CN108257214A - 心脏左心室流场域数值模拟方法、计算机、计算机程序 - Google Patents

心脏左心室流场域数值模拟方法、计算机、计算机程序 Download PDF

Info

Publication number
CN108257214A
CN108257214A CN201810144565.5A CN201810144565A CN108257214A CN 108257214 A CN108257214 A CN 108257214A CN 201810144565 A CN201810144565 A CN 201810144565A CN 108257214 A CN108257214 A CN 108257214A
Authority
CN
China
Prior art keywords
ventricle
flow
domain
heart
blood flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810144565.5A
Other languages
English (en)
Inventor
阿都建华
孙晓亚
周钦
刘洁芯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengdu University of Information Technology
Kunming University
Original Assignee
Chengdu University of Information Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu University of Information Technology filed Critical Chengdu University of Information Technology
Priority to CN201810144565.5A priority Critical patent/CN108257214A/zh
Publication of CN108257214A publication Critical patent/CN108257214A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • G06T17/30Polynomial surface description
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/12Edge-based segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/187Segmentation; Edge detection involving region growing; involving region merging; involving connected component labelling
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10132Ultrasound image
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30048Heart; Cardiac

Abstract

本发明属于医学测量、计算机仿真、计算流体力学技术领域,公开了一种心脏左心室流场域数值模拟方法、计算机、计算机程序,采用基于超声心动图的左心室轮廓提取方法提取轮廓,进行左心室血流流场动态模拟;基于超声心动图提取左心室初始轮廓,通过快速连通域方法获取轮廓像素点坐标,并基于提取的心脏左心室轮廓模型自动生成左心室网格模型;设置优化边界条件,动态模拟心脏左心室血流流场变化过程。本发明有助于更好地揭示心血管疾病发生、发展的病理生理和病理解剖基础,可以对此类疾病的预防和治疗提供有价值的参考信息。

Description

心脏左心室流场域数值模拟方法、计算机、计算机程序
技术领域
[0001] 本发明属于医学测量、计算机仿真、计算流体力学技术领域,尤其涉及一种心脏左 心室流场域数值模拟方法、计算机、计算机程序。
背景技术
[0002] 目前,业内常用的现有技术是这样的:
[0003] 整个人体系统中各个组织器官的血流灌注。心脏的解剖功能极为复杂,以“栗”的 形式传输人体血液,其内在的血液流体运动状态是心脏作为“栗”的功能的外在表现形式, 也是衡量心脏功能健康状态的重要判断依据。心室内的血液流场更为复杂多变,心动周期 内不同时相血液流场主要表现为动态连续变化的层流和涡流,但在每个心动周期特定时相 的流体总体特征通常又保持一定的相对稳定性和可重复性,特定时间点的血流涡流参数、 血流速度分布、压力分布等流体特征量具有一定的不变性。不同的心脏病理解剖和病理生 理异常均会产生不同的异常血流流场。为了检测心脏疾病导致的血流流场异常,掌握心脏 内血流变化过程及其时空分布就显得非常重要。各种心脏疾病往往会在心动周期的全部或 某些特定时相呈现出心腔内血液流场上的异常变化,因此深入研究心脏血液流场特征有可 能为各种心血管疾病的早期精确诊断提供重要线索和依据。近年来,随着各种先进医疗设 备诊断技术的迅速发展,研究人员已将先进的医学测量技术与计算机仿真技术、计算流体 力学紧密结合起来用于研究人体心脏的血液动力学状态,通过计算机数值计算和图像显示 的方法,在时间和空间上定量描述流场的数值解。常规心脏血流动力学实验研究不仅风险 高、花费大,而且也仅能获取速度、压力等有限的流动参数数据,而速度矢量、流线、壁面剪 切应力等复杂的流场参数数据是不可能得到的。
[0004] 综上所述,现有技术存在的问题是:
[0005] 常规心脏血流动力学实验风险高、花费大,而且获取速度、压力等有限的流动参数 数据,速度矢量、流线、壁面剪切应力等复杂的流场参数数据是不可能得到。
[0006] 解决上述技术问题的难度和意义:
[0007] 本发明有助于更好地揭示心血管疾病发生、发展的病理生理和病理解剖基础,可 以对此类疾病的预防和治疗提供有价值的参考信息。
发明内容
[0008] 针对现有技术存在的问题,本发明提供了一种心脏左心室流场域数值模拟方法、 计算机、计算机程序。
[0009] 本发明是这样实现的,一种心脏左心室流场域数值模拟方法,所述心脏左心室流 场域数值模拟方法采用基于超声心动图的左心室轮廓提取方法提取轮廓,进行左心室血流 流场动态模拟;基于超声心动图提取左心室初始轮廓,通过快速连通域方法获取轮廓像素 点坐标,并基于提取的心脏左心室轮廓模型自动生成左心室网格模型;设置优化边界条件, 动态模拟心脏左心室血流流场变化过程。
[0010] 进一步,所述心脏左心室流场域数值模拟方法包括以下步骤:
[0011] 步骤一,超声心动图选择左心室轮廓;
[0012] 步骤二,在空白图像绘制出左心室轮廓图;
[0013] 步骤三,用二值图像快速连通域方法得到标识的左心室连通域轮廓;
[0014] 步骤四,获取左心室连通域轮廓所有像素坐标点;
[0015] 步骤五,左心室轮廓生成网格;
[0016] 步骤六,设置边界条件,计算流场变化,动态模拟展示左心室血流流场变化过程。
[0017] 进一步,所述步骤三采用快速连通域方法提取左心室轮廓图包括:
[0018] (1)连通域标识符号为T,初始化标号T值为1;
[0019] (2)将图像按照从左到右,从上到下的顺序搜索,找到的第一个黑点一定是最左上 方的边界点,记为A1,A1点的右、右下、下、左下四个领点中至少有一个边界点,记为A2;A1和 A2的灰度值都标记为T;
[0020] (3)从A2开始找起,按右、右上、上、左上、左、左下、下、右下的顺序找下一个边界点 A3,将其灰度值标记为T,并继续搜索下一个边界点;如果A3就是边界起始点Al,则搜索结 束;
[0021] (4)—个连通区域跟踪完毕后,将标号值加1,并以这一区域的搜索结束点作为起 始点再开始逐行扫描,边缘跟踪,边界标记;如此循环搜索,直到整副图像扫描完毕为止;
[0022] (5)如果连通区域标记值为1,则说明左心室轮廓提取成功;如果连通域标记值大 于1,则表明左心室轮廓提取错误,存在多个连通域,重新开始在超声心动图上选择左心室 轮廓。
[0023] 进一步,所述步骤六具体包括:
[0024] (1)设置边界条件,左心室轮廓边界速度首先都设置为0,二尖瓣口边界处设置血 流速度为11 = 2111/8,¥ = 2111/8,血流密度系数设为0=1〇6〇1^/1113,血流黏性系数设为4 = 0.0033kg/ms;
[0025] (2)求解纳维-斯托克斯方程,计算血流变化过程。
[0026] 进一步,所述使用欧拉变量描述血流流体的运动,则表示如下:
[0027]
Figure CN108257214AD00051
[0028] 其中,Δ是拉普拉斯算子,是哈蜜顿算子,u表示血流的速度,Ut表示血流加速度, P表示血流密度系数,μ为血流黏性系数,f表示外力项。
[0029] 本发明的另一目的在于提供一种实现所述心脏左心室流场域数值模拟方法的计 算机程序。
[0030] 本发明的另一目的在于提供一种搭载有所述计算机程序的计算机。
[0031] 本发明的另一目的在于提供一种计算机可读存储介质,包括指令,当其在计算机 上运行时,使得计算机执行所述的心脏左心室流场域数值模拟方法。
[0032] 本发明采用心脏左心室流场域数值模拟方法能基于特定病人的超声心动图提取 左心室轮廓,并动态模拟展示左心室血流流场变化过程,通过心腔内血液流场上的异常变 化,为各种心血管疾病的诊断提供重要线索和依据。本发明采用的快速连通域提取方法,简 单快捷,能有效提取左心室轮廓坐标,并在此基础上生成网格。数值计算仿真技术成本低、 效率高,能有针对性的研究各种心脏几何变形、力学及流固耦合因素对血流动力学的影响, 而且可以完成常规实验无法实现的生物力学多参数时空描述和可视化表达。当在体或离体 实验研究不可行时,数值仿真就成为唯一可行的血流动力学观测手段;观测结果需要与临 床医学实验结果相结合,有助于更好地揭示心血管疾病发生、发展的病理生理和病理解剖 基础,可以对此类疾病的预防和治疗提供有价值的参考信息。
附图说明
[0033] 图1是本发明实施例提供的心脏左心室流场域数值模拟方法流程图。
[0034] 图2是本发明实施例提供的心脏左心室流场域数值模拟方法实现流程图。
[0035] 图3是本发明实施例提供的左心室轮廓选取过程示意图。
[0036] 图4是本发明实施例提供的左心室轮廓示意图。
[0037] 图中:(a)左心室轮廓绘制结果图;(b)左心室轮廓网格生成结果图。
[0038] 图5是本发明实施例提供的左心室血流流场模拟示意图。
[0039] 图中:(a)左心室血流流场变化图;(b)左心室血流速度分布图。
具体实施方式
[0040] 为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明 进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于 限定本发明。
[0041] 本发明基于特定病人的超声心动图构建心脏左心室网格模型,设置优化边界条 件,模拟心脏左心室内血流流场变化过程,为检测心脏疾病导致的血流流场异常提供相关 依据。本发明基于特定病人的超声心动图提取心脏左心室轮廓;基于提取的心脏左心室轮 廓模型自动生成网格模型;设置优化边界条件,模拟心脏左心室血流流场变化过程。
[0042] 下面结合附图对本发明的应用原理作详细的描述。
[0043] 如图1所示,本发明实施例提供的心脏左心室流场域数值模拟方法包括以下步骤:
[0044] S101:在超声心动图I上手动选择左心室轮廓;单击鼠标左键选择左心室轮廓点, 同时连接每次单击选择的轮廓点;单击鼠标右键表示将最后一次选择的轮廓点与第一次选 择的轮廓点连接,同时表示轮廓选择结束,左心室轮廓选择完成;
[0045] SI 02:根据选择得到的左心室轮廓坐标,在空白图像L中绘制出左心室轮廓图;
[0046] S103:将图像L二值化,用二值图像快速连通域方法得到标识的左心室连通域轮 廓。如果连通区域标记值为1,则说明左心室轮廓提取成功,进入步骤S104;如果连通域标记 值大于1,则表明左心室轮廓提取错误,返回步骤SlOl重新开始在超声心动图上选择左心室 轮廓;
[0047] S104:根据连通域标识获取左心室连通域轮廓所有像素坐标点;
[0048] S105:在左心室轮廓中生成网格;
[0049] S106:设置边界条件,计算流场变化,动态模拟展示左心室血流流场变化过程。
[0050] 在步骤S103中提出采用快速连通域方法提取左心室轮廓图包括:
[0051] (1)假定连通域标识符号为T,初始化标号T值为1。
[0052] (2)将图像按照从左到右,从上到下的顺序搜索,找到的第一个黑点一定是最左上 方的边界点,记为A1,A1点的右、右下、下、左下四个领点中至少有一个边界点,记为A2;A1和 A2的灰度值都标记为T。
[0053] (3)从A2开始找起,按右、右上、上、左上、左、左下、下、右下的顺序找下一个边界点 A3,将其灰度值标记为T,并继续搜索下一个边界点;如果A3就是边界起始点Al,则搜索结 束。
[0054] (4)—个连通区域跟踪完毕后,将标号值加1,并以这一区域的搜索结束点作为起 始点再开始逐行扫描,边缘跟踪,边界标记。如此循环搜索,直到整副图像扫描完毕为止。
[0055] (5)如果连通区域标记值为1,则说明左心室轮廓提取成功;如果连通域标记值大 于1,则表明左心室轮廓提取错误,存在多个连通域,因而重新开始在超声心动图上选择左 心室轮廓。
[0056] 在步骤S106中具体包括:
[0057] (1)设置边界条件,左心室轮廓边界速度首先都设置为0,二尖瓣口边界处设置血 流速度为11 = 2111/8,¥ = 2111/8,血流密度系数设为0=1〇6〇1^/1113,血流黏性系数设为4 = 0.0033kg/ms;
[0058] (2)求解纳维-斯托克斯方程,计算血流变化过程。
[0059] 所述使用欧拉变量描述血流流体的运动,则表示如下:
[0060]
Figure CN108257214AD00071
[0061] 其中,A是拉普拉斯算子,f+是哈蜜顿算子,u表示血流的速度,Ut表示血流加速度, P表示血流密度系数,μ为血流黏性系数,f表示外力项。
[0062] 图2是本发明实施例提供的心脏左心室流场域数值模拟方法实现流程图。
[0063] 图3是本发明实施例提供的左心室轮廓选取过程示意图。
[0064] 图4是本发明实施例提供的左心室轮廓示意图。
[0065] 图中:(a)左心室轮廓绘制结果图;(b)左心室轮廓网格生成结果图。
[0066] 图5是本发明实施例提供的左心室血流流场模拟示意图。
[0067] 图中:(a)左心室血流流场变化图;(b)左心室血流速度分布图。
[0068] 在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实 现。当使用全部或部分地以计算机程序产品的形式实现,所述计算机程序产品包括一个或 多个计算机指令。在计算机上加载或执行所述计算机程序指令时,全部或部分地产生按照 本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网 络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个 计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一 个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL) 或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行 传输)。所述计算机可读取存储介质可以是计算机能够存取的任何可用介质或者是包含一 个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介 质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘SoIid State Disk (SSD))等。
[0069] 以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精 神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (8)

1. 一种心脏左心室流场域数值模拟方法,其特征在于,所述心脏左心室流场域数值模 拟方法采用基于超声心动图的左心室轮廓提取方法提取轮廓,进行左心室血流流场动态模 拟;基于超声心动图提取左心室初始轮廓,通过快速连通域方法获取轮廓像素点坐标,并基 于提取的心脏左心室轮廓模型自动生成左心室网格模型;设置优化边界条件,动态模拟心 脏左心室血流流场变化过程。
2. 如权利要求1所述的心脏左心室流场域数值模拟方法,其特征在于,所述心脏左心室 流场域数值模拟方法包括以下步骤: 步骤一,超声心动图选择左心室轮廓; 步骤二,在空白图像绘制出左心室轮廓图; 步骤三,用二值图像快速连通域方法得到标识的左心室连通域轮廓; 步骤四,获取左心室连通域轮廓所有像素坐标点; 步骤五,左心室轮廓生成网格; 步骤六,设置边界条件,计算流场变化,动态模拟展示左心室血流流场变化过程。
3. 如权利要求2所述的心脏左心室流场域数值模拟方法,其特征在于,所述步骤三采用 快速连通域方法提取左心室轮廓图包括: (1) 连通域标识符号为T,初始化标号T值为1; (2) 将图像按照从左到右,从上到下的顺序搜索,找到的第一个黑点一定是最左上方的 边界点,记为Al,Al点的右、右下、下、左下四个领点中至少有一个边界点,记为A2; Al和A2的 灰度值都标记为T; (3) 从A2开始找起,按右、右上、上、左上、左、左下、下、右下的顺序找下一个边界点A3, 将其灰度值标记为T,并继续搜索下一个边界点;如果A3就是边界起始点Al,则搜索结束; (4) 一个连通区域跟踪完毕后,将标号值加1,并以这一区域的搜索结束点作为起始点 再开始逐行扫描,边缘跟踪,边界标记;如此循环搜索,直到整副图像扫描完毕为止; (5) 如果连通区域标记值为1,则说明左心室轮廓提取成功;如果连通域标记值大于1, 则表明左心室轮廓提取错误,存在多个连通域,重新开始在超声心动图上选择左心室轮廓。
4. 如权利要求2所述的心脏左心室流场域数值模拟方法,其特征在于,所述步骤六具体 包括: (1)设置边界条件,左心室轮廓边界速度首先都设置为〇,二尖瓣口边界处设置血流速 度为U = 2m/s,V = 2m/s,血流密度系数设为P = 1060kg/m3,血流黏性系数设为μ = 0.0033kg/ ms ; ⑵求解纳维-斯托克斯方程,计算血流变化过程。
5. 如权利要求4所述的心脏左心室流场域数值模拟方法,其特征在于,所述使用欧拉变 量描述血流流体的运动,则表示如下:
Figure CN108257214AC00021
其中,A是拉普拉斯算子,是哈蜜顿算子,u表示血流的速度,Ut表示血流加速度,P表
Figure CN108257214AC00022
示血流密度系数,μ为血流黏性系数,f表示外力项。
6. —种实现权利要求1〜5任意一项所述心脏左心室流场域数值模拟方法的计算机程 序。
7. —种搭载有权利要求6所述计算机程序的信息计算机。
8. —种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行如权 利要求1-5任意一项所述的心脏左心室流场域数值模拟方法。
CN201810144565.5A 2018-02-12 2018-02-12 心脏左心室流场域数值模拟方法、计算机、计算机程序 Pending CN108257214A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810144565.5A CN108257214A (zh) 2018-02-12 2018-02-12 心脏左心室流场域数值模拟方法、计算机、计算机程序

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810144565.5A CN108257214A (zh) 2018-02-12 2018-02-12 心脏左心室流场域数值模拟方法、计算机、计算机程序

Publications (1)

Publication Number Publication Date
CN108257214A true CN108257214A (zh) 2018-07-06

Family

ID=62745364

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810144565.5A Pending CN108257214A (zh) 2018-02-12 2018-02-12 心脏左心室流场域数值模拟方法、计算机、计算机程序

Country Status (1)

Country Link
CN (1) CN108257214A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9443329B2 (en) * 2014-06-05 2016-09-13 Siemens Medical Solutions Usa, Inc. Systems and methods for graphic visualization of ventricle wall motion
CN106600596A (zh) * 2016-12-21 2017-04-26 南昌航空大学 一种心脏腔室动态显示方法及系统
CN107123112A (zh) * 2017-01-23 2017-09-01 上海联影医疗科技有限公司 血流状态分析系统及方法
CN107403060A (zh) * 2017-06-20 2017-11-28 四川省人民医院 一种心脏二尖瓣流场域数值模拟方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9443329B2 (en) * 2014-06-05 2016-09-13 Siemens Medical Solutions Usa, Inc. Systems and methods for graphic visualization of ventricle wall motion
CN106600596A (zh) * 2016-12-21 2017-04-26 南昌航空大学 一种心脏腔室动态显示方法及系统
CN107123112A (zh) * 2017-01-23 2017-09-01 上海联影医疗科技有限公司 血流状态分析系统及方法
CN107403060A (zh) * 2017-06-20 2017-11-28 四川省人民医院 一种心脏二尖瓣流场域数值模拟方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
王晶晶: "海量灰度图像8连通域标记算法的设计与应用", 《中国优秀硕士学位论文全文数据库 信息科技辑》 *
阿都建华等: "基于CFD 的左心室流场数值模拟研究现状与趋势", 《中国生物医学工程学报》 *

Similar Documents

Publication Publication Date Title
Ko et al. Noninvasive CT-derived FFR based on structural and fluid analysis: a comparison with invasive FFR for detection of functionally significant stenosis
US10398344B2 (en) Apparatus, methods and articles for four dimensional (4D) flow magnetic resonance imaging
US9275266B2 (en) Apparatus and method for tracking contour of moving object, and apparatus and method for analyzing myocardial motion
Petitjean et al. Right ventricle segmentation from cardiac MRI: a collation study
US9323887B2 (en) Device and computed tomography scanner for determining and visualizing the perfusion of the myocardial muscle
Bai et al. A bi-ventricular cardiac atlas built from 1000+ high resolution MR images of healthy subjects and an analysis of shape and motion
Dey et al. Artificial intelligence in cardiovascular imaging: JACC state-of-the-art review
CN106456269B (zh) 对包括心脏的电传导系统的影响在内的患者特定心脏电生理的实时仿真的系统和方法
Slomka et al. Cardiac imaging: working towards fully-automated machine analysis & interpretation
US9724164B2 (en) Blood-vessel bloodstream simulation system, method therefor, and computer software program
Tavakoli et al. A survey of shaped-based registration and segmentation techniques for cardiac images
Van Ooij et al. Reproducibility and interobserver variability of systolic blood flow velocity and 3D wall shear stress derived from 4D flow MRI in the healthy aorta
Arvidsson et al. Vortex ring behavior provides the epigenetic blueprint for the human heart
Wang et al. Cardiac motion and deformation recovery from MRI: a review
Lynch et al. Automatic segmentation of the left ventricle cavity and myocardium in MRI data
Karim et al. Evaluation of state-of-the-art segmentation algorithms for left ventricle infarct from late Gadolinium enhancement MR images
Pace et al. Interactive whole-heart segmentation in congenital heart disease
JP4918048B2 (ja) 画像処理装置及び方法
Viscardi et al. Comparative finite element model analysis of ascending aortic flow in bicuspid and tricuspid aortic valve
JP2019504659A (ja) 自動化された心臓ボリュームセグメンテーション
Sermesant et al. Patient-specific electromechanical models of the heart for the prediction of pacing acute effects in CRT: a preliminary clinical validation
US10296809B2 (en) Method and system for fast patient-specific cardiac electrophysiology simulations for therapy planning and guidance
EP3473184A1 (en) Method and system for sensitivity analysis in modeling blood flow characteristics
Karamitsos et al. Operator induced variability in left ventricular measurements with cardiovascular magnetic resonance is improved after training
Cousty et al. Segmentation of 4D cardiac MRI: Automated method based on spatio-temporal watershed cuts

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20210304

Address after: No.2 Puxin Road, Kunming Economic and Technological Development Zone, Yunnan Province

Applicant after: KUNMING University

Applicant after: Chengdu University of Information Technology

Address before: 610225, No. 24, Section 1, Xuefu Road, Southwest Economic Development Zone, Chengdu, Sichuan

Applicant before: Chengdu University of Information Technology