CN108273527A - FeSe/CdS纳米复合光催化剂及制备方法 - Google Patents

FeSe/CdS纳米复合光催化剂及制备方法 Download PDF

Info

Publication number
CN108273527A
CN108273527A CN201810276226.2A CN201810276226A CN108273527A CN 108273527 A CN108273527 A CN 108273527A CN 201810276226 A CN201810276226 A CN 201810276226A CN 108273527 A CN108273527 A CN 108273527A
Authority
CN
China
Prior art keywords
fese
cds nano
catalysts
cds
composite photo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201810276226.2A
Other languages
English (en)
Inventor
钟文武
申士杰
陈基根
詹白勺
刘彦平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taizhou University
Original Assignee
Taizhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taizhou University filed Critical Taizhou University
Priority to CN201810276226.2A priority Critical patent/CN108273527A/zh
Publication of CN108273527A publication Critical patent/CN108273527A/zh
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/057Selenium or tellurium; Compounds thereof
    • B01J27/0573Selenium; Compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/343Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of ultrasonic wave energy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及光催化分解水制氢技术,尤其涉及FeSe/CdS纳米复合光催化剂及制备方法,该催化剂将FeSe纳米棒沉积在CdS纳米颗粒表面,该制备方法为:水热合成法制备CdS纳米颗粒;CdS纳米颗粒和FeSe纳米棒混合后分散在乙醇中;上述悬浊液蒸发得到FeSe/CdS复合光催化剂。本发明将CdS纳米颗粒与FeSe纳米棒复合,FeSe作为光生电子的搜集体和载体,能够有效分离光生电子空穴对,光生电子与氢离子发生反应生成氢气。当FeSe的浓度为2wt%,其光催化产氢性能最佳,是纯CdS纳米颗粒产氢性能的7倍。在420nm单波长光激发下,测得其量子效率为6.71%。

Description

FeSe/CdS纳米复合光催化剂及制备方法
技术领域
本发明涉及光催化技术领域,尤其涉及一种用于光催化分解水制氢的FeSe/CdS纳米复合光催化剂及制备方法。
背景技术
随着现代工业的发展,能源越来越短缺。光催化分解水制氢,是一种利用太阳能制氢的绿色技术。ZnO和TiO2等半导体光催化剂由于带隙较宽,不能充分利用太阳光。因此,科学家们研发了多种可见光响应的半导体光催化剂,其中,CdS具有较好的可见光响应,主要是由于CdS具有合适的导带边位置、好的可见光吸收范围、优异的电子迁移性。但是,高的电子-空穴复合率限制了其产氢速率。因此,迫切需要寻找降低电子-空穴复合的方法。
目前一些研究者利用金、银、铂等贵金属与半导体复合,能够有效降低电子-空穴复合率,但贵金属价格昂贵不利于大面积推广,而且贵金属等助催化剂在半导体光催化剂表面分布不够均匀。FeSe是一种优异的导体,强的电子吸引力,与半导体复合后,能够将半导体表面的电子转移到FeSe表面。
发明内容
针对上述问题,本发明提供一种成本较低、效率高的FeSe/CdS纳米复合光催化剂及制备方法。
为达上述发明目的,本发明采用的技术方案为:一种FeSe/CdS纳米复合光催化剂,包括有FeSe纳米棒、CdS纳米颗粒,FeSe纳米棒沉积在CdS纳米颗粒表面。
较佳地,所述的CdS纳米颗粒尺寸为25 nm。
较佳地,所述的FeSe纳米棒长度为0.3~ 1.2 µm、直径为30 nm。
一种FeSe/CdS纳米复合光催化剂制备方法,其特征在于:包括以下步骤:
S1,利用水热合成法制备CdS纳米颗粒;
S2,采用固相烧结法和超声剥离法制备FeSe纳米棒;
S3,将步骤S1制备的CdS纳米颗粒和S2制备的FeSe纳米棒按98:2混合后超声分散在无水乙醇中;
S4,将步骤S3分散好的悬浊液蒸发,得到FeSe/CdS纳米复合光催化剂。
S5,将步骤S4得到的粉体于200℃退火处理2小时。
较佳地,所述步骤S4具体为:将S3中分散好的悬浊液在油浴磁力搅拌器中于80℃搅拌加热8小时,随后在氩气管式炉中200℃退火处理2小时,得到FeSe/CdS纳米复合光催化剂。
本发明将CdS纳米颗粒与FeSe纳米棒复合,FeSe作为光生电子的搜集体和载体,能够有效分离光生电子空穴对,光生电子与氢离子发生反应生成氢气。将奈酚分散在FeSe和CdS纳米颗粒的悬浊液中,能够将FeSe均匀分散在CdS纳米颗粒表面,利于光生电子从CdS转移到FeSe表面。当FeSe的浓度为2wt%,其光催化产氢性能最佳,是纯CdS纳米颗粒产氢性能的7倍。在420nm单波长光激发下,测得其量子效率为6.71%。
附图说明
图1为本发明实施例制备FeSe/CdS纳米复合光催化剂的场发射扫描电子显微镜图;
图2为本发明实施例的光催化制氢机理图;
图3为本发明实施例制备FeSe/CdS纳米复合光催化剂用于分解水制氢的效率图。
图4为本发明实施例制备FeSe/CdS纳米复合光催化剂用于分解水制氢的4次循环图。
具体实施方式
为更好地理解本发明,下面将结合附图和具体实施方式对本发明的技术方案做进一步说明,参见图1至图4:
按本发明实施的FeSe/CdS纳米复合光催化剂,进一步提高CdS纳米的光催化效率,其材料由CdS纳米颗粒表面沉积FeSe纳米棒制得。CdS纳米颗粒大小为25 nm,FeSe纳米棒长度为0.3~ 1.2 µm、直径为30 nm。图1为本发明实施例制备FeSe/CdS纳米复合光催化剂的场发射扫描电子显微镜图,从图1可看出,FeSe纳米棒不均匀地分布在CdS纳米颗粒表面。
按本发明实施的FeSe/CdS纳米复合光催化剂制备方法,包括以下步骤:
S1,利用水热合成法制备CdS纳米颗粒:首先将5.244 g Na2S 和 19.362 g Cd(OAc)2分别溶解在 480 ml 和 600 ml 去离子水中。然后将两种溶液混合在一起搅拌24小时,接着放置24小时。随后将混合溶液离心得到的黄色浆料放入72 mL 去离子水中,并放入100mL水热反应釜中,于473 K 反应 72 小时。将过滤得到的黄色浆料用去离子水和乙醇清洗,烘干后在真空条件下于368 K退火处理 24 小时。
S2,采用固相烧结法和超声剥离法制备FeSe纳米棒;
S3,将步骤S1制备的CdS纳米颗粒和S2制备的FeSe纳米棒按98:2混合后超声分散在无水乙醇中;
S4,将S3中分散好的悬浊液在油浴磁力搅拌器中于80℃搅拌加热8小时,随后在氩气管式炉中200℃退火处理2小时,得到FeSe/CdS纳米复合光催化剂。
如图2,本发明工作机理图为:CdS纳米颗粒与FeSe纳米棒复合后,FeSe作为光生电子的搜集体和载体,能够有效分离光生电子空穴对,光生电子与氢离子发生反应生成氢气。因此,FeSe与CdS纳米颗粒复合后能够有效提高其光催化制氢性能。
通过分解水制氢来表征FeSe/CdS纳米复合物的光催化性能。将50mg的FeSe/CdS纳米复合物放入含有0.1 M Na2S·9H2O 和 0.1 M Na2SO3的100mL去离子水中。在300W氙灯激发下(过滤掉420 nm以下的光),每隔1小时取一次样。其结果如图3所示。从图3中可以得出,当FeSe的浓度为2wt%,其光催化产氢性能最佳,是纯CdS纳米颗粒产氢性能的7倍。而且,2wt% FeSe/CdS纳米复合物的光催化性能高于2wt% Pt与CdS纳米颗粒的复合物。在420nm单波长光激发下,测得其量子效率为6.71%。图4为2wt% FeSe/CdS纳米复合物经过4次循环后的光催化性能,从图中可以看出,经过4次循环后,其性能没有降低,表明所制备的FeSe/CdS纳米复合物具有优异的稳定性。

Claims (6)

1.一种FeSe/CdS纳米复合光催化剂,其特征在于:包括有FeSe纳米棒、CdS纳米颗粒,FeSe纳米棒均匀沉积在CdS纳米颗粒表面。
2.根据权利要求1所述的FeSe/CdS纳米复合光催化剂,其特征在于:所述的CdS纳米颗粒尺寸大约为25nm。
3.根据权利要求1所述的FeSe/CdS纳米复合光催化剂制备方法,其特征在于:包括以下步骤:
S1,利用水热合成法制备CdS纳米颗粒;
S2,采用固相烧结法和超声剥离法制备FeSe纳米棒;
S3,将步骤S1制备的0.4 g CdS纳米颗粒和S2制备的0.08 g FeSe纳米棒混合,接着放入50 mL无水乙醇中形成悬浊液,将0.1 g奈酚放入上述悬浊液中,随后磁力搅拌1个小时;
S4,将步骤S3分散好的悬浊液蒸发,得到FeSe/CdS纳米复合光催化剂;
S5,将步骤S4得到的粉体于200℃退火处理2小时。
4.根据权利要求3所述的FeSe/CdS纳米复合光催化剂制备方法,其特征在于:所述步骤S4的化学沉积法为:将长度为0.3~ 1.2 µm、直径为30 nm FeSe纳米棒均匀分散在25 nmCdS纳米颗粒表面。
5.根据权利要求3所述的FeSe/CdS纳米复合光催化剂制备方法,其特征在于:所述步骤S4具体为:将S3中分散好的溶液在油浴磁力搅拌器中于80℃搅拌加热8小时。
6.根据权利要求3所述的FeSe/CdS纳米复合光催化剂制备方法,其特征在于:所述步骤S5具体为:在氩气管式炉中200℃退火处理2小时,得到FeSe/CdS纳米复合光催化剂。
CN201810276226.2A 2018-03-30 2018-03-30 FeSe/CdS纳米复合光催化剂及制备方法 Withdrawn CN108273527A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810276226.2A CN108273527A (zh) 2018-03-30 2018-03-30 FeSe/CdS纳米复合光催化剂及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810276226.2A CN108273527A (zh) 2018-03-30 2018-03-30 FeSe/CdS纳米复合光催化剂及制备方法

Publications (1)

Publication Number Publication Date
CN108273527A true CN108273527A (zh) 2018-07-13

Family

ID=62810670

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810276226.2A Withdrawn CN108273527A (zh) 2018-03-30 2018-03-30 FeSe/CdS纳米复合光催化剂及制备方法

Country Status (1)

Country Link
CN (1) CN108273527A (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104941665A (zh) * 2015-05-29 2015-09-30 江苏大学 具有高效光催化性能的GO-CdS复合材料的水热合成制备法
CN105797752A (zh) * 2016-04-01 2016-07-27 上海师范大学 富勒烯修饰的石墨烯/硫化镉催化剂及其制备方法与应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104941665A (zh) * 2015-05-29 2015-09-30 江苏大学 具有高效光催化性能的GO-CdS复合材料的水热合成制备法
CN105797752A (zh) * 2016-04-01 2016-07-27 上海师范大学 富勒烯修饰的石墨烯/硫化镉催化剂及其制备方法与应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WENWU ZHONG等: "Conductive FeSe nanorods:A novel and efficientco-catalyst deposited on BiVO4 for enhanced photocatalytic activity under visible light", 《JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING》 *

Similar Documents

Publication Publication Date Title
Wang et al. Recent progress in gC 3 N 4 quantum dots: Synthesis, properties and applications in photocatalytic degradation of organic pollutants
CN103721708B (zh) 一种银/二氧化钛复合异质结构及其制备方法
Cheng et al. Enhanced photoelectrochemical and photocatalytic properties of anatase-TiO2 (B) nanobelts decorated with CdS nanoparticles
CN103480398B (zh) 一种微纳结构石墨烯基复合可见光催化材料及其制备方法
Huang et al. Preparation and characterization of Cu2O/TiO2 nano–nano heterostructure photocatalysts
Xue et al. The effects of Ag doping on crystalline structure and photocatalytic properties of BiVO4
Liu et al. Photoconversion of CO2 to methanol over plasmonic Ag/TiO2 nano-wire films enhanced by overlapped visible-light-harvesting nanostructures
CN103480399B (zh) 一种微纳结构磷酸银基复合可见光催化材料及其制备方法
Yan et al. Microwave-assisted synthesis of monoclinic–tetragonal BiVO 4 heterojunctions with enhanced visible-light-driven photocatalytic degradation of tetracycline
Zhao et al. Facile preparation of Z-scheme CdSAgTiO2 composite for the improved photocatalytic hydrogen generation activity
Wu et al. Preparation of noble metal Ag-modified BiVO 4 nanosheets and a study on the degradation performance of tetracyclines
CN107899592B (zh) 一种磁性可回收片状NiFe2O4/BiOI复合纳米材料的制备方法及应用
CN104785259B (zh) 等离子体金/氧化锌复合纳米片阵列器件的制备及其应用
CN105126807B (zh) 纳米ZnO/C复合光催化剂及其制备方法
Ren et al. Novel ternary Ag/CeVO 4/gC 3 N 4 nanocomposite as a highly efficient visible-light-driven photocatalyst
CN108823601A (zh) 一种金属氧化物/石墨烯复合膜的制备方法
CN108262041B (zh) 一种室温一锅制备高活性金/氧化锌复合纳米簇的方法
She et al. Photocatalytic activation of saturated C–H bond over the CdS mixed-phase under visible light irradiation
Fang et al. Construction and performance of a novel CuBi2O4/In2O3 Z-scheme heterojunction photocatalyst
Hu et al. Construction of mesoporous NCQDs–BiOCl composites for photocatalytic-degrading organic pollutants in water under visible and near-infrared light
Gomathi et al. Pioneering superior efficiency in Methylene blue and Rhodamine b dye degradation under solar light irradiation using CeO2/Co3O4/g-C3N4 ternary photocatalysts
Zhu et al. NiO Decorated Ti/TiO 2 Nanotube Arrays (TiO 2 NT)/TiO 2/gC 3 N 4 Step-Scheme Heterostructure Thin Film Photocatalyst with Enhanced Photocatalytic Activity for Water Splitting
Qin et al. Bi nanosphere-decorated oxygen-vacancy BiOBr hollow microspheres with exposed (110) facets to enhance the photocatalytic performance for the degradation of azo dyes
CN107029687A (zh) 一种含碳点的二氧化硅/二氧化钛复合材料及其制备方法
CN105749908A (zh) 一种AuTiO2空心核壳结构光催化剂及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication

Application publication date: 20180713

WW01 Invention patent application withdrawn after publication