CN108280321B - 基于细胞代谢轮廓分析构建抗肿瘤候选化合物作用机制预测模型的方法 - Google Patents
基于细胞代谢轮廓分析构建抗肿瘤候选化合物作用机制预测模型的方法 Download PDFInfo
- Publication number
- CN108280321B CN108280321B CN201810081322.1A CN201810081322A CN108280321B CN 108280321 B CN108280321 B CN 108280321B CN 201810081322 A CN201810081322 A CN 201810081322A CN 108280321 B CN108280321 B CN 108280321B
- Authority
- CN
- China
- Prior art keywords
- model
- tumor
- analysis
- action
- cells
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000007246 mechanism Effects 0.000 title claims abstract description 54
- 230000009471 action Effects 0.000 title claims abstract description 42
- 230000000259 anti-tumor effect Effects 0.000 title claims abstract description 39
- 238000004458 analytical method Methods 0.000 title claims abstract description 34
- 238000000034 method Methods 0.000 title claims abstract description 29
- 150000001875 compounds Chemical class 0.000 title claims abstract description 27
- 230000019522 cellular metabolic process Effects 0.000 title claims abstract description 9
- 210000004027 cell Anatomy 0.000 claims abstract description 74
- 239000003814 drug Substances 0.000 claims abstract description 27
- 239000002246 antineoplastic agent Substances 0.000 claims abstract description 24
- 229940041181 antineoplastic drug Drugs 0.000 claims abstract description 24
- 229940079593 drug Drugs 0.000 claims abstract description 23
- 239000002207 metabolite Substances 0.000 claims abstract description 20
- 230000010534 mechanism of action Effects 0.000 claims abstract description 11
- 210000004881 tumor cell Anatomy 0.000 claims abstract description 11
- 239000002256 antimetabolite Substances 0.000 claims abstract description 8
- 238000007619 statistical method Methods 0.000 claims abstract description 8
- 230000006819 RNA synthesis Effects 0.000 claims abstract description 7
- 230000006378 damage Effects 0.000 claims abstract description 5
- 230000003834 intracellular effect Effects 0.000 claims abstract description 4
- 238000001294 liquid chromatography-tandem mass spectrometry Methods 0.000 claims abstract description 4
- 238000005516 engineering process Methods 0.000 claims abstract description 3
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 claims description 24
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical group CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 claims description 18
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 18
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 17
- 102000004243 Tubulin Human genes 0.000 claims description 14
- 108090000704 Tubulin Proteins 0.000 claims description 14
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 claims description 12
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 claims description 12
- 235000019253 formic acid Nutrition 0.000 claims description 12
- 230000002503 metabolic effect Effects 0.000 claims description 12
- 150000002500 ions Chemical class 0.000 claims description 11
- 238000002347 injection Methods 0.000 claims description 10
- 239000007924 injection Substances 0.000 claims description 10
- DWCSNWXARWMZTG-UHFFFAOYSA-N Trigonegenin A Natural products CC1C(C2(CCC3C4(C)CCC(O)C=C4CCC3C2C2)C)C2OC11CCC(C)CO1 DWCSNWXARWMZTG-UHFFFAOYSA-N 0.000 claims description 9
- KZNIFHPLKGYRTM-UHFFFAOYSA-N apigenin Chemical compound C1=CC(O)=CC=C1C1=CC(=O)C2=C(O)C=C(O)C=C2O1 KZNIFHPLKGYRTM-UHFFFAOYSA-N 0.000 claims description 9
- 229940117893 apigenin Drugs 0.000 claims description 9
- XADJWCRESPGUTB-UHFFFAOYSA-N apigenin Natural products C1=CC(O)=CC=C1C1=CC(=O)C2=CC(O)=C(O)C=C2O1 XADJWCRESPGUTB-UHFFFAOYSA-N 0.000 claims description 9
- 235000008714 apigenin Nutrition 0.000 claims description 9
- WQLVFSAGQJTQCK-VKROHFNGSA-N diosgenin Chemical compound O([C@@H]1[C@@H]([C@]2(CC[C@@H]3[C@@]4(C)CC[C@H](O)CC4=CC[C@H]3[C@@H]2C1)C)[C@@H]1C)[C@]11CC[C@@H](C)CO1 WQLVFSAGQJTQCK-VKROHFNGSA-N 0.000 claims description 9
- WQLVFSAGQJTQCK-UHFFFAOYSA-N diosgenin Natural products CC1C(C2(CCC3C4(C)CCC(O)CC4=CCC3C2C2)C)C2OC11CCC(C)CO1 WQLVFSAGQJTQCK-UHFFFAOYSA-N 0.000 claims description 9
- 229910052757 nitrogen Inorganic materials 0.000 claims description 9
- RJURFGZVJUQBHK-UHFFFAOYSA-N actinomycin D Natural products CC1OC(=O)C(C(C)C)N(C)C(=O)CN(C)C(=O)C2CCCN2C(=O)C(C(C)C)NC(=O)C1NC(=O)C1=C(N)C(=O)C(C)=C2OC(C(C)=CC=C3C(=O)NC4C(=O)NC(C(N5CCCC5C(=O)N(C)CC(=O)N(C)C(C(C)C)C(=O)OC4C)=O)C(C)C)=C3N=C21 RJURFGZVJUQBHK-UHFFFAOYSA-N 0.000 claims description 8
- 238000010811 Ultra-Performance Liquid Chromatography-Tandem Mass Spectrometry Methods 0.000 claims description 7
- 230000002452 interceptive effect Effects 0.000 claims description 7
- 229930014626 natural product Natural products 0.000 claims description 7
- 238000010791 quenching Methods 0.000 claims description 7
- 230000000171 quenching effect Effects 0.000 claims description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 7
- NDMPLJNOPCLANR-UHFFFAOYSA-N 3,4-dihydroxy-15-(4-hydroxy-18-methoxycarbonyl-5,18-seco-ibogamin-18-yl)-16-methoxy-1-methyl-6,7-didehydro-aspidospermidine-3-carboxylic acid methyl ester Natural products C1C(CC)(O)CC(CC2(C(=O)OC)C=3C(=CC4=C(C56C(C(C(O)C7(CC)C=CCN(C67)CC5)(O)C(=O)OC)N4C)C=3)OC)CN1CCC1=C2NC2=CC=CC=C12 NDMPLJNOPCLANR-UHFFFAOYSA-N 0.000 claims description 6
- 206010006187 Breast cancer Diseases 0.000 claims description 6
- 208000026310 Breast neoplasm Diseases 0.000 claims description 6
- DLGOEMSEDOSKAD-UHFFFAOYSA-N Carmustine Chemical compound ClCCNC(=O)N(N=O)CCCl DLGOEMSEDOSKAD-UHFFFAOYSA-N 0.000 claims description 6
- 206010060862 Prostate cancer Diseases 0.000 claims description 6
- 208000000236 Prostatic Neoplasms Diseases 0.000 claims description 6
- 230000000340 anti-metabolite Effects 0.000 claims description 6
- 229940100197 antimetabolite Drugs 0.000 claims description 6
- 229960005243 carmustine Drugs 0.000 claims description 6
- 229960001156 mitoxantrone Drugs 0.000 claims description 6
- KKZJGLLVHKMTCM-UHFFFAOYSA-N mitoxantrone Chemical compound O=C1C2=C(O)C=CC(O)=C2C(=O)C2=C1C(NCCNCCO)=CC=C2NCCNCCO KKZJGLLVHKMTCM-UHFFFAOYSA-N 0.000 claims description 6
- 238000012284 sample analysis method Methods 0.000 claims description 6
- 238000010200 validation analysis Methods 0.000 claims description 6
- 229960004355 vindesine Drugs 0.000 claims description 6
- UGGWPQSBPIFKDZ-KOTLKJBCSA-N vindesine Chemical compound C([C@@H](C[C@]1(C(=O)OC)C=2C(=CC3=C([C@]45[C@H]([C@@]([C@H](O)[C@]6(CC)C=CCN([C@H]56)CC4)(O)C(N)=O)N3C)C=2)OC)C[C@@](C2)(O)CC)N2CCC2=C1N=C1[C]2C=CC=C1 UGGWPQSBPIFKDZ-KOTLKJBCSA-N 0.000 claims description 6
- 230000015572 biosynthetic process Effects 0.000 claims description 5
- 229960005277 gemcitabine Drugs 0.000 claims description 5
- SDUQYLNIPVEERB-QPPQHZFASA-N gemcitabine Chemical compound O=C1N=C(N)C=CN1[C@H]1C(F)(F)[C@H](O)[C@@H](CO)O1 SDUQYLNIPVEERB-QPPQHZFASA-N 0.000 claims description 5
- 238000003786 synthesis reaction Methods 0.000 claims description 5
- AOJJSUZBOXZQNB-VTZDEGQISA-N 4'-epidoxorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-VTZDEGQISA-N 0.000 claims description 4
- STQGQHZAVUOBTE-UHFFFAOYSA-N 7-Cyan-hept-2t-en-4,6-diinsaeure Natural products C1=2C(O)=C3C(=O)C=4C(OC)=CC=CC=4C(=O)C3=C(O)C=2CC(O)(C(C)=O)CC1OC1CC(N)C(O)C(C)O1 STQGQHZAVUOBTE-UHFFFAOYSA-N 0.000 claims description 4
- UHDGCWIWMRVCDJ-CCXZUQQUSA-N Cytarabine Chemical compound O=C1N=C(N)C=CN1[C@H]1[C@@H](O)[C@H](O)[C@@H](CO)O1 UHDGCWIWMRVCDJ-CCXZUQQUSA-N 0.000 claims description 4
- 108010092160 Dactinomycin Proteins 0.000 claims description 4
- HTIJFSOGRVMCQR-UHFFFAOYSA-N Epirubicin Natural products COc1cccc2C(=O)c3c(O)c4CC(O)(CC(OC5CC(N)C(=O)C(C)O5)c4c(O)c3C(=O)c12)C(=O)CO HTIJFSOGRVMCQR-UHFFFAOYSA-N 0.000 claims description 4
- GHASVSINZRGABV-UHFFFAOYSA-N Fluorouracil Chemical compound FC1=CNC(=O)NC1=O GHASVSINZRGABV-UHFFFAOYSA-N 0.000 claims description 4
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 claims description 4
- 229930192392 Mitomycin Natural products 0.000 claims description 4
- NWIBSHFKIJFRCO-WUDYKRTCSA-N Mytomycin Chemical compound C1N2C(C(C(C)=C(N)C3=O)=O)=C3[C@@H](COC(N)=O)[C@@]2(OC)[C@@H]2[C@H]1N2 NWIBSHFKIJFRCO-WUDYKRTCSA-N 0.000 claims description 4
- ZDZOTLJHXYCWBA-VCVYQWHSSA-N N-debenzoyl-N-(tert-butoxycarbonyl)-10-deacetyltaxol Chemical compound O([C@H]1[C@H]2[C@@](C([C@H](O)C3=C(C)[C@@H](OC(=O)[C@H](O)[C@@H](NC(=O)OC(C)(C)C)C=4C=CC=CC=4)C[C@]1(O)C3(C)C)=O)(C)[C@@H](O)C[C@H]1OC[C@]12OC(=O)C)C(=O)C1=CC=CC=C1 ZDZOTLJHXYCWBA-VCVYQWHSSA-N 0.000 claims description 4
- 229930012538 Paclitaxel Natural products 0.000 claims description 4
- RJURFGZVJUQBHK-IIXSONLDSA-N actinomycin D Chemical compound C[C@H]1OC(=O)[C@H](C(C)C)N(C)C(=O)CN(C)C(=O)[C@@H]2CCCN2C(=O)[C@@H](C(C)C)NC(=O)[C@H]1NC(=O)C1=C(N)C(=O)C(C)=C2OC(C(C)=CC=C3C(=O)N[C@@H]4C(=O)N[C@@H](C(N5CCC[C@H]5C(=O)N(C)CC(=O)N(C)[C@@H](C(C)C)C(=O)O[C@@H]4C)=O)C(C)C)=C3N=C21 RJURFGZVJUQBHK-IIXSONLDSA-N 0.000 claims description 4
- DQLATGHUWYMOKM-UHFFFAOYSA-L cisplatin Chemical compound N[Pt](N)(Cl)Cl DQLATGHUWYMOKM-UHFFFAOYSA-L 0.000 claims description 4
- 229960004316 cisplatin Drugs 0.000 claims description 4
- 229960000684 cytarabine Drugs 0.000 claims description 4
- 229960000640 dactinomycin Drugs 0.000 claims description 4
- STQGQHZAVUOBTE-VGBVRHCVSA-N daunorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(C)=O)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 STQGQHZAVUOBTE-VGBVRHCVSA-N 0.000 claims description 4
- 229960000975 daunorubicin Drugs 0.000 claims description 4
- 238000001514 detection method Methods 0.000 claims description 4
- 229960003668 docetaxel Drugs 0.000 claims description 4
- 229960001904 epirubicin Drugs 0.000 claims description 4
- 229960005420 etoposide Drugs 0.000 claims description 4
- VJJPUSNTGOMMGY-MRVIYFEKSA-N etoposide Chemical compound COC1=C(O)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@@H](O[C@H]3[C@@H]([C@@H](O)[C@@H]4O[C@H](C)OC[C@H]4O3)O)[C@@H]3[C@@H]2C(OC3)=O)=C1 VJJPUSNTGOMMGY-MRVIYFEKSA-N 0.000 claims description 4
- 229960002949 fluorouracil Drugs 0.000 claims description 4
- 239000007789 gas Substances 0.000 claims description 4
- 239000007788 liquid Substances 0.000 claims description 4
- 229960000485 methotrexate Drugs 0.000 claims description 4
- 229960004857 mitomycin Drugs 0.000 claims description 4
- 229960001592 paclitaxel Drugs 0.000 claims description 4
- 238000012545 processing Methods 0.000 claims description 4
- 230000009467 reduction Effects 0.000 claims description 4
- RCINICONZNJXQF-MZXODVADSA-N taxol Chemical compound O([C@@H]1[C@@]2(C[C@@H](C(C)=C(C2(C)C)[C@H](C([C@]2(C)[C@@H](O)C[C@H]3OC[C@]3([C@H]21)OC(C)=O)=O)OC(=O)C)OC(=O)[C@H](O)[C@@H](NC(=O)C=1C=CC=CC=1)C=1C=CC=CC=1)O)C(=O)C1=CC=CC=C1 RCINICONZNJXQF-MZXODVADSA-N 0.000 claims description 4
- 238000012795 verification Methods 0.000 claims description 4
- 201000008808 Fibrosarcoma Diseases 0.000 claims description 3
- 206010058467 Lung neoplasm malignant Diseases 0.000 claims description 3
- 208000003445 Mouth Neoplasms Diseases 0.000 claims description 3
- 206010033128 Ovarian cancer Diseases 0.000 claims description 3
- 206010061535 Ovarian neoplasm Diseases 0.000 claims description 3
- 102220497176 Small vasohibin-binding protein_T47D_mutation Human genes 0.000 claims description 3
- 208000005718 Stomach Neoplasms Diseases 0.000 claims description 3
- 230000002159 abnormal effect Effects 0.000 claims description 3
- 238000000605 extraction Methods 0.000 claims description 3
- 238000001914 filtration Methods 0.000 claims description 3
- 206010017758 gastric cancer Diseases 0.000 claims description 3
- 208000012987 lip and oral cavity carcinoma Diseases 0.000 claims description 3
- 238000004895 liquid chromatography mass spectrometry Methods 0.000 claims description 3
- 201000007270 liver cancer Diseases 0.000 claims description 3
- 208000014018 liver neoplasm Diseases 0.000 claims description 3
- 201000005202 lung cancer Diseases 0.000 claims description 3
- 208000020816 lung neoplasm Diseases 0.000 claims description 3
- 238000013178 mathematical model Methods 0.000 claims description 3
- 201000009410 rhabdomyosarcoma Diseases 0.000 claims description 3
- 201000011549 stomach cancer Diseases 0.000 claims description 3
- 238000004885 tandem mass spectrometry Methods 0.000 claims description 3
- 206010008342 Cervix carcinoma Diseases 0.000 claims description 2
- 208000006105 Uterine Cervical Neoplasms Diseases 0.000 claims description 2
- 201000010881 cervical cancer Diseases 0.000 claims description 2
- 230000008859 change Effects 0.000 claims description 2
- 238000012569 chemometric method Methods 0.000 claims description 2
- 238000002013 hydrophilic interaction chromatography Methods 0.000 claims description 2
- 229960004528 vincristine Drugs 0.000 claims description 2
- OGWKCGZFUXNPDA-UHFFFAOYSA-N vincristine Natural products C1C(CC)(O)CC(CC2(C(=O)OC)C=3C(=CC4=C(C56C(C(C(OC(C)=O)C7(CC)C=CCN(C67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)CN1CCC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-UHFFFAOYSA-N 0.000 claims description 2
- OGWKCGZFUXNPDA-XQKSVPLYSA-N vincristine Chemical compound C([N@]1C[C@@H](C[C@]2(C(=O)OC)C=3C(=CC4=C([C@]56[C@H]([C@@]([C@H](OC(C)=O)[C@]7(CC)C=CCN([C@H]67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)C[C@@](C1)(O)CC)CC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-XQKSVPLYSA-N 0.000 claims description 2
- 238000010828 elution Methods 0.000 claims 2
- 238000011160 research Methods 0.000 abstract description 14
- 238000003766 bioinformatics method Methods 0.000 abstract description 2
- 230000004060 metabolic process Effects 0.000 abstract description 2
- 239000004480 active ingredient Substances 0.000 abstract 1
- PBCJIPOGFJYBJE-UHFFFAOYSA-N acetonitrile;hydrate Chemical compound O.CC#N PBCJIPOGFJYBJE-UHFFFAOYSA-N 0.000 description 6
- 239000006228 supernatant Substances 0.000 description 5
- 238000004807 desolvation Methods 0.000 description 4
- 238000000513 principal component analysis Methods 0.000 description 4
- 108090000623 proteins and genes Proteins 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 238000007664 blowing Methods 0.000 description 3
- 238000002790 cross-validation Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000010239 partial least squares discriminant analysis Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000012827 research and development Methods 0.000 description 3
- 238000012216 screening Methods 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- 201000004569 Blindness Diseases 0.000 description 2
- PDMMFKSKQVNJMI-BLQWBTBKSA-N Testosterone propionate Chemical compound C1CC2=CC(=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H](OC(=O)CC)[C@@]1(C)CC2 PDMMFKSKQVNJMI-BLQWBTBKSA-N 0.000 description 2
- 230000004900 autophagic degradation Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 239000005457 ice water Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 102000004169 proteins and genes Human genes 0.000 description 2
- 210000002966 serum Anatomy 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229960001712 testosterone propionate Drugs 0.000 description 2
- 210000003556 vascular endothelial cell Anatomy 0.000 description 2
- 229960002110 vincristine sulfate Drugs 0.000 description 2
- AQTQHPDCURKLKT-JKDPCDLQSA-N vincristine sulfate Chemical compound OS(O)(=O)=O.C([C@@H](C[C@]1(C(=O)OC)C=2C(=CC3=C([C@]45[C@H]([C@@]([C@H](OC(C)=O)[C@]6(CC)C=CCN([C@H]56)CC4)(O)C(=O)OC)N3C=O)C=2)OC)C[C@@](C2)(O)CC)N2CCC2=C1NC1=CC=CC=C21 AQTQHPDCURKLKT-JKDPCDLQSA-N 0.000 description 2
- 238000003260 vortexing Methods 0.000 description 2
- WHTVZRBIWZFKQO-AWEZNQCLSA-N (S)-chloroquine Chemical compound ClC1=CC=C2C(N[C@@H](C)CCCN(CC)CC)=CC=NC2=C1 WHTVZRBIWZFKQO-AWEZNQCLSA-N 0.000 description 1
- -1 BEH Amide Chemical class 0.000 description 1
- 206010059866 Drug resistance Diseases 0.000 description 1
- ONIBWKKTOPOVIA-BYPYZUCNSA-N L-Proline Chemical compound OC(=O)[C@@H]1CCCN1 ONIBWKKTOPOVIA-BYPYZUCNSA-N 0.000 description 1
- UCUNFLYVYCGDHP-BYPYZUCNSA-N L-methionine sulfone Chemical compound CS(=O)(=O)CC[C@H](N)C(O)=O UCUNFLYVYCGDHP-BYPYZUCNSA-N 0.000 description 1
- 229930182821 L-proline Natural products 0.000 description 1
- 108010019160 Pancreatin Proteins 0.000 description 1
- 238000000540 analysis of variance Methods 0.000 description 1
- 230000000078 anti-malarial effect Effects 0.000 description 1
- 239000003430 antimalarial agent Substances 0.000 description 1
- 238000003287 bathing Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000000090 biomarker Substances 0.000 description 1
- KQJSQWZMSAGSHN-JJWQIEBTSA-N celastrol Chemical compound C([C@H]1[C@]2(C)CC[C@@]34C)[C@](C)(C(O)=O)CC[C@]1(C)CC[C@]2(C)C4=CC=C1C3=CC(=O)C(O)=C1C KQJSQWZMSAGSHN-JJWQIEBTSA-N 0.000 description 1
- 208000019065 cervical carcinoma Diseases 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- WHTVZRBIWZFKQO-UHFFFAOYSA-N chloroquine Natural products ClC1=CC=C2C(NC(C)CCCN(CC)CC)=CC=NC2=C1 WHTVZRBIWZFKQO-UHFFFAOYSA-N 0.000 description 1
- 229960003677 chloroquine Drugs 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- 238000009509 drug development Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000013210 evaluation model Methods 0.000 description 1
- 238000013467 fragmentation Methods 0.000 description 1
- 238000006062 fragmentation reaction Methods 0.000 description 1
- 238000002290 gas chromatography-mass spectrometry Methods 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 229940055695 pancreatin Drugs 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 229960002429 proline Drugs 0.000 description 1
- 230000008261 resistance mechanism Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16C—COMPUTATIONAL CHEMISTRY; CHEMOINFORMATICS; COMPUTATIONAL MATERIALS SCIENCE
- G16C20/00—Chemoinformatics, i.e. ICT specially adapted for the handling of physicochemical or structural data of chemical particles, elements, compounds or mixtures
- G16C20/30—Prediction of properties of chemical compounds, compositions or mixtures
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16C—COMPUTATIONAL CHEMISTRY; CHEMOINFORMATICS; COMPUTATIONAL MATERIALS SCIENCE
- G16C20/00—Chemoinformatics, i.e. ICT specially adapted for the handling of physicochemical or structural data of chemical particles, elements, compounds or mixtures
- G16C20/50—Molecular design, e.g. of drugs
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Bioinformatics & Computational Biology (AREA)
- Computing Systems (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
本发明属于细胞生物学和分析化学领域,涉及一种基于细胞代谢轮廓分析构建抗肿瘤候选化合物作用机制预测模型的方法。本发明采用LC‑MS/MS技术分析12种肿瘤细胞在给予临床上常用的4类抗肿瘤药(破坏DNA结构类,抗代谢类,干扰RNA合成类和影响微管蛋白类)后细胞内代谢物的变化,经多元统计分析找出与药物作用机制相关的52个差异代谢物,应用化学计量学方法建立基于这四类作用机制的预测模型。并验证了模型的稳定性和准确性,考察模型的适用范围。本发明通过细胞代谢轮廓研究方法将细胞内差异代谢物与抗肿瘤药物作用机制直接联系起来,结合生物信息学方法建立一种抗肿瘤候选化合物机制预测模型。该模型可应用于抗肿瘤活性成分的作用机制初步研究。
Description
技术领域
本发明属于细胞生物学和分析化学领域,涉及一种基于细胞代谢轮廓分析构建抗肿瘤候选化合物作用机制预测模型的方法。
背景技术
肿瘤是世界医学难题,寻找高效、低毒、易得的抗肿瘤药物迫在眉睫,作用机制研究是药物研发的重要组成部分,对于某些具有抗肿瘤活性的候选化合物在被广泛应用之前,阐明其作用靶点和相关信号通路,发现潜在的毒副作用,研究其耐药机制等都具有重要意义。然而,作用机制研究是一个耗时耗力的过程,据报道,所有药物失败中有接近三分之一的资金损失是由于药物开发早期无法准确预测其作用机制。因此,有必要开发一种初步预测化合物抗肿瘤机制的方法,有助于为进一步研究指明方向,从而减少研发盲目性,提高效率。
目前基于代谢轮廓分析的正交偏最小二乘判别分析模型(OPLS-DA)被广泛用于药物作用机制研究中。胡永胜等人构建判别模型,筛选出与雷公藤红素抗肿瘤作用密切相关的14个生物标记物。(Hu Y,Qi Y,Liu H,Fan G,Chai Y.Effects of celastrol on humancervical cancer cells as revealed by ion-trap gas chromatography–massspectrometry based metabolic profiling.Biochim Biophys Acta.2013;1830:2779-89.)Pestana等人分析人脐血管内皮细胞在血清剥夺后的自噬代谢谱,构建治疗作用评价模型,从而预测了抗疟药氯喹对于细胞自噬的抑制作用。(Pestana C R,Urbaczek A C,Alberici J V.Metabolic profiling of human endothelial cells during autophagyassessed in a biomimetic microfluidic device model.Life Sci,2016;172:42-7.)然而,这些模型普遍缺少验证和评价,而且还没有将此类模型应用于抗肿瘤候选化合物作用机制预测的报道。
发明内容
本发明的目的在于避免抗肿瘤化合物作用机制研究中的盲目性,建立机制预测模型,能够在研究初期预测候选化合物相关的作用机制,在一定程度上为机制的后续深入研究提供线索。
本发明是通过如下技术方案实现的:
一种基于细胞代谢轮廓分析构建的抗肿瘤候选化合物作用机制预测模型,采用LC-MS/MS技术分析12种肿瘤细胞在给予临床上常用的4类抗肿瘤药(破坏DNA结构类,抗代谢类,干扰RNA合成类和影响微管蛋白类)后细胞内代谢物的变化,经多元统计分析找出与药物作用机制相关的52个差异代谢物,应用化学计量学方法建立基于这四类作用机制的预测模型。并验证了模型的稳定性和准确性,考察模型的适用范围。
步骤如下:
1)根据IC50对12种人源性肿瘤细胞进行给药,淬灭收集细胞团,样品前处理后用LC-MS法进行代谢轮廓分析。
2)将原始数据用MarkerLynx4.0进行降噪、峰检测、峰对齐处理后导入SIMCA13.0,采用OPLS-DA模型区别各组代谢物差异,确定差异代谢物的结构,基于差异代谢物信息建立抗肿瘤候选化合物作用机制预测模型。
3)通过内交叉验证、置换检验考察模型的稳定性,并另选4种抗肿瘤药用同法进行处理分析,验证模型的准确性。
4)应用建立的模型对2种天然抗肿瘤化合物芹菜素和薯蓣皂苷元进行机制预测,参照现有文献分析预测结果,从而评价模型的适用范围。
本发明中模型建立所用12种抗肿瘤药物有:表柔比星、柔红霉素、放线菌素-D、5-氟尿嘧啶、阿糖胞苷、甲氨蝶呤、顺铂、丝裂霉素、依托泊苷、紫杉醇,多西他赛、长春新碱,分别属于四类不同作用机制的抗肿瘤药物。
步骤1)中药物作用时间为24-72h,细胞淬灭方法为液氮淬灭刮板法,细胞团用甲醇和二氯甲烷两步提取后,用一种结合RP-UPLC-MS/MS和HILIC-UPLC-MS/MS的液质联用分析方法进行分析。
步骤2)中数据经多元统计分析后,破坏DNA结构类,抗代谢类,干扰RNA合成类和影响微管蛋白类中抗肿瘤药物中分别筛选出17,11,12和12种代谢物与该四类药物的作用机制密切相关。
步骤3)采用非建模抗肿瘤药物吉西他滨、卡莫司汀、长春地辛和米托蒽醌验证模型,代表四种药物的样品点能够准确地落在模型相应区域。
步骤4)模型的预测结果显示,芹菜素通过影响微管蛋白的合成发挥抗肿瘤作用,而薯蓣皂苷元既影响微管蛋白的合成又能破坏DNA的结构,模型对于具有多种作用机制的化合物的预测也具有准确性。
具体地,本发明包括如下步骤:
1)细胞系选择
选择12种肿瘤细胞系人宫颈癌Hela细胞,人肝癌HepG2细胞,人口腔癌KB细胞,人乳腺癌MCF7细胞,人乳腺癌T47D细胞,人胃癌SGC7901细胞,人成纤维肉瘤HT1080细胞,人卵巢癌SKOV3细胞,人前列腺癌PC3细胞,人前列腺癌DU145细胞,人肺癌A549细胞,人横纹肌肉瘤A204细胞。
2)选择4类不同作用机制的抗肿瘤药物对12种肿瘤细胞系分别孵育每份样品平行制备4份,静置培养,液氮淬灭后收集细胞团,制备分析用样品;
其中,4类抗肿瘤药物分别为:
a.影响DNA结构和功能药物顺铂、丝裂霉素、依托泊苷;
b.干扰微管蛋白药物紫杉醇、多西他赛、硫酸长春新碱;
c.抗代谢药物5-氟尿嘧啶、阿糖胞苷、甲氨蝶呤;
d.干扰RNA合成药物表柔比星、柔红霉素、放线菌素-D。
3)细胞样品提取
至分析前取出样品,加入二氯甲烷200-400μl,加内标20μl(丙酸睾酮甲醇溶液,25-75μg/ml);涡旋2-3min,冰水浴10-30min;涡旋混匀,4℃16000g离心5-10min;吸净上清液,25-50℃下氮气流吹干;进样分析前,用乙腈-水100-200μl复溶,乙腈-水的比例范围为3:1-1:3。
向残渣中加入甲醇200-400μl,加内标20μl(蛋氨酸砜水溶液,25-75μg/ml),涡旋2-3min,冰水浴10-30min;涡旋混匀,4℃16000g离心5-10min;吸净上清液,25-50℃下氮气流吹干;进样分析前,用乙腈-水100-200μl复溶,乙腈-水的比例范围为3:1-1:3。
4)UPLC-MS/MS样品分析方法
色谱柱采用C18色谱柱(长50-150mm,内径2.1-3.0mm,粒径1.5-3.0μm),柱温为25-50℃;流动相A和B分别为水(含0.05-0.3%甲酸)和乙腈(含0.05-0.3%甲酸),梯度洗脱,流动相B:15-90%,流动相A:85-10%;流速为0.15-0.4ml/min;进样体积为2-8μl;离子源温度为120℃;毛细管电压为2.5-3.5kV;锥孔压为25-50V;脱溶剂气流速为600L/h;脱溶剂气温度为350℃;m/z(质荷比)扫描范围为124-1000Da。
5)HILIC-MS/MS样品分析方法
色谱柱为HILIC色谱柱(长50-150mm,内径2.1-3.0mm,粒径1.5-3.0μm),柱温为25-50℃;流速为0.15-0.4ml/min;流动相A和B分别为水(含0.05-0.3%甲酸)和乙腈(含0.05-0.3%甲酸),梯度洗脱,流动相B:95-60%,流动相A:5-40%;进样体积为2-8μl;离子源温度为120℃;毛细管电压为2.5-3.5kV;锥孔压为25-50V;脱溶剂气流速为600L/h;脱溶剂气温度为350℃;m/z(质荷比)扫描范围为80-1000Da。
6)数据处理
将所得数据通过MarkerLynx软件进行滤噪、峰对齐、峰检测、降维等处理。所得数据参照80%规则排除零值的累计次数超过20%变量,将获得的二维数据阵文件(.csv)导入SIMCA软件(version 12.0,Umetrics AB,Umes,Sweden),进行多元统计分析。采用主成分分析(PCA),观察各组数据的聚类与离群样品,剔除异常样品点。采用正交偏最小二乘判别分析(PLS-DA)筛选与药物作用机制相关的差异代谢物。
7)建立预测模型
以不同作用机制抗肿瘤药物所得数据为基础,建立基于这四种作用机制的OPLS-DA预测模型。
8)模型验证
采用非建模抗肿瘤药物吉西他滨、卡莫司汀、长春地辛和米托蒽醌对数学模型的预测准确性进行验证。
9)模型应用
选用芹菜素和薯蓣皂苷元2种具有抗肿瘤活性的天然化合物,采用建立的模型对2种天然化合物的抗肿瘤机制进行预测,参考现有文献及相关报道对预测结果进行综合分析。
本发明有益效果:通过细胞代谢轮廓研究方法将细胞内差异代谢物与抗肿瘤药物作用机制直接联系起来,在此基础上,结合生物信息学方法建立一种抗肿瘤候选化合物机制预测模型。该模型可应用于抗肿瘤活性成分的作用机制初步研究,作为辅助预分类手段推动抗肿瘤活性成分后续的基因与蛋白水平和作用靶点的研究,在一定程度上可以加快抗肿瘤药物研究和开发的进程,具有便捷、高效和低成本的优势。
附图说明
图1为两种分析方法采集得到的经典色谱图;
A为反相色谱图;B为亲水性色图。
图2为差异代谢物(m/z 116.0708)结构确证图;
A为m/z 116.0708的提取离子色谱图;B为L-脯氨酸标准品的总离子色谱图;
C为正离子模式下m/z 116.0708离子的LC-MS/MS谱和离子碎裂途径。
图3为预测模型得分图和模型置换检验图;
A为OPLS-DA机制预测模型图;B为置换检验图。
图4为模型验证和机制预测得分图;
A为卡莫司汀验证得分图;B为米托蒽醌验证得分图;C为长春地辛验证得分图;
D为吉西他滨验证得分图;E为芹菜素预测得分图;F为薯蓣皂苷元预测得分图。
具体实施方式
以下结合技术方案详细叙述本发明的具体实施例。
实施例1:细胞代谢轮廓分析
<1-1>细胞系选择
选择12种肿瘤细胞系人宫颈癌Hela细胞,人肝癌HepG2细胞,人口腔癌KB细胞,人乳腺癌MCF7细胞,人乳腺癌T47D细胞,人胃癌SGC7901细胞,人成纤维肉瘤HT1080细胞,人卵巢癌SKOV3细胞,人前列腺癌PC3细胞,人前列腺癌DU145细胞,人肺癌A549细胞,人横纹肌肉瘤A204细胞)分别进行体外培养,培养温度为37℃,湿度为100%,CO2浓度5%;
上述细胞系均为实验室自行培养,由于细胞系的种类较多。即便是相同细胞系,也可能因培养条件、技术人员操作等因素导致误差。
<1-2>细胞给药与收集
选择4类不同作用机制的抗肿瘤药物(影响DNA结构和功能药物顺铂、丝裂霉素、依托泊苷,干扰微管蛋白药物紫杉醇、多西他赛、硫酸长春新碱,抗代谢药物5-氟尿嘧啶、阿糖胞苷、甲氨蝶呤,干扰RNA合成药物表柔比星、柔红霉素、放线菌素-D)对12种肿瘤细胞系分别孵育,每份样品平行制备4份。静置培养48h后,其中3份液氮淬灭,加入1ml预冷PBS后用细胞刮板刮取细胞,4℃下1500rpm离心3min,弃去上清获得细胞团,作为分析用样品。另外1份用胰酶消化后细胞计数板计数。同时设置空白对照组,每份细胞样品含2.0×106个细胞,存储于-80℃中待处理。
<1-3>细胞样品提取
至分析前取出样品,向细胞团加入二氯甲烷300μl,加入内标20μl(丙酸睾酮甲醇溶液,50μg/ml),涡旋3min,冰水浴20min,涡旋30s混匀,4℃16000g离心10min,吸净上清液,40℃下氮气流吹干,进样分析前,用100μl乙腈-水(1:1)复溶。
向残渣中加入甲醇300μl,加入内标20μl(蛋氨酸砜水溶液,50μg/ml),涡旋3min,冰水浴20min,涡旋30s混匀,4℃16000g离心10min,吸净上清液,40℃下氮气流吹干,进样分析前,用100μl乙腈-水(1:1)复溶。
<1-4>:UPLC-MS/MS样品分析方法
色谱柱采用Phenomenex Kinetex XB C18(50mm×2.1mm,1.7μm),柱温40℃,流动相A和B分别为水(含0.1%甲酸)和乙腈(含0.1%甲酸),流速0.2ml/min,进样体积为5μl,流动相梯度为0-6min:B15-25%;6-20min:B25%-50%;20-25min:B50%;25-40min:B50-90%;40-45min:B90%;45-50min:B90-15%,离子源温度为120℃,毛细管电压为3.0kV,锥孔压为30V,脱溶剂气流速为600L/h,脱溶剂气温度为350℃,m/z(质荷比)扫描范围为124-1000Da。
<1-5>:HILIC-MS/MS样品分析方法
色谱柱为Acquity BEH Amide(100mm×2.1mm,1.7μm),柱温30℃,流动相A和B分别为水(含0.1%甲酸)和乙腈(含0.1%甲酸),流速为0.2ml/min,进样体积5μl,流动相梯度为0-5min:95%B;5-15min:95-85%B;15-25min:85%B;25-35min:85-60%B;35-40min:60-95%B;40-45min:95%B,离子源温度为120℃,毛细管电压为3.0kV,锥孔压为20V,脱溶剂气流速为600L/h,脱溶剂气温度为350℃,m/z(质荷比)扫描范围为80-1000Da。
色谱分析结果可能因仪器型号、色谱柱类型、试剂类型等多种因素导致误差。
实施例2:模型建立及应用
<2-1>:数据处理
将所得数据通过MarkerLynx软件进行滤噪、峰对齐、峰检测、降维等处理。所得数据参照80%规则排除零值的累计次数超过20%变量,将获得的二维数据阵文件(.csv)导入SIMCA软件(version 12.0,Umetrics AB,Umes,Sweden),进行多元统计分析。采用主成分分析(PCA),观察各组数据的聚类与离群样品,剔除异常样品点。采用正交偏最小二乘判别分析(PLS-DA)筛选与药物作用机制相关的差异代谢物。按照变量权重值(VIP)大于1,ROC(receiver operating characteristic curve)曲线下面积AUC>0.5和p<0.05为标准筛选结果如表1所示。
表1-1 影响微管蛋白类药物的差异代谢物信息
表1-2 影响DNA结构类药物的差异代谢物信息
表1-3 抗代谢类药物的差异代谢物信息
表1-4 干扰RNA合成类药物的差异代谢物信息
<2-2>:建立预测模型
以不同作用机制抗肿瘤药物所得数据为基础,建立基于这四种作用机制的OPLS-DA预测模型,模型参数R2(cum)和Q2(cum)分别为0.909和0.869。为验证模型的稳定性,进行7倍内交叉检验,结果如表2所示,P<<0.01,达极显著水平。999次置换检验结果如图3所示,获得R2(三角)与真实模型的R2值共同构成的回归线截距为0.0871;Q2(方块)与真实模型的Q2值共同构成的回归线截距为-0.4360,其中Q2值均小于R2,说明构建的OPLS-DA判别模型并未过度拟合。
表2 OPLS-DA模型交叉验证方差分析结果
<2-3>:模型验证
采用非建模抗肿瘤药物吉西他滨、卡莫司汀、长春地辛和米托蒽醌对数学模型的预测准确性进行验证,各得分图如图4所示,结果表明,数学预测模型对干扰微管蛋白合成类药物能够很好地进行预测,长春地辛样本点能够完全分布于对映机制区域;对吉西他滨、卡莫司汀和米托蒽醌有较高的预测能力,待预测样本点能绝大多数分布于对映机制区域,各OPLS-DA模型参数R2(cum)和Q2(cum)如表3所示。结果表明模型有较好的稳定性并对4类机制药物的预测有良好的准确性。
表3 各OPLS-DA模型参数R2(cum)和Q2(cum)
注:RP+HI代表反相和亲水分析获得的数据整合到一起。
<2-4>:模型应用
选用芹菜素和薯蓣皂苷元2种具有抗肿瘤活性的天然化合物,采用建立的模型对2种天然化合物的抗肿瘤机制进行预测,经OPLS-DA分析后得分图如图4所示,参数R2(cum)和Q2(cum)如表3所示。代表芹菜素给药组的数据点绝大部分分布于影响微管蛋白区域,从而提示芹菜素可能是通过影响微管蛋发挥抗肿瘤作用的。代表薯蓣皂苷元的数据点分布于破坏DNA结构以及影响微管蛋白区域之间,表明薯蓣皂苷元很可能有两种抗肿瘤机制。预测结果得到相关研究报道的验证。
根据本实施例,基于细胞代谢轮廓分析结合化学计量学和多元统计分析,建立抗肿瘤候选化合物机制预测模型。对模型进行内部交叉验证,外部置换检验考察模型的稳定性良好。用未参与建模的抗肿瘤药物对模型进行验证,模型准确性好。模型对于两种天然化合物的预测结果与现有文献报道相一致,模型对多种抗肿瘤机制的预测也有一定方向性。该模型可应用于抗肿瘤候选化合物的作用机制初步研究,作为辅助预分类手段推动化合物后续的基因与蛋白水平和作用靶点的研究,在一定程度上加快抗肿瘤药物研究和开发进程,具有便捷、高效和低成本的优势。
Claims (8)
1.基于细胞代谢轮廓分析构建抗肿瘤候选化合物作用机制预测模型的方法,其特征在于:采用LC-MS/MS技术分析12种肿瘤细胞在给予临床上常用的破坏DNA结构类,抗代谢类,干扰RNA合成类和影响微管蛋白类4类抗肿瘤药后细胞内代谢物的变化,经多元统计分析找出与药物作用机制相关的52个差异代谢物,应用化学计量学方法建立基于这四类作用机制的预测模型;包括如下步骤:
1)12种肿瘤细胞系选择
2)选择4类不同作用机制的抗肿瘤药物对12种肿瘤细胞系分别孵育每份样品平行制备4份,静置培养,液氮淬灭后收集细胞团,制备分析用样品;
3)细胞样品提取
4)UPLC-MS/MS样品分析方法
色谱柱采用C18色谱柱,柱温为25-50℃;流动相为A和B的组合,其中,流动相A为含0.05-0.3%甲酸的水,流动相B为含0.05-0.3%甲酸的乙腈,梯度洗脱,流动相B:15-90%,流动相A:85-10%;流速为0.15-0.4ml/min;进样体积为2-8μl;离子源温度为120℃;毛细管电压为2.5-3.5kV;锥孔压为25-50V;脱溶剂气流速为600L/h;脱溶剂气温度为350℃;质荷比m/z扫描范围为124-1000Da;
5)HILIC-MS/MS样品分析方法
色谱柱为HILIC色谱柱,柱温为25-50℃;流速为0.15-0.4ml/min;流动相为A和B的组合,其中,流动相A为含0.05-0.3%甲酸的水,流动相B为含0.05-0.3%甲酸的乙腈,梯度洗脱,流动相B:95-60%,流动相A:5-40%;进样体积为2-8μl;离子源温度为120℃;毛细管电压为2.5-3.5kV;锥孔压为25-50V;脱溶剂气流速为600L/h;脱溶剂气温度为350℃;m/z质荷比扫描范围为80-1000Da;
6)数据处理
将所得数据通过MarkerLynx软件进行滤噪、峰对齐、峰检测、降维处理;所得数据参照80%规则排除零值的累计次数超过20%变量,将获得的二维数据阵文件导入SIMCA软件,进行多元统计分析,采用主成分分析,观察各组数据的聚类与离群样品,剔除异常样品点,采用正交偏最小二乘判别分析筛选与药物作用机制相关的差异代谢物;
7)建立预测模型
以不同作用机制抗肿瘤药物所得数据为基础,建立基于这四种作用机制的OPLS-DA预测模型;
8)模型验证
采用非建模抗肿瘤药物对数学模型的预测准确性进行验证;
9)模型应用
采用建立的模型对2种天然化合物的抗肿瘤机制进行预测。
2.根据权利要求1所述的基于细胞代谢轮廓分析构建抗肿瘤候选化合物作用机制预测模型的方法,其特征在于:所述抗肿瘤药物为:表柔比星、柔红霉素、放线菌素-D、5-氟尿嘧啶、阿糖胞苷、甲氨蝶呤、顺铂、丝裂霉素、依托泊苷、紫杉醇,多西他赛、长春新碱。
3.根据权利要求1所述的基于细胞代谢轮廓分析构建抗肿瘤候选化合物作用机制预测模型的方法,其特征在于:步骤2)中药物作用时间为24-72h,细胞淬灭方法为液氮淬灭刮板法,细胞团用甲醇和二氯甲烷两步提取后,用一种结合RP-UPLC-MS/MS和HILIC-UPLC-MS/MS的液质联用分析方法进行分析。
4.根据权利要求1所述的基于细胞代谢轮廓分析构建抗肿瘤候选化合物作用机制预测模型的方法,其特征在于:所述的12种肿瘤细胞为人宫颈癌Hela细胞,人肝癌HepG2细胞,人口腔癌KB细胞,人乳腺癌MCF7细胞,人乳腺癌T47D细胞,人胃癌SGC7901细胞,人成纤维肉瘤HT1080细胞,人卵巢癌SKOV3细胞,人前列腺癌PC3细胞,人前列腺癌DU145细胞,人肺癌A549细胞,人横纹肌肉瘤A204细胞。
5.根据权利要求1所述的基于细胞代谢轮廓分析构建抗肿瘤候选化合物作用机制预测模型的方法,其特征在于:所述的破坏DNA结构类,抗代谢类,干扰RNA合成类和影响微管蛋白类抗肿瘤药物中,分别筛选出17,11,12和12种代谢物与该四类药物的作用机制密切相关。
6.根据权利要求1所述的基于细胞代谢轮廓分析构建抗肿瘤候选化合物作用机制预测模型的方法,其特征在于:步骤8)中模型验证用抗肿瘤药物为:吉西他滨、卡莫司汀、长春地辛和米托蒽醌。
7.根据权利要求1所述的基于细胞代谢轮廓分析构建抗肿瘤候选化合物作用机制预测模型的方法,其特征在于:步骤9)中选用的两种天然化合物为:芹菜素和薯蓣皂苷元。
8.根据权利要求1所述的基于细胞代谢轮廓分析构建抗肿瘤候选化合物作用机制预测模型的方法,其特征在于:预测结果显示芹菜素通过影响微管蛋白的合成发挥抗肿瘤作用,而薯蓣皂苷元既影响微管蛋白的合成又能破坏DNA的结构。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810081322.1A CN108280321B (zh) | 2018-01-29 | 2018-01-29 | 基于细胞代谢轮廓分析构建抗肿瘤候选化合物作用机制预测模型的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810081322.1A CN108280321B (zh) | 2018-01-29 | 2018-01-29 | 基于细胞代谢轮廓分析构建抗肿瘤候选化合物作用机制预测模型的方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108280321A CN108280321A (zh) | 2018-07-13 |
CN108280321B true CN108280321B (zh) | 2021-09-17 |
Family
ID=62805357
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810081322.1A Active CN108280321B (zh) | 2018-01-29 | 2018-01-29 | 基于细胞代谢轮廓分析构建抗肿瘤候选化合物作用机制预测模型的方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108280321B (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114566292B (zh) * | 2022-01-29 | 2022-11-11 | 浙江大学医学院附属第一医院 | 应用内源性物质预测肾移植药物剂量的模型的构建方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104302298A (zh) * | 2012-03-14 | 2015-01-21 | 赛诺菲 | 用于治疗急性髓细胞样白血病或慢性髓细胞样白血病的新组合产品 |
WO2016092608A1 (ja) * | 2014-12-08 | 2016-06-16 | 株式会社島津製作所 | 多次元質量分析データ処理装置 |
-
2018
- 2018-01-29 CN CN201810081322.1A patent/CN108280321B/zh active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104302298A (zh) * | 2012-03-14 | 2015-01-21 | 赛诺菲 | 用于治疗急性髓细胞样白血病或慢性髓细胞样白血病的新组合产品 |
WO2016092608A1 (ja) * | 2014-12-08 | 2016-06-16 | 株式会社島津製作所 | 多次元質量分析データ処理装置 |
Non-Patent Citations (2)
Title |
---|
基于LC-MS/MS技术的肺癌血浆代谢组学研究;杨维;《万方数据》;20131224;第1-86页 * |
抗代谢类抗肿瘤药物对人肿瘤细胞中核苷酸代谢的影响;王迪 等;《西北药学杂志》;20150123;第59-65页 * |
Also Published As
Publication number | Publication date |
---|---|
CN108280321A (zh) | 2018-07-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Dong et al. | Ingenuity pathways analysis of urine metabolomics phenotypes toxicity of Chuanwu in Wistar rats by UPLC-Q-TOF-HDMS coupled with pattern recognition methods | |
Adaway et al. | Therapeutic drug monitoring and LC–MS/MS | |
Zhang et al. | Metabolomics strategy reveals therapeutical assessment of limonin on nonbacterial prostatitis | |
CN105044361B (zh) | 一种适合于食管鳞状细胞癌早期诊断的诊断标记物及其筛选方法 | |
Liang et al. | Metabolomic analysis using liquid chromatography/mass spectrometry for gastric cancer | |
Ciocan-Cartita et al. | The relevance of mass spectrometry analysis for personalized medicine through its successful application in cancer “Omics” | |
Liu et al. | Serum metabolomics strategy for understanding the therapeutic effects of Yin-Chen-Hao-Tang against Yanghuang syndrome | |
Hu et al. | Mass spectrometry‐based strategies for single‐cell metabolomics | |
ES2953498T3 (es) | Método de espectrometría de masas para la detección y cuantificación de metabolitos | |
Zhu et al. | Redesigning the T-probe for mass spectrometry analysis of online lysis of non-adherent single cells | |
Hui et al. | UPLC-Q-TOF/MS-based metabolomic studies on the toxicity mechanisms of traditional Chinese medicine Chuanwu and the detoxification mechanisms of Gancao, Baishao, and Ganjiang | |
Luo et al. | Spatial metabolomics reveals skeletal myofiber subtypes | |
Wei et al. | Metabonomics study of the effects of traditional Chinese medicine formula Ermiaowan on hyperuricemic rats | |
Wang et al. | Optimized data-independent acquisition approach for proteomic analysis at single-cell level | |
Wang et al. | Urinary metabolic profiling of colorectal carcinoma based on online affinity solid phase extraction-high performance liquid chromatography and ultra performance liquid chromatography-mass spectrometry | |
CN108280321B (zh) | 基于细胞代谢轮廓分析构建抗肿瘤候选化合物作用机制预测模型的方法 | |
Buszewska-Forajta et al. | Untargeted metabolomics study of three matrices: seminal fluid, urine, and serum to search the potential indicators of prostate cancer | |
Peris-Díaz et al. | Ion mobility mass spectrometry and molecular dynamics simulations unravel the conformational stability of zinc metallothionein-2 species | |
Chen et al. | BBA, a synthetic derivative of 23-hydroxybutulinic acid, reverses multidrug resistance by inhibiting the efflux activity of MRP7 (ABCC10) | |
Liang et al. | Novel liquid chromatography-mass spectrometry for metabolite biomarkers of acute lung injury disease | |
Wevers et al. | Opportunities and challenges for sample preparation and enrichment in mass spectrometry for single‐cell metabolomics | |
Yao et al. | An integrated approach based on phytochemistry, network pharmacology and metabolomics reveals the mechanism of action of Xanthium strumarium L. for allergic rhinitis | |
Manohar et al. | Application of chromatography combined with mass spectrometry in therapeutic drug monitoring | |
Wang et al. | LC-MS based cell metabolic profiling of tumor cells: a new predictive method for research on the mechanism of action of anticancer candidates | |
Lao et al. | Study on plasma metabolomics for HIV/AIDS patients treated by HAART based on LC/MS-MS |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |