造成针织纱线绕钩针断针或机织开口不清使得引纬效率降低,纱线耐磨和强度低导致机织经纱断头频率高、织造效率低,最终产品质量差;第三,虽然传统环锭纺纱成纱抱合力高、所纺纱支范围广,但纺纱受纤维长度、刚度、纤维根数等因素的制约,特别是纤维长度过短(长度小于20毫米),成纱过程中纤维内外转移抱合力不足、成纱强力低、纺纱断头频繁、无法连续纺纱。
为解决传统环锭纺纱工序流程长的问题,各种自由端高速纺纱技术应运而生。涡流纺纱是利用固定不动的涡流纺纱管,来代替高速回转的纺纱杯和纺纱锭子、钢丝圈进行纺纱的一种新型纺纱方法。由于用涡流代替机械的加捻和凝聚作用而不需要回转的机件,因而具有速度快、产量高、工艺流程短、制成率高等优势。但是喷气涡流纺是通过涡流推动自由端纱尾作环形高速回转加捻而成纱,属于自由端非握持纺纱,导致纺纱过程中对纤维的握持力不足,纤维内外转移程度低,纤维抱合程度差,纺纱强力较低,因此抱合力差、长度短、刚度大、具有弯曲蓬松的纤维都无法进行涡流纺成纱。摩擦纺纱是一种工艺流程短、设备简易、低速高产的纺纱方法,以机械与空气相结合来吸附凝聚纤维,在吸附凝聚纤维的同时,借助摩擦力由回转尘笼摩擦辊对须条进行搓动加捻成纱。但摩擦纺纱线为层捻包缠结构成纱,纱线内部纤维之间缺少内外转移,纤维之间抱合力差,成纱强力低。因此,当纤维弯曲刚度大、长度过短时,尘笼搓捻无法有效转曲、缠绕和加捻成纱,摩擦纺纱成纱难度大、成纱品质低。转杯纺纱所用原料为纤维粗条,不同于环锭纺纱时所用的粗纱,不需经过多道细致的牵伸和梳理,就能直接喂入转杯纺纱机进行转杯纺纱,且转杯纺纱转杯纺纱转杯纺纱加捻与卷绕分开进行,纺纱速度不受纱线卷装影响,转杯转动速度极高,因此转杯纺纱具有纺纱速度高、卷装大、成本低,对原料要求低等优势。但是,转杯纺纱机理为纤维在纱条自由端以搭接的方式成纱,易造成纺纱过程中搭接在纱体外层的纤维受到的控制力小,致使转杯纺纱对纤维握持成形控制能力差,不适合抱合力差、长度短、刚度大、具有弯曲蓬松的纤维纺纱。综上所述,与传统环锭纺纱技术相比,各自由端纺纱大大提升了纺纱速度,通过取消粗纱工序来缩短流程;但自由端纺纱仍无法避开梳理成条、精梳、并条等传统工序,流程仍较长,而且自由端成纱原理决定了成纱抱合力不足、成纱强力低,抱合力差、长度短、刚度大、具有弯曲蓬松的难纺纤维不能进行连续有效地高品质自由端纺纱。
为解决传统环锭纺、自由端纺纱过程中,纤维长度过短(长度小于20毫米),成纱过程中纤维内外转移抱合力不足、成纱强力低、纺纱断头频繁、无法连续纺纱的技术问题,常采用长丝、短纤维复合成纱法。中国专利公开号CN101492843B,公开日2010年5月12日,发明创造名称为一种嵌入式系统定位纺纱方法,该公案公开的嵌入纺是将两根长丝以一定间距喂入前罗拉,将两根须条分别以一定间距左右对称地喂入前罗拉,形成一侧的长丝与该侧短纤维须条先预包缠,然后再与另一侧预包缠后的复合纱线须条进行汇合加捻,形成结构更加复杂的复合纱线;嵌入纺的纱线成形区为长丝形成大的对称性锐角三角形状的成纱区,两根须条喂入到长丝构成的锐角三角形的成纱区,使得长丝能够对短纤维须条进行有效的自动接触和捕捉式缠绕,扩展了可纺纤维种类、纱线支数范围,实现难纺纤维须条能够顺利进行环锭纺成纱。中国专利公开号CN103215700B,公开日2016年01月06日,发明创造名称为一种生产花式纱的涡流复合纺纱方法,实质上公开了一种载体长丝与短纤维进行夹持式涡流纺纱,有效捕捉短纤维,使得较短长度的纤维能够被有效纺入纱体内,实现了难纺短纤维须条能够顺利进行涡流纺成纱。虽然上述能够一定程度解决难纺纤维无法成纱的问题,但是上述技术并未得到大面积采用,关键在于上述技术仍采用纤维条或粗纱作为对应的工序原料,恰恰超短纤维、高刚度脆性纤维、高回弹超蓬松纤维、粉状材料等难纺原料难以生产出纤维条或粗纱。由此可见将超短纤维、高刚度脆性纤维、高回弹超蓬松纤维、粉状材料等难纺原料等难纺原料直接制成纵向有序排列的圆柱状抱合式线性体非常困难,因此短流程生产出超短纤维、高刚度脆性纤维、高回弹超蓬松纤维、粉状材料等难纺原料的连续线性体,供高效夹持嵌入纤维的纺纱系统使用,是解决难纺原料顺利纺纱的关键。
非织造不再需要纺纱、织布工序,只将纤维或者长丝进行定向或随机排列,形成纤网结构,然后采用机械、热粘或化学等方法加固而成无纺布;与一根一根的纱线交织、编结在一起而形成织物的传统纺织加工相比,非织造布通常为一步法完成(如采用聚丙烯粒料为原料,经高温熔融、喷丝、铺纲、热压卷取连续一步法生产而成聚丙烯无纺布),突破了传统纺织原理,具有工艺流程短、生产速率快,产量高、成本低、用途广、原料来源多等优势。根据非织造关键技术方法不同,主要分为:水刺法、针刺法、熔喷法、纺粘法、热轧粘合法、缝编法、复合法等。水刺法是将高压微细水流喷射到一层或多层纤维网上,使纤维相互缠结在一起,从而使纤网得以加固而具备一定强力,根据所加工的产品品质要求不同,分为两种工艺路线:A.纤维原料→开松混和→梳理→铺网→牵伸→预湿(水处理循环)→正反水刺(水处理循环)→后整理→烘燥→卷绕;B.纤维原料→开松混和→梳理杂乱成网→预湿(水处理循环)→正反水刺(水处理循环)→后整理→烘燥→卷绕。流程A对纤网纵横向强力比的调节较好,适用于生产水刺合成革基布;流程B适合于生产水刺卫材。针刺法是干法无纺成形的一种,是利用刺针的穿刺作用,将蓬松的纤网加固成布。熔喷法是聚合物挤压法非织造工艺中的一种,其工艺原是利用高速热空气对模头喷丝孔挤出的聚合物熔体细流进行牵伸,由此形成超细纤维并凝聚在凝网帘或滚筒上,并依靠自身粘合而成为非织造布,具体工艺过程为:聚合物喂入--熔融挤出--纤维形成--纤维冷却--成网--加固成布。纺粘法也是熔融纺丝成网法,属于一步法成布非织造技术,它是利用化学纤维纺丝的方法,在聚合物纺丝成形过程中通过骤冷的空气对挤出的熔体细丝进行冷却,使细丝在冷却过程中受到拉伸气流作用,形成连续长丝,然后在凝网帘上成网,并铺放在成网帘上,再经固结装置处理后形成纺粘法非织造布。为实现多组份、各种非织布复合性能,常采用复合法非织造技术,如:SM、SMS、SMSMS、CS、CSC等复合形式(S代表纺粘法非织造、M代表熔喷法非织造、C代表热轧粘合法非织造)。随着纤维材料在各领域应用技术的不断发展,纳米纤维材料成为研究和功能应用的热点课题。纳米纤维直径处在1nm-100nm范围内,具有孔隙率高、比表面积大、长径比大、表面能和活性高等性能优势,体现出优异的增强、抗菌、拒水、过滤等功能,应用在分离过滤、生物医疗、能源材料、聚合物增强、光电传感等各领域。随着纳米纤维应用领域的扩展和需求,纳米纤维的成形制备技术也得到了进一步开发与创新;到目前为止,纳米纤维的制备方法主要包括化学法、相分离法、自组装法和纺丝加工法等。而纺丝加工法被认为是规模化制备高聚物纳米纤维最有前景的方法,主要包括静电纺丝法、双组份复合纺丝法、熔喷法和激光拉伸法等。其中激光超声波拉伸法是利用激光照射来加热纤维,同时在超声波条件下对其进行拉伸,产生约为105倍的拉伸比,制备出纳米纤维丝,属于一种常规长丝后加工方法;除此之外,其他的纳米纺丝方法也都直接涉及到喷丝头,共同之处在于:采用喷丝协同牵伸作用,使得纤维直径达到纳米尺度。中国知识产权局2016年11月11日公开的发明专利“多重响应性的可控过滤静电纺纳米纤维膜及其制备方法”,专利申请号ZL201611005678.4,该申请公案提供了一种将温敏性和PH响应性聚合物溶液置入静电纺丝仪,经静电纺丝仪喷射铺放形成纳米纤维膜的方法。静电纺的关键问题在于静电纺丝属于非积极握持拉伸纺丝,静电射流在成丝过程中形成泰勒锥,射流纤维很难进行有效的高倍牵伸,牵伸不足致使纳米纤维内大分子排列取向度差、纳米纤维细度有待进一步细化,强力过低和尺度有待进一步细化;另外泰勒锥形态的成丝过程导致静电纺所得纤维不能进行纵向有序排铺放,难以将所纺纤维进行线性收集和聚拢,主要用于生产纳米纤维膜材料。中国知识产权局2016年08月29日公开的发明专利“一种同轴离心纺丝装置及方法”,专利申请号ZL201610753443.7,该申请公案提供了一种通过在同轴离心管上设置内外多层针头,实现高速旋转同轴离心管进行规模化生产超细纤维、甚至纳米纤维的离心纺丝方法;中国知识产权局2016年12月14日公开的发明专利“一种二氧化钛/聚偏氟乙烯微/纳纤维膜及其离心纺制备方法”,专利申请号ZL201611154055.3,该申请公案提供了一种将自制的锐钛矿型TiO2与聚偏氟乙烯(PVDF)两者混合制取的离心纺丝溶液,在离心纺丝机上进行离心纺丝,制成微纳纤维膜的方法。离心纺的关键问题在于通过高速旋转离心作用喷丝,所喷射的射流成丝相应地呈圆环式铺放成丝,难以将所纺纤维进行纵向有序排列、线性收集和聚拢,主要用于生产纳米纤维膜材料;离心纺丝过程中,也属于非积极握持拉伸纺丝,离心射流牵伸力受转速、空气阻力等因素制约,导致纺丝的牵伸不足,牵伸不足致使纳米纤维内大分子排列取向度差、纳米纤维细度有待进一步细化,强力过低和尺度有待进一步细化。但纳米纤维直径太小,造成纳米纤维绝对强力过低、易磨损,涂覆在织物表面易磨损脱落,存在涂覆纺织制品功能持久性差,导致纳米纤维只能少量进行铺网加工成纳米纤维膜,而无法进行常规的牵伸、加捻成纱,严重制约纳米纤维的工业化应用。如将纳米纤维加工成宏观,将可采用现代纺织手段生产出各类功能医用、功能服装、工业面料等制品,将突破传统纺织产品性能和价值,应用前景广阔。因此,纳米纺丝生产中牵伸不足致使纳米纤维内大分子排列取向度差、纳米纤维细度有待进一步细化,强力过低和尺度有待进一步细化又导致粘附和耐久性差,涂覆在织物表面易磨损脱落、不能常规纺纱加工,导致纳米纤维在纺织工业化生产中,只能加工成无纺布或纳米膜,无法进行高速短流程纺织加工,严重制约纳米纤维的纺织工业化应用。由此可见,无纺非织造成网或成膜工艺不仅工序流程非常短,而且特别容易将各种超短纤维、高刚度脆性纤维、高回弹超蓬松纤维、粉状材料等难纺原料等难纺原料制成满足后序加工应用所需强度的面状或片状集合体,赋予产品较高的强度、蓬松度、柔软性、透气性和亲水性。但是纳米纤维无纺膜、常规细度纤维非织造布存在如下缺陷:1)无纺布强度和耐久性较差,无法与传统纺织布相媲美,不能代替传统纺织服装产品使用;2)不能像其他布料一样清洗,难以用于服装面料;3)纤维按一定方向排列、易从直角方向裂开等。因此将超弱(纳米纤维等)、超短(短绒)、高刚度脆性(碳纤、玻纤、石英纤维等)、高回弹超蓬松性(羽绒状纤维)、粉状(纤维晶须、碳纳米管、石墨烯、各种纳米微球、纳米粒子)等难纺材料制成无纺膜或非织造布的面状或片状集合体,再将面状或片状集合体快速转变成具有传统纺织品,增加织物强度和耐用性,同时保留无纺膜、非织造布蓬松、透气、柔软、抗菌等性能,是解决无纺膜、非织造布技术缺点、拓展非织产品应用领域的关键。
针对该技术关键,中国专利公开号CN202247124U,公开日2012年05月30日,发明创造名称为一种双向包覆的无纺布扁条花式纱线,该纱线由一根无纺布扁条作为芯纱、两根单丝双向包覆芯纱,其中无纺布扁条并未加捻抱合,只是外层包覆长丝,本质上是一种花式线,与传统加捻抱合纱线结构迥异;中国专利公开号CN2670389Y,公开日2005年01月12日,发明创造名称为一种无纺布制蓬松型纱线,该纱线为无纺布纵向热压构成的连续式扁状压着条,此压着条本身纤维趋向纵向排列,并且热压软化黏合成密实状态,而压着条两外侧具有未压着的蓬松纤维毛。显然,上述两种公案提供的纱线虽然具有一定强力的线性连续特征,但是纱线形态结构为扁条态,缺少纤维加捻抱合式圆柱形结构,与常规纺织纱线结构迥异,不适应常规纺织设备走纱及导纱通道,不能真正地融入常规批量化纱线织造设备和生产工艺,并没有解决超弱(纳米纤维等)、超短(短绒)、高刚度脆性(碳纤、玻纤、石英纤维等)、高回弹超蓬松性(羽绒状纤维)、粉状(纤维晶须、碳纳米管、石墨烯、各种纳米微球、纳米粒子)等难纺材料如何进行纺纱、织造的技术问题,因此目前超短纤维一般应用于造纸业、复合材料的加强填充料、植绒类产品开发。
发明内容
为解决微粒材料的纺纱难题,本发明目的在于提供一种内置微粒材料的纱线成形方法。为了实现上述目的,本发明的技术解决方案为:
一种内置微粒材料的纱线成形方法,所述的方法按以下步骤进行:
A.纤维条带的制备
将面密度为5-100克/平方米的无纺柔性面材置于裁切机上,将无纺柔性面材分切成线密度为50-500克/千米的纤维条带,每根纤维条带分别卷绕筒管上,形成条带筒管卷装,;
B.纤维条带夹心内置有微粒材料的复合条带制备
在纤维条带的中部铺设双面粘胶带,双面粘胶带与纤维条带的宽度比为1:4-1:8,且双面粘胶带的一侧边缘线与纤维条带的中心线重合,双面粘胶带一面与纤维条带紧密粘接,粒径为10-1500微米的微粒材料放入走带槽中,粘结有双面粘胶带的纤维条带进入走带槽之前,双面粘胶带的另一面与粘贴纸分离,进入走带槽之后,双面粘胶带的另一面沾满微粒材料,沾满微粒材料的纤维条带沿中心线对折,形成纤维条带内置微粒材料的夹心状复合条带,复合条带卷绕到筒管上,形成复合条带筒管卷装;
C.复合条带的倍捻成纱
将复合条带筒管卷装分别置于倍捻机的储纱罐中,从筒管卷装上退绕下来的每根复合条带分别穿过倍捻机的锭翼,进入倍捻机空心锭的中空轴内,依次经中空轴内的张力器、倍捻机定位套筒中的进纱管,从倍捻机加捻盘的出纱管出口引出,再穿过导纱环、进入到引纱罗拉钳口处,在引纱罗拉钳口与张力器共同作用下,位于张力器至引纱罗拉钳口段的复合条带受到牵拉作用力,牵拉作用力牵引复合条带内部纤维及微粒材料沿条带长度方向伸展、内置微粒材料在复合条带中始终保持均匀分布,在倍捻机的内磁钢和固定磁钢共同用下,倍捻机的储纱罐、静止盘静止不动,倍捻机的锭带带动倍捻机的加捻盘以3000-7000转/分钟的作转速进行回转,对位于锭翼和加捻盘之间的张紧的复合条带进行一次加捻,一次加捻的作用力立体扭转复合条带,增强复合条带中的纤维与内置微粒材料之间的包缠结合,将线性片状的复合条带转变成为线性圆柱状的纱线,线性圆柱状纱线从加捻盘出纱管出口引出,在进入引纱罗拉钳口之前,受到回转加捻盘的二次加捻,二次加捻的作用力立体扭转纱线内部纤维,进一步增强纱线中纤维和内置微粒材料之间的包缠结合,最终形成细度为100-620特克斯的纱线,纱线依次经倍捻机的导纱钩、导纱横动装置、槽筒,最终卷绕到筒管上。
由于采用了以上技术方案,与现有技术相比,本发明的一种内置微粒材料的纱线成形方法,其优点在于:本发明将无纺柔性面材分切成纤维条带,在纤维条带的中部铺设双面粘胶带,双面粘胶带与纤维条带的宽度比为1:4-1:8,且双面粘胶带的一侧边缘线与纤维条带的中心线重合,双面粘胶带一面与纤维条带紧密粘接,粒径为10-1500微米的微粒材料放入走带槽中,粘结有双面粘胶带的纤维条带进入走带槽之前,双面粘胶带的另一面与粘贴纸分离,进入走带槽之后,双面粘胶带的另一面沾满微粒材料,沾满微粒材料的纤维条带沿中心线对折,形成纤维条带内置微粒材料的夹心状复合条带,巧妙地运用无纺面材快速成条、双面胶有效粘接微粒材料相结合,形成内置微粒材料连续分布式的夹心状复合条带,打破了微粒材料难以传统梳理收集成条的技术瓶颈,为内置微粒材料的复合纤维条带直接加捻成纱做好准备。采用倍捻机的引纱罗拉钳口与张力器共同对位于张力器至引纱罗拉钳口段的复合条带进行牵拉,牵拉作用力牵引复合条带内部纤维及微粒材料沿条带长度方向伸展、内置微粒材料在复合条带中始终保持均匀分布,改变了复合条带中纤维以及内置微粒材料的散乱、随机分布形态;采用倍捻机的加捻盘对位于张力器至引纱罗拉钳口段的复合条带进行一次旋转获得二倍加捻,加捻的作用力立体扭转复合条带,增强复合条带中的纤维与内置微粒材料之间的包缠结合,将线性片状的复合条带转变成为线性圆柱状的纱线,改变了复合条带的片状无捻的松散形态结构,实现了微球材料的稳固内置在纱体中心,解决了微粒材料难以被有效包缠内置、微粒复合纺纱易于脱落、难以适应纺织加工要求等技术问题,不仅高效倍捻加工出纱线,而且省略了传统纺纱的细纱牵伸、细纱加捻成管纱、然后将管纱进行络筒加工成筒纱等工序,进一步有效缩短成纱流程。本发明采用了无纺柔性面材分切成纤维条带、纤维条带与微粒材料夹心复合成复合条带、复合条带倍捻成纱三个步骤,实现了微粒材料的内置式短流程复合成纱,解决了微粒材料以复合成纱的技术难题,为微粒材料制成高功能高品质纱线及服装面料提供快捷、有效的方法。本发明方法成纱流程短,易于推广应用。
附图说明
图1为本发明的内置微粒材料的纱线成形工艺流程图。
具体实施方式
下面结合附图对本发明的一种内置微粒材料的纱线成形方法作进一步详细描述。
见附图。
一种内置微粒材料的纱线成形方法,所述的方法按以下步骤进行:
A.纤维条带的制备
将面密度为5-100克/平方米的无纺柔性面材置于裁切机上,将无纺柔性面材分切成线密度为50-500克/千米的纤维条带,每根纤维条带分别卷绕筒管上,形成条带筒管卷装,该步骤巧妙利用了纺织纤维易铺放、毡化形成的无纺柔性面材的特征,将无纺柔性面材直接精确均匀分切成纤维条带,快速制成一种条带状纤维的柔性预聚体,打破了纺织纤维的传统梳理收集成条的技术瓶颈,免去了传统纺纱的前纺多次牵伸并条、熟条牵伸加捻制成粗纱等一系列工序,大幅缩短传统纺纱时纤维制条流程;
B.纤维条带夹心内置有微粒材料的复合条带制备
在纤维条带的中部铺设双面粘胶带,双面粘胶带与纤维条带的宽度比为1:4-1:8,且双面粘胶带的一侧边缘线与纤维条带的中心线重合,双面粘胶带一面与纤维条带紧密粘接,微粒材料放入走带槽中,微粒材料的粒径范围为10-1500微米,微粒材料可采用天然或人工合成的有机或无机的微粒,粘结有双面粘胶带的纤维条带进入走带槽之前,双面粘胶带的另一面与粘贴纸分离,进入走带槽之后,双面粘胶带的另一面沾满微粒材料,沾满微粒材料的纤维条带沿中心线对折,形成纤维条带内置微粒材料的夹心状复合条带,复合条带卷绕到筒管上,形成复合条带筒管卷装,该步骤巧妙将无纺面材快速成条、双面胶有效粘接微粒材料相结合,形成内置微粒材料连续分布式的夹心状复合条带,打破了微粒材料难以传统梳理收集成条的技术瓶颈,为内置微粒材料的复合纤维条带直接加捻成纱做好准备;
C.复合条带的倍捻成纱
将复合条带筒管卷装分别置于倍捻机的储纱罐中,从筒管卷装上退绕下来的每根复合条带分别穿过倍捻机的锭翼,进入倍捻机空心锭的中空轴内,依次经中空轴内的张力器、倍捻机定位套筒中的进纱管,从倍捻机加捻盘的出纱管出口引出,再穿过导纱环、进入到引纱罗拉钳口处,在引纱罗拉钳口与张力器共同作用下,位于张力器至引纱罗拉钳口段的复合条带受到牵拉作用力,牵拉作用力牵引复合条带内部纤维及微粒材料沿条带长度方向伸展、内置微粒材料在复合条带中始终保持均匀分布,在倍捻机的内磁钢和固定磁钢共同用下,倍捻机的储纱罐、静止盘静止不动,倍捻机的锭带带动倍捻机的加捻盘以3000-7000转/分钟的作转速进行回转,对位于锭翼和加捻盘之间的张紧的复合条带进行一次加捻,一次加捻的作用力立体扭转复合条带,增强复合条带中的纤维与内置微粒材料之间的包缠结合,将线性片状的复合条带转变成为线性圆柱状的纱线,改变了复合条带的片状无捻的松散形态结构,实现了微球材料的稳固内置在纱体中心,解决了微粒材料难以被有效包缠内置、微球复合纺纱易于脱落、难以适应纺织加工要求等技术问题,线性圆柱状纱线从加捻盘出纱管出口引出,在进入引纱罗拉钳口之前,受到回转加捻盘的二次加捻,二次加捻的作用力立体扭转纱线内部纤维,进一步增强纱线中纤维和内置微粒材料之间的包缠结合,最终形成细度为100-620特克斯的纱线,纱线依次经倍捻机的导纱钩、导纱横动装置、槽筒,最终卷绕到筒管上,不仅实现了纱线的倍捻高效加工,而且省略了传统纺纱的细纱牵伸、细纱加捻成管纱、再将管纱进行络筒加工成筒纱等工序,进一步有效缩短成纱流程。
下面结合不同材质的微粒材料的内置式纱线成形过程,对本发明的具体应用作进一步详细阐述。
实施例1.内置活性炭微球的纱线成形
选用的活性炭微球粒径为1000-1500微米,活性炭微球中富含纳米微孔结构,广泛用于空气过滤、甲醛吸附、水体过滤等领域,但活性炭微球难以复合成纱,采用传统的涂覆、内置填塞法与纺织品复合,无法保证活性炭微球的均匀分散排布以及稳定结合,导致吸附和过滤功能效率下降、容易脱落难以任意裁切和加工使用。为解决该技术问题,采用本发明进行内置活性炭微球的纱线成形方法,具体步骤为:
A.纤维条带的制备
将面密度为5克/平方米的聚乙烯无纺柔性面材置于裁切机上,将聚乙烯无纺柔性面材分切成线密度为50克/千米的纤维条带,每根纤维条带宽度为10毫米,每根纤维条带分别卷绕筒管上,形成条带筒管卷装,该步骤巧妙利用了聚乙烯纤维易铺放、毡化形成的无纺柔性面材的特征,将聚乙烯无纺柔性面材直接精确均匀分切成纤维条带,快速制成一种条带状纤维的柔性预聚体,打破了纺织纤维的传统梳理收集成条的技术瓶颈,免去了传统纺纱的前纺多次牵伸并条、熟条牵伸加捻制成粗纱等一系列工序,大幅缩短传统纺纱时纤维制条流程;
B.纤维条带夹心内置有微粒材料的复合条带制备
在纤维条带的中部铺设双面粘胶带,双面粘胶带的宽度为2.5毫米,且双面粘胶带的一侧边缘线与聚乙烯纤维条带的中心线重合,双面粘胶带一面与纤维条带紧密粘接,将活性炭微球放入走带槽中,粘结有双面粘胶带的纤维条带进入走带槽之前,双面粘胶带的另一面与粘贴纸分离,进入走带槽之后,双面粘胶带的另一面沾满活性炭微球,沾满活性炭微球的纤维条带沿中心线对折,形成纤维条带内置活性炭微球的夹心状复合条带,复合条带卷绕到筒管上,形成复合条带筒管卷装,该步骤巧妙利用了无纺面材快速成条、双面胶有效粘接微粒材料的特征,形成内置微粒材料连续分布式的夹心状复合条带,打破了微粒材料难以传统梳理收集成条的技术瓶颈,为内置微粒材料的复合纤维条带直接加捻成纱做好准备;
C.复合条带的倍捻成纱
将复合条带筒管卷装分别置于倍捻机的储纱罐中,从筒管卷装上退绕下来的每根复合条带分别穿过倍捻机的锭翼,进入倍捻机空心锭的中空轴内,依次经中空轴内的张力器、倍捻机定位套筒中的进纱管,从倍捻机加捻盘的出纱管出口引出,再穿过导纱环、进入到引纱罗拉钳口处,在引纱罗拉钳口与张力器共同作用下,位于张力器至引纱罗拉钳口段的复合条带受到牵拉作用力,牵拉作用力牵引复合条带内部聚乙烯纤维及活性炭微球沿条带长度方向伸展、内置活性炭微球在复合条带中始终保持均匀分布,在倍捻机的内磁钢和固定磁钢共同用下,倍捻机的储纱罐、静止盘静止不动,倍捻机的锭带带动倍捻机的加捻盘以7000转/分钟的作转速进行回转,对位于锭翼和加捻盘之间的张紧的复合条带进行一次加捻,一次加捻的作用力立体扭转复合条带,增强复合条带中的聚乙烯纤维与内置活性炭微球之间的包缠结合,将线性片状的复合条带转变成为线性圆柱状的纱线,改变了复合条带的片状无捻的松散形态结构,实现了微球材料的稳固内置在纱体中心,解决了微粒材料难以被有效包缠内置、微球复合纺纱易于脱落、难以适应纺织加工要求等技术问题;线性圆柱状纱线从加捻盘出纱管出口引出,在进入引纱罗拉钳口之前,受到回转加捻盘的二次加捻,二次加捻的作用力立体扭转纱线内部纤维,进一步增强纱线中聚乙烯纤维和内置活性炭微球之间的包缠结合,最终形成细度为200特克斯的纱线,纱线依次经倍捻机的导纱钩、导纱横动装置、槽筒,最终卷绕到筒管上,不仅实现了纱线的倍捻高效加工,而且省略了传统纺纱的细纱牵伸、细纱加捻成管纱、再将管纱进行络筒加工成筒纱等工序,进一步有效缩短成纱流程。
实施例2.内置蛋白质药物微球的纱线成形
采用静电液滴法制成的粒径为10微米的蛋白质药物微球,承载药物为喹诺酮类抗菌药,可被广泛用于抗菌面料以及纺织品抗菌功能整理中。但蛋白质药物微球难以内置复合成纱,采用传统的涂覆、内置填塞法与纺织品复合,无法保证蛋白质药物微球的均匀分散排布以及稳定结合,导致抗菌功能效率下降、容易脱落难以任意裁切和加工使用。为解决该技术问题,采用本发明进行内置蛋白质药物微球的纱线成形方法,具体步骤为:
A.纤维条带的制备
将面密度为50克/平方米的粗羊毛纤维无纺柔性面材置于裁切机上,将无纺柔性面材分切成线密度为500克/千米的纤维条带,每根纤维条带宽度为10毫米,每根纤维条带分别卷绕筒管上,形成条带筒管卷装,该步骤巧妙利用了羊毛纤维易铺放、毡化形成的无纺柔性面材的特征,将羊毛无纺柔性面材直接精确均匀分切成纤维条带,快速制成一种条带状纤维的柔性预聚体,打破了纺织纤维的传统梳理收集成条的技术瓶颈,免去了传统纺纱的前纺多次牵伸并条、熟条牵伸加捻制成粗纱等一系列工序,大幅缩短传统纺纱时纤维制条流程;
B.纤维条带夹心内置有微粒材料的复合条带制备
在纤维条带的中部铺设双面粘胶带,双面粘胶带的宽度为1.25毫米,且双面粘胶带的一侧边缘线与羊毛纤维条带的中心线重合,双面粘胶带一面与纤维条带紧密粘接,将蛋白质药物微球放入走带槽中,粘结有双面粘胶带的纤维条带进入走带槽之前,双面粘胶带的另一面与粘贴纸分离,进入走带槽之后,双面粘胶带的另一面沾满蛋白质药物微球,沾满蛋白质药物微球的纤维条带沿中心线对折,形成纤维条带内置蛋白质药物微球的夹心状复合条带,复合条带卷绕到筒管上,形成复合条带筒管卷装,该步骤巧妙利用了无纺面材快速成条、双面胶有效粘接微粒材料的特征,形成内置微粒材料连续分布式的夹心状复合条带,打破了微粒材料难以传统梳理收集成条的技术瓶颈,为内置微粒材料的复合纤维条带直接加捻成纱做好准备;
C.复合条带的倍捻成纱
将复合条带筒管卷装分别置于倍捻机的储纱罐中,从筒管卷装上退绕下来的每根复合条带分别穿过倍捻机的锭翼,进入倍捻机空心锭的中空轴内,依次经中空轴内的张力器、倍捻机定位套筒中的进纱管,从倍捻机加捻盘的出纱管出口引出,再穿过导纱环、进入到引纱罗拉钳口处,在引纱罗拉钳口与张力器共同作用下,位于张力器至引纱罗拉钳口段的复合条带受到牵拉作用力,牵拉作用力牵引复合条带内部羊毛纤维及蛋白质药物微球沿条带长度方向伸展、内置微粒材料在复合条带中始终保持均匀分布,在倍捻机的内磁钢和固定磁钢共同用下,倍捻机的储纱罐、静止盘静止不动,倍捻机的锭带带动倍捻机的加捻盘以3000转/分钟的作转速进行回转,对位于锭翼和加捻盘之间的张紧的复合条带进行一次加捻,一次加捻的作用力立体扭转复合条带,增强复合条带中的羊毛纤维与内置蛋白质药物微球之间的包缠结合,将线性片状的复合条带转变成为线性圆柱状的纱线,改变了复合条带的片状无捻的松散形态结构,实现了微球材料的稳固内置在纱体中心,解决了微粒材料难以被有效包缠内置、微球复合纺纱易于脱落、难以适应纺织加工要求等技术问题;线性圆柱状纱线从加捻盘出纱管出口引出,在进入引纱罗拉钳口之前,受到回转加捻盘的二次加捻,二次加捻的作用力立体扭转纱线内部纤维,进一步增强纱线中羊毛纤维和内置蛋白质药物微球之间的包缠结合,最终形成细度为620特克斯的纱线,纱线依次经倍捻机的导纱钩、导纱横动装置、槽筒,最终卷绕到筒管上,不仅实现了纱线的倍捻高效加工,而且省略了传统纺纱的细纱牵伸、细纱加捻成管纱、再将管纱进行络筒加工成筒纱等工序,进一步有效缩短成纱流程。

Claims (1)

1.一种内置微粒材料的纱线成形方法,其特征在于,所述的方法按以下步骤进行:
A.纤维条带的制备
将面密度为5-100克/平方米的无纺柔性面材置于裁切机上,将无纺柔性面材分切成线密度为50-500克/千米的纤维条带,每根纤维条带分别卷绕筒管上,形成条带筒管卷装;
B.纤维条带夹心内置有微粒材料的复合条带制备
在纤维条带的中部铺设双面粘胶带,双面粘胶带与纤维条带的宽度比为1:4-1:8,且双面粘胶带的一侧边缘线与纤维条带的中心线重合,双面粘胶带一面与纤维条带紧密粘接,粒径为10-1500微米的微粒材料放入走带槽中,粘结有双面粘胶带的纤维条带进入走带槽之前,双面粘胶带的另一面与粘贴纸分离,进入走带槽之后,双面粘胶带的另一面沾满微粒材料,沾满微粒材料的纤维条带沿中心线对折,形成纤维条带内置微粒材料的夹心状复合条带,复合条带卷绕到筒管上,形成复合条带筒管卷装;
C.复合条带的倍捻成纱
将复合条带筒管卷装分别置于倍捻机的储纱罐中,从筒管卷装上退绕下来的每根复合条带分别穿过倍捻机的锭翼,进入倍捻机空心锭的中空轴内,依次经中空轴内的张力器、倍捻机定位套筒中的进纱管,从倍捻机加捻盘的出纱管出口引出,再穿过导纱环、进入到引纱罗拉钳口处,在引纱罗拉钳口与张力器共同作用下,位于张力器至引纱罗拉钳口段的复合条带受到牵拉作用力,牵拉作用力牵引复合条带内部纤维及微粒材料沿条带长度方向伸展、内置微粒材料在复合条带中始终保持均匀分布,在倍捻机的内磁钢和固定磁钢共同用下,倍捻机的储纱罐、静止盘静止不动,倍捻机的锭带带动倍捻机的加捻盘以3000-7000转/分钟的作转速进行回转,对位于锭翼和加捻盘之间的张紧的复合条带进行一次加捻,一次加捻的作用力立体扭转复合条带,增强复合条带中的纤维与内置微粒材料之间的包缠结合,将线性片状的复合条带转变成为线性圆柱状的纱线,线性圆柱状纱线从加捻盘出纱管出口引出,在进入引纱罗拉钳口之前,受到回转加捻盘的二次加捻,二次加捻的作用力立体扭转纱线内部纤维,进一步增强纱线中纤维和内置微粒材料之间的包缠结合,最终形成细度为100-620特克斯的纱线,纱线依次经倍捻机的导纱钩、导纱横动装置、槽筒,最终卷绕到筒管上。
CN201810126447.1A 2018-02-08 2018-02-08 一种内置微粒材料的纱线成形方法 Active CN108286099B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810126447.1A CN108286099B (zh) 2018-02-08 2018-02-08 一种内置微粒材料的纱线成形方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810126447.1A CN108286099B (zh) 2018-02-08 2018-02-08 一种内置微粒材料的纱线成形方法

Publications (2)

Publication Number Publication Date
CN108286099A true CN108286099A (zh) 2018-07-17
CN108286099B CN108286099B (zh) 2019-12-03

Family

ID=62832768

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810126447.1A Active CN108286099B (zh) 2018-02-08 2018-02-08 一种内置微粒材料的纱线成形方法

Country Status (1)

Country Link
CN (1) CN108286099B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112359454A (zh) * 2020-09-03 2021-02-12 武汉纺织大学 无损固结式分层网覆粉粒的复合纱线及其制备方法和装置
CN113026164A (zh) * 2021-03-11 2021-06-25 武汉纺织大学 液流体的柔性线状材料及液流体复合成纱方法和应用
CN114717703A (zh) * 2021-01-04 2022-07-08 武汉纺织大学 磁粒子体弹性线状材料及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1127312A (zh) * 1994-01-11 1996-07-24 青岛石棉制品总厂 一种用石棉短纤维抄纸生产石棉纱线的工艺方法
JP2004035902A (ja) * 2002-06-28 2004-02-05 Japan Science & Technology Corp 耐高温酸化性耐熱合金部材の製造方法
CN2670389Y (zh) * 2004-01-06 2005-01-12 萧进华 无纺布制蓬松型纱线
JP2007215420A (ja) * 2006-02-14 2007-08-30 Asahi Kasei Fibers Corp 海草類育成方法
CN101784703A (zh) * 2007-07-20 2010-07-21 高级复合材料集团有限公司 热固性树脂纤维
CN107142581A (zh) * 2017-05-11 2017-09-08 武汉纺织大学 一种粘合纺纱方法及其粘合纺纱装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1127312A (zh) * 1994-01-11 1996-07-24 青岛石棉制品总厂 一种用石棉短纤维抄纸生产石棉纱线的工艺方法
JP2004035902A (ja) * 2002-06-28 2004-02-05 Japan Science & Technology Corp 耐高温酸化性耐熱合金部材の製造方法
CN2670389Y (zh) * 2004-01-06 2005-01-12 萧进华 无纺布制蓬松型纱线
JP2007215420A (ja) * 2006-02-14 2007-08-30 Asahi Kasei Fibers Corp 海草類育成方法
CN101784703A (zh) * 2007-07-20 2010-07-21 高级复合材料集团有限公司 热固性树脂纤维
CN107142581A (zh) * 2017-05-11 2017-09-08 武汉纺织大学 一种粘合纺纱方法及其粘合纺纱装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112359454A (zh) * 2020-09-03 2021-02-12 武汉纺织大学 无损固结式分层网覆粉粒的复合纱线及其制备方法和装置
CN112359454B (zh) * 2020-09-03 2021-11-12 武汉纺织大学 无损固结式分层网覆粉粒的复合纱线及其制备方法和装置
CN114717703A (zh) * 2021-01-04 2022-07-08 武汉纺织大学 磁粒子体弹性线状材料及其制备方法和应用
CN113026164A (zh) * 2021-03-11 2021-06-25 武汉纺织大学 液流体的柔性线状材料及液流体复合成纱方法和应用

Also Published As

Publication number Publication date
CN108286099B (zh) 2019-12-03

Similar Documents

Publication Publication Date Title
CN108286101B (zh) 一种内置粉体材料的复合纱线成形方法
CN107043969B (zh) 一种型膜丝化的环锭复合纺纱方法
CN107059186B (zh) 一种型膜丝化的涡流复合纺纱方法
CN108385228A (zh) 一种高刚度脆性纤维短流程倍捻复合成纱的方法
CN106917166B (zh) 一种型膜丝化的摩擦复合纺纱方法
CN108286098A (zh) 一种超短难纺纤维短流程复合成纱的方法
CN106245165B (zh) 纳米静电纺丝与短纤维涡流纺纱一体化成纱的方法
CN102704124B (zh) 等张力双长丝紧靠加捻三角区的三轴系复合纺纱方法及应用
CN106480556B (zh) 一种纳微尺度增强纤维成纱的长丝环锭复合纺纱方法
CN108166121B (zh) 一种羽绒状难纺纤维短流程复合成纱的方法
CN104762700B (zh) 一种纳米级静电赛络纺纱方法
CN102704120B (zh) 双长丝不等张力夹持短纤须条的光洁复合纺纱机构与方法
CN106835412A (zh) 一种静电纺纳米纤维带加捻成纱线的方法和装置
CN108286099B (zh) 一种内置微粒材料的纱线成形方法
US10640889B2 (en) Method to form yarn via film fiberizing spinning
CN104060360A (zh) 一种长度差异化纤维纱线的赛络纺成纱方法、装置与纱线
Alagirusamy et al. Conversion of fibre to yarn: an overview
CN108396428A (zh) 一种高刚度脆性纤维短流程倍捻成纱的方法
CN108342795B (zh) 一种超短难纺纤维短流程成纱的方法
CN110373727A (zh) 一种在线式微纳米纤维多级包芯复合纺纱装置及方法
CN208485988U (zh) 一种采用静电纺丝对长丝表面改性系统
CN106337228A (zh) 一种纳微尺度增强纤维成纱的长丝摩擦复合纺纱方法
CN106480566B (zh) 一种纳微尺度增强短纤维成纱的赛络纺纱方法
CN108442030A (zh) 一种聚乳酸纤维的磨绒针织物及其制作工艺
CN108286100B (zh) 一种羽绒状难纺纤维短流程成纱的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20191112

Address after: No.69 Lijiang Road, Henan Economic Development Zone, Suqian City, Jiangsu Province

Applicant after: Suqian Zhicheng Textile Co.,Ltd.

Address before: 430200 Jiangxia City, Wuhan province sunshine road, No. 1,

Applicant before: Wuhan Textile University

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20240325

Address after: 430200 1 Sunshine Avenue, Jiangxia District, Wuhan, Hubei.

Patentee after: Wuhan Textile University

Country or region after: China

Address before: No. 69 Lijiang Road, Henan Economic Development Zone, Suqian City, Jiangsu Province, 223800

Patentee before: Suqian Zhicheng Textile Co.,Ltd.

Country or region before: China

TR01 Transfer of patent right