CN108285481A - 促进WSSV感染的基因Cq-BAF及制备方法与应用 - Google Patents

促进WSSV感染的基因Cq-BAF及制备方法与应用 Download PDF

Info

Publication number
CN108285481A
CN108285481A CN201810091338.0A CN201810091338A CN108285481A CN 108285481 A CN108285481 A CN 108285481A CN 201810091338 A CN201810091338 A CN 201810091338A CN 108285481 A CN108285481 A CN 108285481A
Authority
CN
China
Prior art keywords
baf
wssv
expression
preparation
infection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810091338.0A
Other languages
English (en)
Inventor
刘海鹏
刘灵珂
张秋霞
王克坚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiamen University
Original Assignee
Xiamen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiamen University filed Critical Xiamen University
Priority to CN201810091338.0A priority Critical patent/CN108285481A/zh
Publication of CN108285481A publication Critical patent/CN108285481A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/43504Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates
    • C07K14/43509Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates from crustaceans
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K20/00Accessory food factors for animal feeding-stuffs
    • A23K20/10Organic substances
    • A23K20/153Nucleic acids; Hydrolysis products or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
    • C12N15/815Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts for yeasts other than Saccharomyces
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Biophysics (AREA)
  • Polymers & Plastics (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Mycology (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Toxicology (AREA)
  • Insects & Arthropods (AREA)
  • Plant Pathology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Animal Husbandry (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)

Abstract

促进WSSV感染的基因Cq‑BAF及制备方法与应用,所述红螯螯虾屏障自整合因子命名为Cq‑BAF。构建Cq‑BAF重组表达载体;将所得的重组表达载体转化宿主细胞,并对宿主细胞进行诱导表达,获得表达产物;分离纯化所得的表达产物,获得重组蛋白,即rCq‑BAF。Cq‑BAF能结合WSSV,抑制其功能后WSSV的感染复制能力降低,说明其本身对WSSV的感染具有促进作用,因此针对Cq‑BAF的功能鉴定在探究WSSV如何感染虾类细胞中具有重要研究价值,作为抗病毒感染的靶点,为制备抗WSSV类新药和动物抗病饲料添加剂奠定良好基础。红螯螯虾屏障自整合因子在制备抗WSSV类新药和动物抗病饲料添加剂中应用。

Description

促进WSSV感染的基因Cq-BAF及制备方法与应用
技术领域
本发明涉及对虾白斑综合征病毒(White spot syndrome virus,WSSV),尤其是涉及一种促进WSSV感染的基因Cq-BAF及制备方法与应用。
背景技术
WSSV是对虾的主要病毒性病原,还能够感染螯虾、蟹和龙虾等,WSSV已成为水产甲壳动物养殖的主要障碍,对水产甲壳动物养殖业的经济造成极大的危害,迄今为止,依然缺乏有效的药物治疗或预防。
屏障自整合因子(Barrier to autointegrationfactor,BAF)是一种重要的高度保守的蛋白,具有多种功能,与保持细胞基因组的完整性有关。BAF首先被发现能够防止莫洛尼氏鼠白血病病毒(MoMLV)的自动整合,因此被命名为屏障自整合因子[1]。BAF能与双链DNA以非特异性的方式结合,并且同源二聚化成交联桥DNA,形成更高阶的核蛋白复合物[2,3]。BAF还与许多细胞蛋白相互作用,包括驻留在核膜中的LAP2/emerin/MAN1(LEM)蛋白、组蛋白、核纤层蛋白、转录因子和DNA损伤应答蛋白(DDR)等[4-8]。除此之外,BAF还被认为是一种系膜蛋白,核膜(NE)被重新组装时,在有丝分裂后期阶段将染色质DNA和LEM蛋白结合在一起[9,10]。在与病毒相关的研究中,BAF首先被确定为与莫洛尼鼠白血病病毒前整合复合物(PIC)相关的细胞因子,并且能通过阻断PICs中“自杀”性的自整合来促进病毒基因组整合到宿主染色体中[1]。BAF也能作为Ⅰ型单纯疱疹病毒(HSV-1)感染的表观遗传调节剂起作用,通过招募组蛋白甲基转移酶SETD1A到病毒启动子处来增强HSV-1自身的转录复制[7],此外,在表达不可磷酸化的BAF突变体的细胞中,HSV-1DNA复制和病毒蛋白表达能力均降低[11]
参考文献:
1.Lee MS,Craigie R.A Previously Unidentified Host Protein ProtectsRetroviral DNA from Autointegration.Proceedings of the National Academy ofSciences of the United States of America.1998 95:1528.
2.Bradley CM,Ronning DR,Ghirlando R,Craigie R,Dyda F.Structural basisfor DNA bridging by barrier-to-autointegration factor.Nature structural&molecular biology.2005 12:935-6.
3.Skoko D,Li M,Huang Y,Mizuuchi M,Cai M,Bradley CM,et al.Barrier-to-autointegration factor(BAF)condenses DNA by looping.Proceedings of theNational Academy of Sciences of the United States of America.2009 106:16610-5.
4.Brachner A,Braun J,Ghodgaonkar M,Castor D,Zlopasa L,Ehrlich V,etal.The endonuclease Ankle1requires its LEM and GIY-YIG motifs for DNAcleavage in vivo.Journal of cell science.2012 125:1048-57.
5.Montes de Oca R,Andreassen PR,Wilson KL.Barrier-to-AutointegrationFactor influences specific histone modifications.Nucleus.2011 2:580-90.
6.Montes de Oca R,Lee KK,Wilson KL.Binding of barrier toautointegration factor(BAF)to histone H3and selected linker histonesincluding H1.1.The Journal of biological chemistry.2005280:42252-62.
7.Oh HS,Traktman P,Knipe DM.Barrier-to-Autointegration Factor 1(BAF/BANF1)Promotes Association of the SETD1A Histone Methyltransferase withHerpes Simplex Virus Immediate-Early Gene Promoters.mBio.2015 6:e00345-15.
8.Wang X,Xu S,Rivolta C,Li LY,Peng GH,Swain PK,et al.Barrier toautointegration factor interacts with the cone-rod homeobox and represses itstransactivation function.The Journal of biological chemistry.2002 277:43288-300.
9.Furukawa K,Sugiyama S,Osouda S,Goto H,Inagaki M,Horigome T,etal.Barrier-to-autointegration factor plays crucial roles in cell cycleprogression and nuclear organization in Drosophila.Journal of cellscience.2003 116:3811.
10.Segura-Totten M,Wilson KL.BAF:roles in chromatin,nuclear structureand retrovirus integration.Trends in cell biology.2004 14:261-6.
11.Jamin A,Thunuguntla P,Wicklund A,Jones C,Wiebe MS.Barrier toAutointegration FactorBecomes Dephosphorylated during HSV-1 Infection and CanAct as a Host Defense byImpairing Viral DNA Replication and GeneExpression.PLoS One.2014 9:e100511.
发明内容
本发明的第一目的在于提供红螯螯虾屏障自整合因子的基因序列。
本发明的第二目的在于提供红螯螯虾屏障自整合因子的氨基酸序列。
本发明的第三目的在于提供红螯螯虾屏障自整合因子的制备方法。
本发明的第四目的在于提供红螯螯虾屏障自整合因子的应用。
所述红螯螯虾屏障自整合因子命名为Cq-BAF。
所述Cq-BAF的基因序列为:
所述Cq-BAF的氨基酸序列为:
所述Cq-BAF的制备方法包括以下步骤:
1)构建Cq-BAF重组表达载体;
2)将步骤1)所得的重组表达载体转化宿主细胞,并对宿主细胞进行诱导表达,获得表达产物;
3)分离纯化步骤2)所得的表达产物,获得重组蛋白,即rCq-BAF。
在步骤1)中,所述表达载体可选用pPIC9K等。
在步骤2)中,所述宿主细胞可选用毕赤酵母等。
在步骤3)中,所述分离纯化步骤2)所得的表达产物,可先将步骤2)所得的表达产物进行透析,再进行亲和层析。
所述Cq-BAF能结合WSSV,抑制其功能后WSSV的感染复制能力降低,说明其本身对WSSV的感染具有促进作用,因此针对Cq-BAF的功能鉴定在探究WSSV如何感染虾类细胞中具有重要研究价值,作为抗病毒感染的靶点,为制备抗WSSV类新药和动物抗病饲料添加剂奠定良好基础。
由此可见,所述红螯螯虾屏障自整合因子可在制备抗WSSV类新药和动物抗病饲料添加剂中应用。
本发明涉及一种新的基因工程产品:源于红螯螯虾(Cheraxquadricarinatus)的基因BAF的重组表达及其制备方法,该基因工程产品能够在体外结合WSSV,是一种具有结合WSSV活性的基因工程产物,对于作为病毒感染细胞靶点设计抗WSSV病害有效药物防治具有重要应用前景。
本发明在分离得到rCq-BAF的基础上,根据Cq-BAF基因序列特征成功构建重组表达载体并在毕赤酵母系统中表达并纯化获得重组Cq-BAF蛋白,该重组蛋白能识别WSSV并结合WSSV囊膜蛋白VP19。研究结果表明,Cq-BAF可能参与了WSSV感染红螯螯虾的过程,因此,重组基因工程产品Cq-BAF在探究WSSV如何感染虾类细胞的过程中具有重要研究价值,并且在制备抗WSSV类新药开发应用中显示出非常诱人的应用前景。
附图说明
图1为pPIC9K-Cq-BAF真核表达载体构建图。
图2为SDS-PAGE分析pPIC9K-Cq-BAF重组毕赤酵母克隆子甲醇诱导表达的电泳图谱。在图2中,M为SDS-PAGE标准蛋白质Marker,1为诱导表达的菌液上清,可见约12kDa的诱导表达蛋白条带,2为表达的Cq-BAF重组蛋白,约为12kDa的明显的蛋白条带。
图3为Pull down实验验证rCq-BAF能结合WSSV主要囊膜结构蛋白VP19。
图4为利用双链RNA干扰技术敲降Cq-BAF后,WSSV转录复制降低。
具体实施方式
以下通过实施例结合附图详细说明本发明的技术方案。
实施例1红螯螯虾屏障自整合因子Cq-BAF真核重组表达载体的构建
根据pPIC9K载体多克隆位点,设计扩增编码红螯螯虾Cq-BAF(cDNA)基因ORF的特异性上游引物F1和下游引物R1。在上游引物F1的5′端添加SnaBI酶切位点;在下游引物R1的5′端添加NotI酶切位点、终止密码子和编码His-tag的碱基。
上游引物F1:
5′-GCCTACGTAATGTCTTCAACAAGTCAGAAGCATCG-3′;
下游引物R1:
5′-AAGCGGCCGCTTAATGATGATGATGATGGTGCAAAAATTCTTCACACCAGTCAG-3′。
扩增Cq-BAF的编码区片段。PCR反应条件为:94℃预变性3min;94℃变性30s,60℃退火30s,72℃延伸30s,重复30个循环;72℃延伸7min。
利用琼脂糖凝胶纯化试剂盒回收PCR产物,回收的PCR产物经SnaBI和NotI酶切后纯化回收,与SnaBI和NotI双酶切线性化pPIC9K载体连接,构建好毕赤酵母表达重组载体pPIC9K-Cq-BAF,测序鉴定读码框准确无误。
pPIC9K-Cq-BAF载体构建图参见图1。
实施例2pPIC9K-Cq-BAF重组质粒在毕赤酵母GS115中的诱导表达
测序正确质粒pPIC9K-Cq-BAF经BglⅡ酶切线性化,以电击法转化至毕赤酵母GS115感受态细胞中,并用甲醇诱导表达。
结果显示,与诱导前相比,pPIC9K-Cq-BAF重组质粒转化的毕赤酵母GS115诱导后具有明显的重组蛋白的诱导表达,蛋白条带12kDa左右(参见图2)。
实施例3pPIC9K-Cq-BAF重组质粒在毕赤酵母GS115中甲醇诱导后的表达产物纯化
利用亲和层析法纯化Cq-BAF重组蛋白(rCq-BAF),大量诱导表达阳性重组毕赤酵母GS115菌株后,通过离心(4℃,12000rpm离心30min)去除菌体收集培养基上清1L,于透析液(50mM磷酸盐缓冲液,50mM NaCl)透析三次(每次透析12h),得到上柱样品。随后采用金属鏊合层析柱对透析后的蛋白进行亲和层析。收集溶液D洗脱峰组分,经SDS-PAGE电泳分析(参见图2),显示一个条带,约12KDa,经质谱鉴定,该蛋白条带为红螯螯虾BAF蛋白。
实施例4利用Pull down实验证明Cq-BAF重组蛋白与WSSV的结合
探究rCq-BAF是否可以与WSSV的主要囊膜蛋白VP19、VP24、VP26、VP28(VPs)相互作用。首先通过基因特异性引物扩增4种囊膜蛋白开放阅读框(ORF),并克隆到PB513B载体中,该载体同时带有strep和flag标签。对于DNA转染,将人胚肾293T(HEK 293T)接种并在37℃的Dulbecco's Modified Eagle培养基(Thermo Fisher)中生长。用转染试剂将PB513B-VPs质粒分别转染到HEK293T中,PB513B空载作为对照。转染72h后,用Western和IP细胞裂解缓冲液4℃裂解细胞2h。500×g离心5min后,分别向上清中加入20μg带His标签的rCq-BAF蛋白,且所有样品都加入20μLstreptavidin琼脂糖树脂珠,并在4°旋转孵育2h。孵育后,树脂珠用PBS洗涤5次,用加入20μL 2×SDS-PAGE样品缓冲液(100mM Tris,4%SDS,20%甘油,2%β-巯基乙醇,0.2%溴酚蓝,pH6.8)煮沸10min变性。将蛋白质样品在15%SDS-PAGE凝胶中电泳并电转到PVDF膜(GE Healthcare)上。将膜置于TBST缓冲液(20mM Tris,150mMNaCl,0.1%Tween 20,pH 7.6)溶解的5%脱脂奶粉中室温封闭1h,随后与抗Cq-BAF多克隆抗体(1︰3000)在4℃下过夜。然后用TBST缓冲液洗涤膜5次,然后在室温下用辣根过氧化物酶标记的抗体(1︰5000)孵育1h。最后使用辣根过氧化物酶HRP-ECL发光法显影。
结果如图3,证明rCq-BAF能与WSSV囊膜蛋白VP19。
实施例5Cq-BAF基因敲降对WSSV感染红螯螯虾造血组织细胞(Hpt细胞)后转录复制的影响
利用Life technologies公司的T7 Transcription Kit合成双链Cq-BAF RNA,合成Cq-BAF dsRNA用于RNA干扰实验。制备培养红螯螯虾hpt细胞,加入96空细胞培养板中培养(105cells/孔)。以GFP dsRNA为对照,取200ng dsRNA、0.4μL cellfectin与10μL DEPC水轻弹混匀后室温孵育min,补L15培养基至50μL加至孔中。基因干扰36h后以MOI=5感染WSSV,感染12h后用10μL 1×SDS裂解收集细胞样品,Western blot检测BAF基因干扰效率、WSSV基因VP28的表达量,以明确病毒的转录复制情况。
结果如图4,在WSSV感染后12h,相对于对照组,Cq-BAF基因敲降后,Cq-BAF蛋白水平降低且其功能受到抑制,从而导致WSSV基因VP28的表达量降低,WSSV的转录复制能力减弱。说明Cq-BAF本身对于WSSV的转录复制具有促进作用。
本发明旨在获得红螯螯虾Cq-BAF基因工程表达产品,并对其结合病毒的活性进行了鉴定,且其具有促进WSSV感染的功能,可以此作为病毒感染宿主的靶点,以期用于高效抗WSSV新药物的制备中。本发明成功构建了红螯螯虾Cq-BAF基因工程表达重组质粒pPIC9K-Cq-BAF及相应真核表达系统,在获得rCq-BAF重组表达蛋白纯品后,进一步确认了rCq-BAF对WSSV在体外的结合,即rCq-BAF结合WSSV囊膜蛋白VP19,此外,抑制Cq-BAF功能后,WSSV的转录复制能力减弱,说明其自身具备促进WSSV感染的功能,为其作为抗WSSV病害防治新药物的开发奠定了良好基础。
序列表
<110> 厦门大学
<120> 促进WSSV感染的基因Cq-BAF及制备方法与应用
<141> 2017-10-16
<160> 2
<170> SIPOSequenceListing 1.0
<210> 1
<211> 544
<212> DNA
<213> 红螯螯虾(Cheraxquadricarinatus)
<400> 1
acatggggag atcatccaga ggaaggaggc ttggcgggtc aacattgttt tattctcatt 60
ctcttcctct tcacacaata taacaacact ttacacaaca gatcaacatg tcttcaacaa 120
gtcagaagca tcgaaatttt gtggccgagc ccatggggga gaaagaagtc acagaactgg 180
ctggaattgg tccagtacta ggtgacagat tatccagtaa aggctttgat aaggcttatg 240
tagttctggg acaatttctg gtgttgaaaa agaataagga gctcttcatg gattggctga 300
aggacactgc tggagctaat gtcaagcaag ctagggactg ccatcagtgc ctctctgact 360
ggtgtgaaga atttttgtaa atgctgaaat tagaggacct acagtgttaa tcaacaaaaa 420
acatttatgg atgtaccctg ttattgagct aattttcttt taatttatac attgaacttt 480
tgcaaaatgg aatttttaac tttttcctat ttccaaataa aaatatgtac tctactgtat 540
tacc 544
<210> 3
<211> 90
<212> PRT
<213> 红螯螯虾(Cheraxquadricarinatus)
<400> 3
Met Ser Ser Thr Ser Gln Lys His Arg Asn Phe Val Ala Glu Pro Met
1 5 10 15
Gly Glu Lys Glu Val Thr Glu Leu Ala Gly Ile Gly Pro Val Leu Gly
20 25 30
Asp Arg Leu Ser Ser Lys Gly Phe Asp Lys Ala Tyr Val Val Leu Gly
35 40 45
Gln Phe Leu Val Leu Lys Lys Asn Lys Glu Leu Phe Met Asp Trp Leu
50 55 60
Lys Asp Thr Ala Gly Ala Asn Val Lys Gln Ala Arg Asp Cys His Gln
65 70 75 80
Cys Leu Ser Asp Trp Cys Glu Glu Phe Leu
85 90

Claims (8)

1.Cq-BAF的基因序列为:
2.Cq-BAF的氨基酸序列为:
3.Cq-BAF的制备方法,其特征在于包括以下步骤:
1)构建Cq-BAF重组表达载体;
2)将步骤1)所得的重组表达载体转化宿主细胞,并对宿主细胞进行诱导表达,获得表达产物;
3)分离纯化步骤2)所得的表达产物,获得重组蛋白,即rCq-BAF。
4.如权利要求3所述Cq-BAF的制备方法,其特征在于在步骤1)中,所述表达载体选用pPIC9K。
5.如权利要求3所述Cq-BAF的制备方法,其特征在于在步骤2)中,所述宿主细胞选用毕赤酵母。
6.如权利要求3所述Cq-BAF的制备方法,其特征在于在步骤3)中,所述分离纯化步骤2)所得的表达产物,是先将步骤2)所得的表达产物进行透析,再进行亲和层析。
7.红螯螯虾屏障自整合因子在制备抗WSSV类新药中应用。
8.红螯螯虾屏障自整合因子在制备动物抗病饲料添加剂中应用。
CN201810091338.0A 2018-01-30 2018-01-30 促进WSSV感染的基因Cq-BAF及制备方法与应用 Pending CN108285481A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810091338.0A CN108285481A (zh) 2018-01-30 2018-01-30 促进WSSV感染的基因Cq-BAF及制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810091338.0A CN108285481A (zh) 2018-01-30 2018-01-30 促进WSSV感染的基因Cq-BAF及制备方法与应用

Publications (1)

Publication Number Publication Date
CN108285481A true CN108285481A (zh) 2018-07-17

Family

ID=62836376

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810091338.0A Pending CN108285481A (zh) 2018-01-30 2018-01-30 促进WSSV感染的基因Cq-BAF及制备方法与应用

Country Status (1)

Country Link
CN (1) CN108285481A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109055411A (zh) * 2018-09-18 2018-12-21 厦门大学 抑制WSSV增殖的半胱天冬氨酸酶基因Cq-caspase及其蛋白抗病毒活性应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102352363A (zh) * 2011-10-25 2012-02-15 厦门大学 拟穴青蟹抗病毒型抗脂多糖因子及其制备方法与应用
CN104087593A (zh) * 2014-07-10 2014-10-08 厦门大学 一种抗WSSV自噬相关基因Cq-Atg8及其制备方法与应用
CN104151414A (zh) * 2014-08-20 2014-11-19 厦门大学 拟穴青蟹抗菌肽SpHyastatin的制备方法与应用
CN105219779A (zh) * 2015-11-12 2016-01-06 厦门大学 红螯螯虾抗脂多糖因子及其制备方法与应用
CN105274134A (zh) * 2015-11-25 2016-01-27 厦门大学 拟穴青蟹抗菌肽scy2的制备方法与应用
CN107502612A (zh) * 2017-09-30 2017-12-22 厦门大学 一种识别结合WSSV的层粘连蛋白受体基因Cq‑LR及其制备方法与应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102352363A (zh) * 2011-10-25 2012-02-15 厦门大学 拟穴青蟹抗病毒型抗脂多糖因子及其制备方法与应用
CN104087593A (zh) * 2014-07-10 2014-10-08 厦门大学 一种抗WSSV自噬相关基因Cq-Atg8及其制备方法与应用
CN104151414A (zh) * 2014-08-20 2014-11-19 厦门大学 拟穴青蟹抗菌肽SpHyastatin的制备方法与应用
CN105219779A (zh) * 2015-11-12 2016-01-06 厦门大学 红螯螯虾抗脂多糖因子及其制备方法与应用
CN105274134A (zh) * 2015-11-25 2016-01-27 厦门大学 拟穴青蟹抗菌肽scy2的制备方法与应用
CN107502612A (zh) * 2017-09-30 2017-12-22 厦门大学 一种识别结合WSSV的层粘连蛋白受体基因Cq‑LR及其制备方法与应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HAI-PENG LIU ET AL.: "Cherax quadricarinatus clone V1-741 barrier-to-autointegration factor mRNA, partial cds", 《GENBANK》 *
HAI-PENG LIU ET AL.: "Differential gene expression profile from haematopoietic tissue stem cells of red claw crayfish, Cherax quadricarinatus, in response to WSSV infection", 《DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY》 *
MYUNG SOO LEE ET AL.: "A previously unidentified host protein protects retroviral DNA from autointegration", 《BIOCHEMISTRY》 *
柳志强: "《分子微生物学实验指导》", 31 July 2017, 中国轻工业出版社 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109055411A (zh) * 2018-09-18 2018-12-21 厦门大学 抑制WSSV增殖的半胱天冬氨酸酶基因Cq-caspase及其蛋白抗病毒活性应用
CN109055411B (zh) * 2018-09-18 2022-02-11 厦门大学 抑制WSSV增殖的半胱天冬氨酸酶基因Cq-caspase及其蛋白抗病毒活性应用

Similar Documents

Publication Publication Date Title
Leu et al. The unique stacked rings in the nucleocapsid of the white spot syndrome virus virion are formed by the major structural protein VP664, the largest viral structural protein ever found
Ahsan et al. Epstein-Barr virus transforming protein LMP1 plays a critical role in virus production
Jorba et al. Analysis of the interaction of influenza virus polymerase complex with human cell factors
Zhou et al. Four major envelope proteins of white spot syndrome virus bind to form a complex
Shmulevitz et al. Sequential partially overlapping gene arrangement in the tricistronic S1 genome segments of avian reovirus and Nelson Bay reovirus: implications for translation initiation
Cueille et al. Functional interaction between the bovine papillomavirus virus type 1 replicative helicase E1 and cyclin E-Cdk2
Xie et al. Envelope proteins of white spot syndrome virus (WSSV) interact with Litopenaeus vannamei peritrophin-like protein (LvPT)
Pyper et al. Molecular basis for the differential subcellular localization of the 38-and 39-kilodalton structural proteins of Borna disease virus
Swindle et al. Association of the human papillomavirus type 11 E1 protein with histone H1
CA2042236C (en) Seroreactive epitopes on proteins of human papillomavirus (hpv) 18
US20190100761A1 (en) Compositions and methods for enhanced gene expression and viral replication
Rumlova-Klikova et al. Analysis of Mason-Pfizer monkey virus Gag domains required for capsid assembly in bacteria: role of the N-terminal proline residue of CA in directing particle shape
US20200024365A1 (en) mRNA-ENCODED NANOBODY AND APPLICATION THEREOF
CN101812127A (zh) 微管结合蛋白及其编码基因与应用
Liu et al. Identification of two new polypeptides encoded by mRNA5 of the coronavirus infectious bronchitis virus
Wagenaar et al. Vaccinia virus A56/K2 fusion regulatory protein interacts with the A16 and G9 subunits of the entry fusion complex
Key et al. The Epstein-Barr virus (EBV) SM protein enhances pre-mRNA processing of the EBV DNA polymerase transcript
Li et al. Identification of the nuclear export and adjacent nuclear localization signals for ORF45 of Kaposi's sarcoma-associated herpesvirus
Zhao et al. 2B and 3C proteins of Senecavirus A antagonize the antiviral activity of DDX21 via the caspase-dependent degradation of DDX21
Zhi et al. Grouper TRIM23 exerts antiviral activity against iridovirus and nodavirus
Kurg et al. Effect of bovine papillomavirus E2 protein-specific monoclonal antibodies on papillomavirus DNA replication
CN108285481A (zh) 促进WSSV感染的基因Cq-BAF及制备方法与应用
Ribas et al. Essential RNA binding and packaging domains of the Gag-Pol fusion protein of the LA double-stranded RNA virus of Saccharomyces cerevisiae.
CN113549634B (zh) 编码可溶性hpv58 l1蛋白的基因及其重组质粒的构建与应用
Shirakata et al. Novel immediate-early protein IE19 of human cytomegalovirus activates the origin recognition complex I promoter in a cooperative manner with IE72

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20180717