CN107123112A - 血流状态分析系统及方法 - Google Patents

血流状态分析系统及方法 Download PDF

Info

Publication number
CN107123112A
CN107123112A CN201710257724.8A CN201710257724A CN107123112A CN 107123112 A CN107123112 A CN 107123112A CN 201710257724 A CN201710257724 A CN 201710257724A CN 107123112 A CN107123112 A CN 107123112A
Authority
CN
China
Prior art keywords
vascular pattern
blood vessel
phase
blood
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710257724.8A
Other languages
English (en)
Other versions
CN107123112B (zh
Inventor
马杰延
任远
王洪建
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai United Imaging Healthcare Co Ltd
Original Assignee
Shanghai United Imaging Healthcare Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to CNPCT/CN2017/072256 priority Critical
Priority to PCT/CN2017/072256 priority patent/WO2018133118A1/zh
Application filed by Shanghai United Imaging Healthcare Co Ltd filed Critical Shanghai United Imaging Healthcare Co Ltd
Publication of CN107123112A publication Critical patent/CN107123112A/zh
Application granted granted Critical
Publication of CN107123112B publication Critical patent/CN107123112B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • G06T7/0014Biomedical image inspection using an image reference approach
    • G06T7/0016Biomedical image inspection using an image reference approach involving temporal comparison
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/02007Evaluating blood vessel condition, e.g. elasticity, compliance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/026Measuring blood flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/026Measuring blood flow
    • A61B5/0285Measuring or recording phase velocity of blood waves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/11Complex mathematical operations for solving equations, e.g. nonlinear equations, general mathematical optimization problems
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/11Region-based segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/30Determination of transform parameters for the alignment of images, i.e. image registration
    • G06T7/32Determination of transform parameters for the alignment of images, i.e. image registration using correlation-based methods
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H10/00ICT specially adapted for the handling or processing of patient-related medical or healthcare data
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H30/00ICT specially adapted for the handling or processing of medical images
    • G16H30/40ICT specially adapted for the handling or processing of medical images for processing medical images, e.g. editing
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/50ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for simulation or modelling of medical disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2576/00Medical imaging apparatus involving image processing or analysis
    • A61B2576/02Medical imaging apparatus involving image processing or analysis specially adapted for a particular organ or body part
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7264Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/04Constraint-based CAD
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/06Power analysis or power optimisation
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30101Blood vessel; Artery; Vein; Vascular
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30101Blood vessel; Artery; Vein; Vascular
    • G06T2207/30104Vascular flow; Blood flow; Perfusion

Abstract

本发明提供一种血流状态分析方法和系统。在确定血流状态的过程中,获取多个时相的图像,建立与多个时相分别对应的多个血管模型。关联所述多个血管模型,根据关联结果分别设定所述多个血管模型的边界条件,确定所述多个血管模型的血管状态。

Description

血流状态分析系统及方法 【技术领域】
[0001] 本发明涉及一种血流状态分析系统和方法,尤其是一种利用计算流体力学获取多 时相血流动力学参数的系统及方法。 【背景技术】
[0002] CTA、MRA成像技术广泛应用在外周血管疾病诊断中,尤其在血管狭窄(椎动脉狭 窄)、动脉瘤、夹层动脉瘤、肿瘤供血动脉等血管疾病等方面。血管分析软件应用提供了血管 分析的工具,用于细小四级血管的精确提取、完整去骨、快速自动测量等。医学图像分析软 件系统在针对血管的分析中一般采用图像分割技术,以及图像显示技术对相应对象的血管 进行形态学上的三维模拟重建。医生通过针对血管形态学上的指标(血管狭窄程度、血管瘤 膨胀程度等)对病变程度进行分析处理,可利用信息单一。
[0003] 计算流体力学(Computational Fluid Dynamics/CFD)是一个20世纪50年代以来, 随着计算机的发展而产生的一个介于数学、流体力学和计算机之间的交叉学科。其主要研 究内容是通过计算机和数值方法来求解流体力学的控制方程,对流体力学问题进行模拟和 分析。血管模型或血流模型是一个利用计算流体力学的新兴应用。利用计算流体力学对单 时相数据进行分析难以全面的体现分析区域的实际情况和变化规律,也会由于选择时相不 准确而使结果出现偏差。 【发明内容】
[0004] 本发明解决的问题是提供一种血管流体分析方法,执行于至少一个包含处理器和 存储器的设备,所述方法包括:获取一个第一时相的图像和一个第二时相的图像;在所述第 一时相的图像中选择一个第一血管区域,其中,所述第一血管区域包含一个血管;在所述第 二时相的图像中选择一个第二血管区域,其中,所述第二血管区域包含至少一部分所述血 管;建立一个第一血管模型,其中,所述第一血管模型与所述第一血管区域相对应;建立一 个第二血管模型,其中,所述第二血管模型与所述第二血管区域相对应;设定所述第一血管 模型的边界条件和所述第二血管模型的边界条件;根据所述第一血管模型的边界条件,确 定所述第一血管模型中所述血管在所述第一时相的状态;基于所述血管在所述第一时相的 状态,关联所述第一血管模型和所述第二血管模型;以及所述关联结果以及所述第二血管 模型的边界条件,确定所述第二血管模型中所述血管在所述第二时相的状态。
[0005] 可选的,所述第一血管区域和所述第二血管区域包括冠状动脉、腹部动脉、大脑动 脉或下肢动脉。
[0006] 可选的,所述关联所述第一血管模型和所述第二血管模型包括关联所述第一血管 模型和所述第二血管模型的所述血管的入口段、所述血管的分叉段、所述血管的狭窄段、或 所述血管的出口段。
[0007] 可选的,所述方法进一步包括对所述第一血管模型或所述第二血管模型进行网格 化处理。
[0008] 可选的,所述关联所述第一血管模型和所述第二血管模型包括将第一血管模型的 网格和所述第二血管模型的网格进行匹配。
[0009] 可选的,所述血管状态包括血流速、血压力、血管壁应力、血管壁切应力或血流储 备系数(FFR)。
[0010] 可选的,所述确定所述第一血管模型中所述血管在所述第一时相的状态或所述确 定所述第二血管模型中所述血管在所述第二时相的状态包括使用计算流体力学(CFD)方 法。
[0011] 可选的,一个血流状态的分析系统,包括至少一个处理器和存储设备,所述系统包 括:一个接收模块,被配置为:获取一个第一时相的图像和一个第二时相的图像;以及一个 多时相特征生成模块,被配置为:在所述第一时相的图像中选择一个第一血管区域,其中, 所述第一血管区域包含一个血管;在所述第二时相的图像中选择一个第二血管区域,其中, 所述第二血管区域包含至少一部分所述血管;建立一个第一血管模型,其中,所述第一血管 模型与所述第一血管区域相对应;建立一个第二血管模型,其中,所述第二血管模型与所述 第二血管区域相对应;设定所述第一血管模型的边界条件和所述第二血管模型的边界条 件;根据所述第一血管模型的边界条件,确定所述第一血管模型中所述血管在所述第一时 相的状态;基于所述血管在所述第一时相的状态,关联所述第一血管模型和所述第二血管 模型;以及根据所述关联结果以及所述第二血管模型的边界条件,确定所述第二血管模型 中所述血管在所述第二时相的状态。
[0012] 可选的,一种血流状态的分析方法,所述分析方法包括:获取多个时相的血管图 像,包括一个第一时相的血管图像和一个第二时相的血管图像,所述多个时相的血管图像 分别对应于同一个血管或其一部分;建立多个血管模型,所述多个血管模型分别对应于所 述多个时相的血管图像;根据所述多个血管模型,获得所述血管或其一部分的多个状态,包 括一个第一血管状态和一个第二血管状态,其中,所述第一血管状态对应于所述第一时相 的血管图像,所述第二血管状态对应于所述第二时相的血管图像;根据所述血管或其一部 分的所述多个状态,获得所述血管或其一部分的状态随时间变化的关系;以及根据所述关 系,获得所述血管或其一部分的第三血管状态。
[0013] 可选的,所述分析方法进一步包括:关联所述多个血管模型;以及根据所述关联结 果,采用计算流体力学(CFD)分析所述多个血管状态,所述关联所述多个血管模型包括关联 所述多个血管模型中至少两个血管模型的入口段、分叉段、狭窄段或出口段。 【附图说明】
[0014] 图IA和图IB是根据本申请的一些实施例所示的包括血管状态分析系统;
[0015] 图2是根据本申请的一些实施例所示的一个计算设备的结构,该计算设备可以实 施本申请中披露的特定系统;
[0016] 图3是根据本申请的一些实施例所示的一个移动设备的结构示意图,该移动设备 可以实施本申请中披露的特定系统;
[0017] 图4A是根据本申请的一些实施例所示的处理设备的示例性模块示意图;
[0018] 图4B是根据本申请的一些实施例所示的多时相特征处理的示例性流程图;
[0019] 图5是根据本申请的一些实施例所示的多时相特征生成模块的示例性模块示意 图;
[0020] 图6是根据本申请的一些实施例所示的获取多时相特征的示例性流程图;
[0021] 图7是根据本申请的一些实施例所示的获取多时相特征的示意图;
[0022] 图8是根据本申请的一些实施例所示的设定边界条件的示例性流程图;
[0023] 图9是根据本申请的一些实施例所示的血流模型的示意图;
[0024] 图10是根据本申请的一些实施例所示的网格化处理的示例性流程图;
[0025] 图11是根据本申请的一些实施例所示的边界区域网格化处理的示意图;
[0026] 图12是根据本申请的一些实施例所示的网格划分的示例性流程图;
[0027] 图13是根据本申请的一些实施例所示的获得任意位点参数的示例性流程图;以及
[0028] 图14是根据本申请的一些实施例所示的获得位点血流动力学参数的示意图。 【具体实施方式】
[0029] 在下面的描述中阐述了很多具体细节以便于充分理解本发明。但是本发明能够以 很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况 下做类似推广,因此本发明不受下面公开的具体实施的限制。
[0030] 在图像数据处理过程中,“图像分割”、“图像提取”、“图像分类”可以相互转化,均 表达从大范围区域内选取符合某条件的图像。在一些实施例中,成像系统可以包括一种或 多种形态。所述形态包括但不限于,数字减影血管造影(DSA)、磁共振成像(MRI)、磁共振血 管造影(MRA)、计算机断层扫描(CT)、计算机断层扫描血管造影(CTA)、超声波扫描(US)、正 电子发射断层扫描术(PET)、单光子发射计算机断层扫描(SPECT)、SPECT-MR、CT-PET、CE-SPECT、DSA-MR、PET-MR、PET-US、SPECT-US、TMS-MR、US-CT、US-MR、X射线-CT、X射线-PET、X射 线-US、视频-CT、视频-US和/或类似的一种或多种的组合。在一些实施例中,成像扫描的目 标可以是器官、机体、物体、损伤部位、肿瘤等一种或多种的组合。在一些实施例中,成像扫 描的目标可以是头部、胸腔、腹部、器官、骨骼、血管等一种或多种的组合。在一些实施例中, 扫描的目标可以为一个或多个部位的血管组织。在一些实施例中,图像可以是二维图像和/ 或三维图像。在二维图像中,最细微的可分辨元素可以为像素点(pixel)。在三维图像中,最 细微的可分辨元素可以为体素点(voxel)。在三维图像中,图像可由一系列的二维切片或二 维图层构成。
[0031] 图像分割过程可以基于图像的像素点(或体素点)的相应特征进行。在一些实施例 中,所述像素点(或体素点)的相应特征可以包括纹理结构、灰度、平均灰度、信号强度、颜色 饱和度、对比度、亮度等一种或多种的组合。在一些实施例中,所述像素点(或体素点)的空 间位置特征也可以用于图像分割过程。
[0032] 本申请涉及一种获取血流状态的方法和系统。在确定血流状态的过程中,获取多 个时相的图像,建立与多个时相分别对应的多个血管模型。关联所述多个血管模型,根据关 联结果分别设定所述多个血管模型的边界条件,确定所述多个血管模型的血管状态。所述 关联所述多个血管模型包括配准多个血管模型。
[0033] 图IA是根据本申请的一些实施例所示的包括血流状态分析系统100。该血流状态 分析系统100可以包括数据采集设备110、处理设备120、存储设备130和显示设备140。数据 采集设备110、处理设备120、存储设备130和交互设备140相互之间可以通过网络180进行通 {目。
[0034] 数据采集设备110可以是一个采集数据的设备。所述数据可以包括图像数据、对象 特征数据等。在一些实施例中,所述数据采集设备110可以包括一个成像设备。所述成像设 备可以采集所述图像数据。所述成像设备可以是磁共振成像仪(magnetic resonance imaging,MRI)、电子计算机断层扫描仪(computed tomography,CT)、正电子发射型计算机 断层显像仪(positron emission computed tomography,PET)、B 超仪(b-scan ultrasonography)、超声诊断仪(diasonography)热断层扫描仪(Thermal texture maps, TTM)、医用电子内窥镜(medical electronic endoscope,MEE)等中的一种或多种的组合。 所述图像数据可以是包括对象的血管、组织或器官的图片或数据。在一些实施例中,所述数 据采集设备可以包括一个对象特征采集设备。所述对象特征采集设备可以采集对象的心 率、心律、血压、血流速率、血液粘稠度、心输出量、心肌质量、血管流阻,以及/或其他与血 管、组织或器官相关的对象特征数据。在一些实施例中,所述对象特征采集设备可以获取对 象年龄、身高、体重、性别等其他对象特征数据。在一些实施例中,所述图像数据和对象特征 数据可以是多时相数据。例如,所述多时相数据可以是在不同的时间点或时相获得的对象 身上相同或近似位置的数据。在一些实施例中,所述对象特征采集设备可以集成在所述成 像设备中,从而同时采集图像数据和对象特征数据。在一些实施例中,所述数据采集设备 110可以通过网络180将其所采集的数据发送至处理设备120、存储设备130和/或交互设备 140〇
[0035] 处理设备120可以对数据进行处理。所述数据可以是通过数据采集设备110采集到 的数据,从存储设备130中读取的数据,从交互设备140中获得的反馈数据,如用户的输入数 据,或通过网络180从云端或者外接设备中获得的数据等。在一些实施例中,所述数据可以 包括图像数据、对象特征数据、用户输入数据等。所述处理可以包括在图像数据中选择感兴 趣的区域。所述感兴趣的区域可以由处理设备120自行选择或根据用户输入数据选择。在一 些实施例中,选择的感兴趣区域可以是血管、组织或者器官等。例如,所述感兴趣区域可以 是动脉血管,如冠状动脉、腹部动脉、大脑动脉、下肢动脉等。处理设备120可以进一步对所 述图像中对感兴趣的区域进行分割。图像分割的方法可以包括基于边缘的图像分割方法, 如Perwitt算子法、Sobel算子法、梯度算子法、Kirch算子法等,基于区域的图像分割方法, 如区域生长法、阈值法、聚类法等以及其他分割方法,如基于模糊集、神经网络的方法等。
[0036] 处理设备120可以对所述感兴趣区域进行模型重建。模型的选择可以基于对象特 征数据、感兴趣区域的特征等。例如,如果选定了感兴趣的区域为冠状动脉,处理设备120可 以对包含冠状动脉的图像进行分割从而提取出冠状动脉的图像。然后,处理设备120可以根 据对象特征、冠状动脉一般特征、冠状动脉图像特征等进行模型的重建。重建的模型可以与 冠状动脉血管的形状相对应,也可以与冠状动脉中血液流动的形态相对应。在建立感兴趣 区域的模型后,处理设备120可以根据模型进行分析和计算。所述分析和计算的方法可以包 括计算流体力学(Computed fluid dynamics)等。
[0037] 在一些实施例中,处理设备120可以获得多时相的数据,如对象在5个不同时间点 上冠状动脉区域的图像。在这种情况下,处理设备120可以对不同时相的感兴趣区域(例如, 整个冠状动脉,冠状动脉上的分支,或者冠状动脉的血液入口截面等)的图像分别构建模 型,再对模型依次进行分析和计算。在一些实施例中,处理设备120可以对所述不同时相的 模型进行网格化处理,并对网格化处理后的模型进行相互关联,从而降低计算量、提高计算 准确度。关于网格化处理和模型相互关联的说明可以参见本申请其他地方的描述,例如,图 6,图11及其描述。在一些实施例中,所述分析和计算的结果可以包括血管、组织、或器官的 物理状态和相关系数或参数。例如,对冠状动脉模型进行分析和计算的结果可以包括冠状 动脉的血流动力学参数,如血流速率、血液压力、血管壁应力、血管壁切应力、血流储备系数 或血流储备分数(Fractional Flow Reserve,FFR)、冠状动脉血流储备(Coronary Flow ReSerVe,CFR)等中的一种或多种的组合。在一些实施例中,处理设备120可以根据不同时相 的分析和计算结果生成所述物理状态和/或相关系数或参数与时相或时间的关系(例如,血 液动力学参数随时间的变化)。该关系可以用曲线或者对照表的方式体现。基于所述曲线或 对照表,处理设备120可以获得任意时相的感兴趣区域的物理状态和/或相关系数或参数。
[0038] 在一些实施例中,处理设备120可以对其获得的数据或处理结果进行降噪或平滑 处理。在一些实施例中,处理设备120可以将其获得的数据或处理结果发送至存储设备130 进行存储,或者发送至交互设备140进行显示。所述处理结果可以是处理过程中产生的中间 结果,如感兴趣区域的模型,也可以是处理的最终结果,如分析和计算得出的血流动力学参 数等。在一些实施例中,处理设备120可以是一个或多个处理元件或设备,如中央处理器 (central processing unit,CPU)、图形处理器(graphics processing unit,GPU)、数字信 号处理器(digital signal processor,DSP)、系统芯片(system on a chip,SoC)、微控制 器(microcontroller unit,MCU)等。在一些实施例中,处理设备120也可以是特殊设计的具 备特殊功能的处理元件或设备。处理设备120可以是本地的,或相对于数据采集设备110是 远程的。
[0039] 存储设备130可以储存数据或信息。所述数据或信息可以包括数据采集设备110获 取的数据、处理设备120产生的处理结果或控制指令、以及交互设备140所接收到的用户输 入数据等。存储设备130可以是一种或多种可以读取或写入的存储媒介,包括但不限于静态 随机存储器(static random access memory ,SRAM),随机存储器(random-access memory, RAM)、只读存储器(read-only memory,R0M)、硬盘、闪存等。在一些实施例中,存储设备130 也可以是远程的存储器,如云盘等。
[0040] 交互设备140可以接收、发送,以及/或显示数据或信息。所述接收的数据或信息可 以包括数据采集设备110获取的数据、处理设备120产生的处理结果、存储设备130存储的数 据等。例如,交互设备140显示的数据或信息可以包括数据采集设备110获得的心血管的实 际图像150、处理设备120根据实际图像150所建立的心血管模型160,以及处理设备120从心 血管模型160中提取出的冠状动脉模型170等。显示的形式可以包括但不限于二维或三维的 医学图像、几何模型及其网格分析、矢量图(如速度矢量线)、等值线图、填充型的等值线图 (云图)、XY散点图、粒子轨迹图、模拟流动效果等一种或多种组合。又例如,交互设备140发 送的数据或信息可以包括用户的输入信息。交互设备140可以接收用户输入的处理设备120 的一个或多个运行参数,并发送到处理设备120。
[0041] 在一些实施例中,交互设备140可以包括一个用户交互界面。用户可以通过特定的 交互装置,如鼠标、键盘、触摸板、麦克风等向交互设备140输入一个用户输入数据。例如,用 户可以点击交互设备140所显示的模型并选择模型中感兴趣的区域。又例如,用户可以选择 交互设备140所显示的血管模型中任意的位置,交互设备140可以从处理设备120获取并显 示该位置的血流速、血压、血流量等。
[0042] 在一些实施例中,交互设备140可以是显示屏等具有显示功能的设备。在一些实施 例中,交互设备140可以具有处理设备120部分或全部的功能。例如,交互设备140可以对处 理设备120生成的结果进行平滑、降噪、变色等操作。举例说明,变色操作可以将一个灰度图 变成彩图,或将一个彩图变成一个灰度图。在一些实施例中,交互设备140与处理设备120可 以是一个集成的设备。所述集成的设备可以同时实现处理设备120和交互设备140的功能。 在一些实施例中,交互设备140可以包括台式电脑、服务器、移动设备等。移动设备可以包括 笔记本电脑、平板电脑、ipad、交通工具(例如,机动车、船、飞机等)的内置设备、可穿戴设备 等。在一些实施例中,交互设备140可以包括或连接到显示装置、打印机、传真等。
[0043] 网络180可以用于血流状态分析系统100内部的通信,接收系统外部的信息,向系 统外部发送信息等。在一些实施例中,数据采集设备110、处理设备120和交互设备140之间 可以通过有线连接、无线连接、或其结合的方式接入网络180。网络180可以是单一网络,也 可以是多种网络的组合。在一些实施例中,网络180可以包括但不限于局域网、广域网、公用 网络、专用网络、无线局域网、虚拟网络、都市城域网、公用开关电话网络等中的一种或几种 的组合。在一些实施例中,网络180可以包括多种网络接入点,例如有线或无线接入点、基站 或网络交换点,通过以上接入点使数据源连接网络180并通过网络发送信息。
[0044] 图IB所示的是一个血流状态分析系统100的另一个示意图。图IB与图IA类似。图IB 中,处理设备120可以与数据采集设备110直接相连,而数据采集设备110不与网络180直接 相连。
[0045] 以上的描述仅仅是本发明的具体实施例,不应被视为是唯一的实施例。显然,对于 本领域的专业人员来说,在了解本发明内容和原理后,都可能在不背离本发明原理、结构的 情况下,进行形式和细节上的各种修正和改变。例如,数据采集设备110、处理设备120、交互 设备140之间可以不通过网络180而直接进行数据或信息的交换。又例如,这些设备也可以 通过可移动存储器或其他中间媒介的方式进行数据或信息的交换。
[0046] 图2是根据本申请的一些实施例所示的一个计算设备200的结构。该计算设备200 可以实施本申请中披露的特定系统。本实施例中的特定系统利用功能框图解释了一个包含 用户界面的硬件平台。计算设备200可以实施当前描述血流状态分析系统100中的一个或多 个组件、模块、单元、子单元(例如,处理设备120,交互设备140等)。另外,血流状态分析系统 100中的一个或多个组件、模块、单元、子单元(例如,处理设备120,交互设备140等)能够被 计算设备200通过其硬件设备、软件程序、固件以及它们的组合所实现。这种计算机可以是 一个通用目的的计算机,也可以是一个有特定目的的计算机。两种计算机都可以被用于实 现本实施例中的特定系统。为了方便起见,图2中只绘制了一台计算设备,但是本实施例所 描述的进行信息处理并推送信息的相关计算机功能是可以以分布的方式、由一组相似的平 台所实施的,分散系统的处理负荷。
[0047] 如图2所示,计算设备200可以包括内部通信总线210,处理器(processor) 220,只 读存储器(ROM) 230,随机存取存储器(RAM) 240,通信端口 250,输入/输出组件260,硬盘270, 用户界面280。内部通信总线210可以实现计算设备200组件间的数据通信。处理器220可以 执行程序指令完成在此披露书中所描述的血流状态分析系统100的一个或多个功能、组件、 模块、单元、子单元。处理器220由一个或多个处理器组成。通信端口 250可以配置实现计算 设备200与血流状态分析系统100其他部件(比如数据采集设备110)之间数据通信(比如通 过网络180)。计算设备200还可以包括不同形式的程序储存单元以及数据储存单元,例如硬 盘270,只读存储器(ROM) 230,随机存取存储器(RAM) 240,能够用于计算机处理和/或通信使 用的各种数据文件,以及处理器220所执行的可能的程序指令。输入/输出组件260支持计算 设备200与其他组件(如用户界面280),和/或与血流状态分析系统100其他组件(如数据库 140)之间的输入/输出数据流。计算设备200也可以通过通信端口250从网络180发送和接收 信息及数据。
[0048] 图3描述了一种移动设备的结构,该移动设备能够用于实现实施本申请中披露的 特定系统。在本例中,用于显示和交互位置相关信息的用户设备是一个移动设备300。移动 设备300可以包括智能手机、平板电脑、音乐播放器、便携游戏机、全球定位系统(GPS)接收 器、可穿戴计算设备(如眼镜、手表等),或者其他形式。本例中的移动设备300包括一个或多 个中央处理器(CPUs) 340, 一个或多个图形处理器(graphical processing units (GPUs)) 330,一个显示320,一个内存360,一个天线310,例如一个无线通信单元,存储单元390,以及 一个或多个输入/输出(input output (I/O))设备350。任何其他合适的组件,包括但不限于 系统总线或控制器(图上未显示),也可能被包括在移动设备300中。如图3所示,一个移动操 作系统370,如iOS、Android、Windows Phone等,以及一个或多个应用380可以从存储单元 390加载进内存360中,并被中央处理器340所执行。应用380可能包括一个浏览器或其他适 合在移动设备300上接收并处理图像或血液状态分析相关信息的移动应用。用户与血流状 态分析系统100中一个或多个组件关于图像或血液状态分析相关信息的交互可以通过输 入/输出系统设备350获得并提供给处理设备120,以及/或血流状态分析系统100中的其他 组件,例如:通过网络180。
[0049] 根据本申请的一些实施例,图4A是处理设备的示例性模块示意图。处理设备120可 以包括接收模块410、控制模块420、多时相特征生成模块430、多时相特征处理模块440和输 出模块450。
[0050] 接收模块410可以从数据采集设备110和/或存储设备130获取图像数据、对象特征 数据等。所述图像数据可以是包括对象的血管、组织或器官的图片或数据。所述对象特征数 据可以包括对象的心率、心律、血压、血流速率、血液粘稠度、心输出量、心肌质量、血管流阻 以及其他与血管、组织或器官相关的对象特征数据以及对象年龄、身高、体重、性别等其他 对象特征数据。在一些实施例中,所述图像数据和对象特征数据可以是多时相数据。例如, 所述多时相数据可以是在不同的时间点或时相获得的对象身上相同或近似位置的数据。
[0051] 控制模块420可以发出控制指令。控制指令可以控制其他模块进行输入、输出、存 储、处理等操作。例如,所述控制指令可以控制接收模块410接收所需要的数据。又例如,所 述控制指令可以控制多时相特征生成模块430生成多时相的特征等。
[0052] 多时相特征生成模块430可以生成多时相特征。所述多时相特征可以包括多时相 模型、多时相参数、多时相边界条件、多时相的分析结果等。更具体的,多时相特征生成模块 430可以在多时相图像数据中分别选择感兴趣的区域。所述感兴趣的区域可以由多时相特 征生成模块430自行选择或根据用户输入数据选择。在一些实施例中,选择的感兴趣区域可 以是血管、组织或者器官等。例如,所述感兴趣区域可以是动脉血管,如冠状动脉、腹部动 脉、大脑动脉、下肢动脉等。所述多时相图像中选择的感兴趣区域可以是相对应的。例如,可 以包含至少部分相同的血管、组织、或器官等。多时相特征生成模块430可以进一步对所述 多时相图像中的感兴趣的区域进行分割。图像分割的方法可以包括基于边缘的图像分割方 法(如Perwitt算子法、Sobel算子法、梯度算子法、Kirch算子法等),基于区域的图像分割方 法(如区域生长法、阈值法、聚类法等),以及其他分割方法,如基于模糊集、神经网络的方法 等。在一些实施例中,多时相特征生成模块430可以同时对多时相图像中感兴趣的区域进行 分割。在一些实施例中,多时相特征生成模块430可以依次对多时相图像中感兴趣的区域进 行分割。
[0053] 多时相特征生成模块430可以对所述感兴趣区域进行模型重建,从而生成多时相 模型。模型的选择可以基于对象特征数据、感兴趣区域的特征等。例如,如果选定了感兴趣 的区域为冠状动脉,多时相特征生成模块430可以对包含冠状动脉的图像进行分割从而提 取出冠状动脉的图像。然后,多时相特征生成模块430可以根据对象特征、冠状动脉一般特 征、冠状动脉图像特征等进行模型的重建。重建的模型可以与冠状动脉血管的形状相对应, 或与冠状动脉中血液流动的形态相对应。在建立感兴趣区域的模型后,多时相特征生成模 块430可以设置参数和边界条件并根据模型进行分析和计算。具体的参数和边界条件设置 的方法以及分析方法可以参见本申请其他部分的描述。
[0054] 多时相特征处理模块440可以对生成的多时相计算结果进行处理(也被称为后处 理)。所述处理可以包括利用拟合、插值等方法生成模型的计算结果与时相的关系曲线或对 照表。根据所述关系曲线或对照表,多时相特征处理模块440可以进一步生成任意时相的分 析结果的估计值。具体的后处理的流程和结果可以参考图13及其描述。在一些实施例中,所 述多时相特征处理模块440可以将生成的多时相计算结果(例如,血管状态)与一个参考结 果进行比对并生成一个比对结论。所述参考结果可以是存储在存储设备130中的数据,可以 是存储在网络180中的数据,也可以是用户自行输入的数据。在一些实施例中,所述参考结 果及相关比对结论可以存储在一个表中。例如,所述计算结果为血流速率时,所述参考结果 可以为一个血流速率范围与危险程度的对应关系。所述危险程度可以分为正常、预警、危 险、极度危险等。在一些实施例中,用户可以根据临床经验手动输入所述对应关系。在一些 实施例中,所述比对可以是同一对象不同时期的血流速率的计算结果的比对。
[0055] 输出模块450可以将生成的多时相计算结果或数据进行输出。例如,输出模块450 可以将多时相计算结果或特征发送至存储设备130进行存储,或者发送至交互设备140进行 显不。在一些实施例中,多时相特征处理模块440或输出模块450可以在输出前对所述多时 相特征或计算结果进行降噪或平滑处理。所述多时相计算结果可以是生成的中间结果,如 感兴趣区域的模型,或生成的最终结果,如分析和计算得出的血流动力学参数或计算结果 与时相的关系曲线或对照表等。
[0056] 根据本申请的一些实施例,图4B是多时相特征处理的示例性流程图。在一些实施 例中,流程可以通过处理设备120实现。
[0057] 在462中,可以产生一个或多个控制指令。在一些实施例中,462可以通过控制模块 420实现。所述控制指令可以控制流程中其他步骤的进行。
[0058] 在464中,可以接收多时相数据。在一些实施例中,464可以通过接收模块410实现。 所述多时相数据可以包括多时相图像数据和多时相对象特征数据。在一些实施例中,所述 多时相对象特征数据可以是时间上连续的对象特征数据或特征曲线。
[0059] 在466中,可以生成多时相特征。在一些实施例中,466可以通过多时相特征生成模 块430实现。所述多时相特征可以包括多时相模型、多时相参数、多时相边界条件、多时相的 分析结果等。
[0060] 在468中,可以对生成的多时相特征进行处理。在一些实施例中,468可以通过多时 相特征处理模块440实现。所述处理可以包括利用拟合、插值等方法生成多时相特征与时相 的关系曲线或对照表。
[0061] 在470中,可以输出多时相特征或处理结果。在一些实施例中,470可以通过输出模 块450实现。在一些实施例中,可以跳过468,直接将生成的多时相特征输出。
[0062] 根据本申请的一些实施例,图5是多时相特征生成模块的示例性模块示意图。多时 相特征生成模块430可以包括数据获取单元510、参数设置单元520、计算单元530、网格生成 单元540、匹配单元550、区域选择单元560、输出单元570和判断单元580。
[0063] 数据获取单元510可以从多时相特征生成模块430中其他单元、血流状态分析系统 100中其他设备或模块或外界设备或模块中获取数据。所述数据可以包括图像数据、对象特 征数据、用户输入数据等。所述图像数据可以是包括对象的血管、组织或器官的图片或数 据。所述对象特征数据可以包括对象的心率、心律、血压、血流速率、血液粘稠度、心输出量、 心肌质量、血管流阻以及其他与血管、组织或器官相关的数据。在一些实施例中,所述图像 数据和对象特征数据可以是多时相数据。在一些实施例中,数据获取单元510可以从存储设 备130中获取经过处理后的数据,如重建好的血管模型等。在一些实施例中,数据获取单元 510可以对获取的图像数据进行预处理。所述预处理可以包括图像增强、图像降噪、图像平 滑等。
[0064] 参数设置单元520可以选择模型以及设置参数和边界条件。所述模型的选择可以 包括根据具体分析的病变部位(感兴趣区域)以及对象特征数据(如血液粘稠度等)选择适 合的血液粘性模型和流速边界模型。所述血液粘性模型可以包括牛顿流体模型、非牛顿流 体模型以及用户自定义的其他流体模型。所述牛顿流体模型可以用来模拟对象体内血液粘 稠度较为恒定的区域,而非牛顿流体模型可以用来模拟对象体内血液粘稠度不恒定的区 域。所述流速边界模型可以包括抛物线模型、双曲线模型、椭圆模型、平均流模型、 Womersley分布模型、Reynolds模型、混合模型等。在一些实施例中,所述参数的设置可以包 括选定的模型中参数的设置,例如牛顿流体模型中的血液粘性系数,牛顿流体模型中的血 液密度,模拟计算中的时间步数,模拟计算中的时间步长等。
[0065] 所述边界条件的设置可以包括对边界区域进行初始条件或限制条件的设置。所述 边界区域指的是感兴趣区域的边缘区域。例如,如果选定的感兴趣区域是一个血管区域或 与血管对应的血流区域,边界区域可以是血管的出口、入口、血管壁等。设置的边界条件可 以包括边界区域的血压、血流速率、流阻、压强、应力等。在一些实施例中,存储设备130或血 流状态分析系统100内部或外部的存储设备可能包括一个边界条件库。用户或参数设置单 元520可以根据对象特征数据自行设置一个边界条件或从所述边界条件库中选择一个已有 的边界条件。在一些实施例中,用户或参数设置单元520也可以根据感兴趣的区域将一个低 阶耦合模型作为边界条件。所述低阶耦合模型可以利用与感兴趣区域相耦合的区域或组织 的经验性模型作为边界条件。所述低阶耦合模型可以是二阶模型,一阶模型,零阶模型(集 中参数模型)或这些低阶模型的组合形式。
[0066] 计算单元530可以对多时相特征生成模块430中其他单元中产生的数据或信息进 行计算。在一些实施例中,计算单元530可以根据图像数据生成一个与之相对应的模型。所 述模型的生成可以基于参数设置单元520所选择的模型类型和设置的参数。在一些实施例 中,计算单元530可以在建立感兴趣区域的模型后,对模型进行分析和计算。所述分析和计 算的方法可以包括计算流体力学(Computed fluid dynamics)等。在一些实施例中,所述分 析和计算的结果可以包括血管、组织、或器官的物理状态和相关系数或参数。例如,对冠状 动脉模型进行分析和计算的结果可以包括冠状动脉的血流动力学参数,如血流速率、血液 压力、血管壁应力、血管壁切应力、血流储备系数(FFR)、冠状动脉血流储备(CFR)等中的一 种或多种的组合。
[0067] 在一些实施例中,计算单元530所计算的信息和数据可以是多时相的。计算单元 530可以分别对所述多时相的信息和数据进行分析和计算。在一些实施例中,计算单元530 可以根据不同时相的分析和计算结果生成感兴趣区域的物理状态和/或相关系数或参数与 时相或时间的关系。在一些实施例中,该关系可以用曲线或者对照表的方式体现。基于所述 曲线或对照表,可以获得任意时相的感兴趣区域的物理状态和/或相关系数或参数。在一些 实施例中,所述曲线、对照表或者任意时相的感兴趣区域的物理状态和相关参数系数可以 通过输出单元570发送到血流状态分析系统100其他模块或单元或血流状态分析系统100外 界的模块或单元中。
[0068] 网格生成单元540可以在生成模型的网格。在一些实施例中,网格生成单元540可 以在模型上生成二维或三维的网格。例如,网格生成单元540可以在模型的边界区域(入口、 出口等)生成二维的网格,而在模型的其他区域生成三维的网格。所述三维网格可以是基于 所述二维网格而建立的。具体的关于网格形成的方法和流程可以参见,例如,图10、图12及 其描述。
[0069] 匹配单元550可以对多时相的数据进行匹配。在一些实施例中,匹配单元550可以 将不同时相的模型进行相互关联。所述不同时相的模型可以是经过网格化处理后的模型。 在一些实施例中,所述不同时相的模型相互关联的过程可以包括先识别出不同时相的模型 中的特征区域。然后,将不同时相相对应的特征区域进行关联。例如,如果所述不同时相的 模型是血流模型(即感兴趣的血管中血流覆盖区域的模型),所述特征区域可以包括血流入 口区域、血流分叉区域、血流出口区域、血流狭窄区域、血流扩张区域等。然后,匹配单元550 可以将不同时相的相应特征区域进行关联。在一些实施例中,一个特征区域在不同时相可 能对应不同个数的网格。在这种情况下,所述特征区域在不同时相中的网格可以依靠某种 算法或方法进行关联。例如,当第一时相中多个网格对应于第二时相中一个网格或少数网 格时,匹配单元550可以对第一时相中多个网格的数值进行平均化处理后再与所述第二时 相中一个或少数网格的数值进行对应。在一些实施例中,在初始时相的计算中,可以将内部 网格(网格模型中不包括边界区域的网格)的初始值(例如,压强初始值,速率初始值等)设 置为0。在后续时相的计算中,可以利用网格匹配将上一时相的内部网格计算结果映射或匹 配至当前时相的内部网格相对应的网格中,并作为当前时相网格的初始值。在一些实施例 中,匹配单元550在完成匹配后可以提示用户确认匹配是否准确。如果用户确认匹配准确则 进行后续流程。如果用户认为匹配不准确,则用户可以对匹配结果进行修正或调整。用户也 可以选择在其参与的情况下重新进行网格匹配。
[0070] 区域选择单元560可以在图像数据中选择感兴趣的区域。所述感兴趣的区域可以 由区域选择单元560自行选择或根据用户输入的信息选择。在一些实施例中,选择的感兴趣 区域可以是血管、组织或者器官等。区域选择单元560可以进一步对所述图像中对感兴趣的 区域进行分割。图像分割的方法可以包括基于边缘的图像分割方法,如Perwitt算子法、 Sobel算子法、梯度算子法、Kirch算子法等,基于区域的图像分割方法,如区域生长法、阈值 法、聚类法等以及其他分割方法,如基于模糊集、神经网络的方法等。区域选择单元560可以 进全自动分割或半自动分割。例如,如果选择的感兴趣区域是冠状动脉、腹部动脉、大脑动 脉、下肢动脉等,区域选择单元560可以自动进行分割。如果选择的感兴趣区域是其他机器 较难准确分割的血管或部位,则可以进行半自动分割,由用户在分割过程中进行修正。在一 些实施例中,区域选择单元560可以对根据图像数据重建的三维模型进行区域选择和分割。
[0071] 输出单元570可以将多时相特征生成模块430中一个或多个单元所产生的信息、数 据或处理结果发送至血流状态分析系统100中的其他模块或单元中。例如,输出单元570可 以将计算单元530所生成的模型发送至交互设备140进行显示。又例如,输出单元570可以将 网格生成单元540进行网格化处理后的模型发送至存储设备130中进行存储。
[0072] 判断单元580可以进行逻辑判断。例如,血流状态分析系统100中其它模块或单元 可以发送一个判断请求至判断单元580。判断单元580可以根据所述判断请求对相应内容进 行判断。当判断出特定情况或生成判断结果后,判断单元580可以将判断结果或相应的操作 指令发送至相应的模块或单元(例如,发送判断请求的模块或单元)。例如,判断单元580可 以判断区域选择单元560所要分析的血管是否存在异常(如血管狭窄,动脉瘤等)。如果判断 出该血管存在异常,判断单元560可以突出显示(如用不同的颜色表示)该异常血管,并同时 提示用户确认该异常血管是否满足用户的要求。如果满足,则进行后续操作;如果不满足, 则用户可以手动选择异常血管,然后进行后续操作。例如,区域选择单元560可以将用户选 择的感兴趣区域和其自身生成的区域发送给判断单元580,判断单元580可以判断所述感兴 趣区域和区域选择单元560生成的区域是否相同。如果判断单元580判断出用户和区域选择 单元560生成的区域相同,贝Ij可以发送指令给区域选择单元560使其进行进一步地分割处 理。否则,可以通过显示设备140再次确认用户的选择。
[0073] 以上的描述仅仅是本发明的具体实施例,不应被视为是唯一的实施例。显然,对于 本领域的专业人员来说,在了解本发明内容和原理后,都可能在不背离本发明原理、结构的 情况下,进行形式和细节上的各种修正和改变。例如,上述各单元以单时相为例进行了说 明,但是可以理解的是各单元所接收、处理或输出的数据可以是多时相的。对于多时相的数 据,上述各单元可以对不同时相的数据分别进行相应操作从而产生多时相的特征。例如,网 格生成单元530可以对多时相的模型分别进行对应的网格化处理,从而生成多时相的网格 化处理后的模型。又例如,参数设置单元520可以对多时相的模型或数据分别设置相对应的 参数或边界条件。
[0074] 根据本申请的一些实施例,图6是获取多时相特征的示例性流程图。在一些实施例 中,获取多时相特征的流程可以通过多时相特征生成模块430实现。
[0075] 在602中,可以接收多时相数据。所述多时相数据可以包括多时相图像数据、多时 相对象特征数据等。多时相图像数据可以是包括对象的血管、组织或器官的多个不同时间 点的图片或数据。所述对象特征数据可以包括对象的心率、心律、血压、血流速率、血液粘稠 度、心输出量、心肌质量、血管流阻以及其他与血管、组织或器官相关的数据。如图7所示, 702包含3个时相的心脏的图像。704是对象在一个心动周期内的血压曲线。在一些实施例 中,所述多时相图像可以包含至少部分相同的血管、组织或器官。在一些实施例中,可以对 获取的多时相图像进行预处理。所述预处理可以包括图像增强、图像降噪、图像平滑等。
[0076] 在604中,可以选择多时相图像中感兴趣的血管区域。所述感兴趣的区域可以由区 域选择单元560自行选择或根据用户输入数据选择。对于不同时相的图像,可以依次进行感 兴趣区域的选择。不同时相的图像中选择的感兴趣区域可能是相同的。在一些实施例中,可 以进一步对选择出的感兴趣的区域进行分割。图像分割的方法可以包括基于边缘的图像分 割方法(如Perwitt算子法、Sobe 1算子法、梯度算子法、Kirch算子法等),基于区域的图像分 割方法(如区域生长法、阈值法、聚类法等),以及其他分割方法,如基于模糊集、神经网络的 方法等。所述分割的方法可以是全自动分割或半自动分割。例如,如果选择的感兴趣区域是 冠状动脉、腹部动脉、大脑动脉、下肢动脉等,可以自动进行分割。如果选择的感兴趣区域是 其他机器较难准确分割的血管或部位,则可以进行半自动分割,由用户在分割过程中进行 修正。在一些实施例中,可以依次对不同时相的图像进行分割,也可以同时对不同时相的图 像进行分割。
[0077] 在606中,可以建立血管区域的多时相模型。所述多时相模型可以是血管模型,或 血流模型。所述血管区域可以是冠状动脉血管区域、腹部动脉血管区域、大脑动脉血管区 域、下肢动脉血管区域等。在一些实施例中,所述血管区域可以是上述血管的全部区域或者 一部分区域。例如,所述血管区域可以是整个冠状动脉模型、左冠状动脉模型或右冠状动脉 模型或者冠状动脉的分支的模型,如左前降支、左回旋支、对角支等。如图7所示,708中从左 到右分别是图像、模型和分割后的模型。在一些实施例中,可以根据具体分析的病变部位 (例如,感兴趣区域)以及对象特征数据(例如,血液粘稠度等)选择适合的血液粘性模型和 流速边界模型。所述血液粘性模型可以包括牛顿流体模型、非牛顿流体模型以及用户自定 义的其他流体模型。所述流速边界模型可以包括但不限于抛物线模型、双曲线模型、椭圆模 型、平均流模型、Womersley分布模型、Reynolds模型、混合模型等。在一些实施例中,不同时 相的图像可能会分别建立与其相对应的模型。
[0078] 在608中,可以对建立的多时相模型进行网格化处理。在一些实施例中,可以在模 型的边界区域(例如,血管的入口、出口等)生成二维的网格,而在模型中其他区域形成三维 的网格。所述三维网格可以是基于所述二维网格而建立的。如图7所示,710是模型708进行 网格化处理后的结果。具体的关于网格形成的方法和流程可以参见,例如,图10、图12及其 描述。
[0079] 在610中,可以设定多时相的参数和边界条件。在一些实施例中,所述参数的设置 可以包括选定的模型中参数的设置,如流速U、密度P、血压P、截面积S等。所述边界条件的设 置可以包括对边界区域进行初始条件或限制条件的设置。所述边界区域指的是感兴趣区域 的边缘区域。例如,边界区域可以是血管的出口、入口、血管壁等。设置的边界条件可以包括 边界区域的血压、血流量、血流速率、血管流阻、压强、应力等。在一些实施例中,可以根据感 兴趣的区域将一个低阶耦合模型作为边界条件。所述低阶耦合模型可以利用与感兴趣区域 相耦合的区域或组织的经验性模型作为边界条件。所述低阶耦合模型可以是二阶模型,一 阶模型,零阶模型(集中参数模型)或这些低阶模型的组合形式。。如图7所示,712可以是模 型的选择和参数的设置的一个实施例。714可以是边界条件的设定的一个实施例。
[0080] 在612中,可以选择一个当前时相(在第一次选择的时候也可称作初始时相)。在一 些实施例中,初始时相可以依据一些特定的规则进行选择出来。例如,对于冠状动脉模型, 可以选择一个模型变化较慢或较平缓的时相作为初始时相,例如,离心脏收缩前期或者舒 张末期最近的时相。初始时相可以由机器(例如,多时相特征生成模块430)自行判断选择, 或由用户选择。如果机器和用户均没有或无法选择一个初始时相,可以任意选择一个时相 或者选择多时相特征生成模块430第一个接收到的时相作为初始时相。
[0081] 在614中,可以对当前时相(在第一次执行时为初始时相)进行分析,例如,计算流 体力学(CFD)分析。根据设定的模型、边界条件以及参数可以对三维血管模型的血流动力学 进行求解。所述求解的控制方程可以基于Euler方程组、纳维尔-斯托克斯方程组(Navier-Stokes Equations)或格子玻尔兹曼方程(Lattice Boltzmann Method)。求解计算的离散 化方法可以包括有限差分法、有限体积法、有限元法、边界元方法、谱方法、格子玻尔兹曼 法、无网格法等一种或多种组合。求解计算流场的流体可以是无粘的或有粘性的,可以是可 压缩流体也可以是不可压缩流体,可以是层流也可以是湍流,可以是定常流动也可以是非 定常流动。可以根据所模拟流体的物理特性,相应地选择相应的控制方程以及模拟方法。例 如,针对无粘流体的流场计算可以选用Euler方程组或者格子玻尔兹曼方程,针对有粘性流 体的流场计算可以选用N-S方程组或者玻尔兹曼方程。例如,对于冠状动脉进行的计算流体 力学(CFD)计算可以使用纳维尔-斯托克斯方程(Navier-Stokes Equations):
Figure CN107123112AD00161
[0085] 其中,P代表血液密度,u代表血流的速度,t代表时间,以及〇代表血流应力项(由血 压P和血液粘性力项决定)。在一些实施例中,在初始时相的计算中,可以将所述模型中的流 速的初始值设置为〇。在后续时相的计算中,所述模型中流速的初始值不再设置为〇,而是匹 配前后时相的网格,并根据上一时相的计算结果对当前时相的对应网格进行赋值,作为当 前时相流速的初始值。
[0086] 分析结果可以包括当前时相该模型任意一个区域或者位点的物理状态和相关系 数或参数。例如,对冠状动脉模型进行分析的结果可以包括冠状动脉任意一个区域或者位 点的血流动力学参数,如血流速率、血液压力、血管壁应力、血管壁切应力、血流储备系数 (FFR)、冠状动脉血流储备(CFR)等中的一种或多种的组合。如图7所示,718显示一种血流动 力学的分析计算。
[0087] 在616中,可以判断是否已遍历所有时相。在判断出已遍历所有时相后,可以执行 618。在判断出未遍历所有时相后,可以执行620。
[0088] 在618中,可以将分析结果进行输出。例如,将分析结果发送至血流状态分析系统 100其他模块或设备中。在一些实施例中,可以对分析结果进行后处理。所述后处理可以包 括生成分析结果与时相的关系曲线或对照表。所述后处理也可以包括根据所述关系曲线或 对照表进一步输出任意时相的分析结果的预估值。如图7所示,716显示一种后处理的结果。 后处理的流程和结果的示例可以参考图13及其描述。在一些实施例中,618可以进一步包括 将生成的多时相计算结果(例如,血管状态)与一个参考结果进行比对并生成一个比对结 论。所述参考结果可以是存储在存储设备130中的数据,可以是存储在网络180中的数据,也 可以是用户自行输入的数据。在一些实施例中,所述参考结果及相关比对结论可以存储在 一个表中。例如,所述计算结果为血流速率时,所述参考结果可以为一个血流速率范围与危 险程度的对应关系。所述危险程度可以分为正常、预警、危险、极度危险等。在一些实施例 中,用户可以根据临床经验手动输入所述对应关系。在一些实施例中,所述比对可以是同一 对象不同时期的血流速率的计算结果的比对。
[0089] 在620中,可以将下一时相的模型与当前时相的模型进行匹配。在一些实施例中, 所述不同时相的模型相互匹配的过程可以包括先识别出不同时相的模型中的特征区域。然 后,将不同时相相对应的特征区域进行关联。在一些实施例中,所述特征区域可以包括血流 入口区域、血流分叉区域、血流出口区域、血流狭窄区域、血流扩张区域等。操作620可以包 括将不同时相的相应特征区域进行关联。如图7所示,706可以是模型以及其特征区域相互 关联的一个实施例。在一些实施例中,一个特征区域在不同时相可能对应不同个数的网格。 在这种情况下,所述特征区域在不同时相中的网格可以依靠某种算法或方法进行关联。例 如,当第一时相中多个网格对应于第二时相中一个网格或少数网格时,匹配单元550可以对 第一时相中多个网格的数值进行平均化处理后再与所述第二时相中一个或少数网格的数 值进行对应。所述网格数值的对应包括将第一时相的网格的数值作为第二时相对应网格的 输入。
[0090] 在622中,可以将下一时相设为当前时相并进一步执行614。
[0091] 以上的描述仅仅是本发明的具体实施例,不应被视为是唯一的实施例。显然,对于 本领域的专业人员来说,在了解本发明内容和原理后,都可能在不背离本发明原理、结构的 情况下,进行形式和细节上的各种修正和改变。例如,606可以在604之前执行,可以先基于 图像数据建立整个区域的模型,再在模型中选择和分割出感兴趣的部分。
[0092] 根据本申请的一些实施例,图8是设定边界条件的示例性流程图。在一些实施例 中,设定边界条件的流程与610相对应。在一些实施例中,设定边界条件的流程可以通过参 数设置单元520实现。
[0093] 在802中,可以获取血管区域的一个模型。在一些实施例中,所述模型可以通过606 获得。所述模型可以是血管模型,也可以是血流模型。所述血管区域可以是冠状动脉血管区 域、腹部动脉血管区域、大脑动脉血管区域、下肢动脉血管区域等。在一些实施例中,所述血 管区域可以是上述血管的全部区域或者一部分区域。例如,所述血管区域可以是整个冠状 动脉模型、左冠状动脉模型或右冠状动脉模型或者冠状动脉的分支的模型,如左前降支、左 回旋支、对角支等。在一些实施例中,所述模型可以是用掩膜(mask)表示的血管区域。在一 些实施例中,所述模型可以是用网格表示的血管模型。
[0094] 在804中,可以判断所述血管区域的模型是否存在异常情况。所述异常情况可以包 括血管狭窄、血栓、血管扩张、血管瘤等。如图9所示,模型910是一个存在狭窄的冠状动脉模 型,该模型包括930、940两处狭窄区域。模型920是一个正常的冠状动脉模型,该模型与930、 940相对应的区域(935、945)没有明显狭窄。在一些实施例中,804可以包括提取所述血管区 域的模型的中心线。在一些实施例中,血管中心线可以指位于血管内部的沿着血管走向的 一条假想的线。血管中心线可以包括血管中一个或多个像素点(或体素点)的集合。在一些 实施例中,血管中心线可以包括血管中心或靠近血管中心的像素点(或体素点)的集合或组 成的一条线。在一些实施例中,血管中心线可以包括一个或多个血管端点。所述血管中心线 可以为所述端点之间的一条路径。在一些实施例中,关于血管中心线提取的示例性方法可 以参考2016年8月30日提交的申请号为PCT/CN2016/097294的国际申请,其内容以引用的方 式被包含于此。然后,可以沿所述中心线设置多个特征点。进一步地,可以计算模型在所述 特征点的横截面积。根据特征点的横截面积,可以判断出模型是否存在异常情况。例如,如 果计算出特征点的横截面积出现不正常的降低(例如,两个横截面积正常的特征点中间包 括一个横截面积较低的特征点),可以判断模型可能存在狭窄或血栓。在一些实施例中,所 述特征点的个数应该至少达到可以使得横截面积的变化足够判断是否存在异常情况的数 量(例如,选择的相邻特征点的距离小于狭窄区域的长度)。在判断出模型不存在异常情况 之后,可以执行822。在判断出模型存在异常情况之后,可以执行806。
[0095] 在806中,可以确定存在异常情况的区域。例如,可以根据存在异常情况的模型(也 称作异常模型)横截面积的变化情况,判断并标记模型中可能的狭窄或膨大区域。血管狭窄 或膨大区域可能是某段血管的局部面积最小值或最大值,或血管截面变化较大的区域。在 一些实施例中,可以将确定的异常区域发送给用户。如果发现异常区域不准确,用户可以对 所述异常区域进行修正。例如,用户可以手动选择异常模型中的一个或多个点或者一段区 间作为异常区域。
[0096] 在808中,可以获取与异常模型相关的数据。所述数据可以包括血管入口血流流 速、入口血流流量、入口血压、入口流阻、分流个数、出口个数、血液粘稠度、血液密度等。在 一些实施例中,血管进口流量可以通过与之相连的组织或器官的相关参数或特征计算获 得。例如,冠状动脉的进口流量可以用心输出量来估测,而心输出量可以通过分析心脏腔室 在一个心动周期的容积变化获得。一些经验性的生理规律也可以用于估测这些物理量。例 如,冠脉血流量与心肌质量成正比,QocQoMa,其中Q表示冠脉血流量,Qo为一常数,M表示心 肌质量,指数a为一预定义的变化因子。在一些实施例中,心肌质量M可以通过无创的方法获 得。例如,通过心肌体积与心肌密度相乘获得。在一些实施例中,冠状动脉的入口血压可以 通过血压计等测量获得。
[0097] 在810中,可以基于异常模型重建一个正常模型。在一些实施例中,重建的区域仅 限于确定的异常区域,而模型中其它区域保持不变。在一些实施例中,重建的方法可以是基 于血管异常区域前后的管径和其中心线进行放样或拉伸操作从而形成正常区域。在一些实 施例中,重建的方法也可以是对异常区域进行膨胀或缩小操作。所述膨胀操作后的血管截 面不大于狭窄段前后血管的截面。所述缩小操作后的血管截面不小于扩张段前后血管的截 面。在一些实施例中,可以对重建后的异常区域周围进行平滑处理从而避免其出现明显的 突变。在一些实施例中,可以将重建的正常模型发送给用户。如果发现重建不准确,用户可 以对部分或全部重建的正常模型进行修正。例如,用户可以对重建后的正常模型进行局部 膨胀、局部腐蚀,局部平滑等。
[0098] 在812中,可以获取与正常模型相对应的数据。所述数据可以包括正常模型的边界 条件、各出入口流阻等。边界条件可以包括入口和出口的血压、流速、流量等。在一些实施例 中,入口的血压、流速可以在808中获得。出口的流量可以通过计算获得。例如,可以假设分 支血管的流量分配与分支管径正相关,即Qadk,其中d为分支血管近端(靠近分支点)的平 均管径,k为放大系数。然后,可以从进口开始在每个血管分叉口按照上述正相关的关系进 行流量分配,直到将所述进口的流量分配到每个出口为止。基于正常模型以及所述边界条 件,可以进行计算流体力学(CFD)模拟计算,从而获得正常模型每个出口的流阻(出口压强 与出口流量的比值)。
[0099] 在816中,可以确定模型的总流阻。总流阻可以通过以下公式计算:
Figure CN107123112AD00191
[0101] 其中R表示模型的总流阻,Pinlet表示入口血压压强,以及Q为入口血流量。Pinlet和Q 可以在808中获得,在此不再赘述。
[0102] 在818中,可以通过对血管中心线、血管截面以及血管异常区域的分析来确定对象 血管在正常情况下各级各分支血管近端(靠近分支点)的管径大小。
[0103] 在820中,可以根据正常模型管径的大小对出口的流阻进行分配。流阻可以依照以 下公式进行分配:
Figure CN107123112AD00192
[0105] 其中d表示管径,i表示本级分叉血管的编号,j表示本次流阻分配所处级别,以及k 表示流阻分配指数(比如,冠状动脉中k可以被设置为2.7)。
[0106] 在822中,可以生成与实际血管模型相对应的边界流阻。在一些实施例中,所述与 实际血管模型相对应的边界流阻可以根据正常模型相对应的边界流阻获得。例如,实际血 管模型相对应的边界流阻可以与正常模型相对应的边界流阻相同。在一些实施例中,血管 模型的边界流阻可以根据步骤820所描述的流阻分配方式获得。
[0107] 根据本申请的一些实施例,图10是网格化处理的示例性流程图;在一些实施例中, 网格化处理的流程与608相对应。所述网格化处理的流程可以通过网格生成单元540实现。
[0108] 在1002中,可以获取一个模型。所述模型可以是本申请其他实施例中说明的模型, 例如,对象血管或血流、组织或器官或其他感兴趣区域重建后的模型。如图11所示,1110可 以是一个冠脉血流模型,即模型1110可以表示冠脉血管中血流所覆盖的区域。在不考虑血 管壁厚度以及血管堵塞等情况下,模型Ilio也可以近似表示一个冠脉血管模型。
[0109] 在1004中,可以确定所述模型的边界区域。如果模型是一个血管或与血管对应的 血流区域,边界区域可以是血管的出口、入口、血管壁等。如图11所示,模型1110的入口 1120 可以在1004中被确定为模型1110的边界区域。
[0110] 在1006中,可以对确定的边界区域进行面网格划分(也被称为二维网格划分)。所 述面网格划分可以是将边界区域对应的平面用网格进行划分。网格的划分算法包括三角网 格划分,四角网格划分,六角网格划分,或者类似的,或者一个或多个的组合。示例性的网格 划分算法包括Loop算法,蝶型细分算法,Catmul I-Clark算法,Doo-Sabin算法,Delaunay三 角划分算法等。网格划分的方法示例可以参见图12及其描述。如图11所示,1130是模型1110 的入口截面图,以及1140是1130网格划分的示例性结果。
[0111] 在1008中,可以对模型侧壁进行面网格划分。在一些实施例中,侧壁和边界区域可 以使用不同的网格划分方法进行划分。例如,侧壁可以使用曲面网格剖分算法进行网格划 分。所述曲面网格剖分的算法可以包括映射法和自动网格生成法等。所述映射法可以包括 将侧壁映射至平面,利用二维网格划分方法对平面进行划分后,再将划分后的网格映射回 侧壁。所述自动网格生成法可以根据侧壁中不同区域的曲度将侧壁分成若干个近似平面再 分别进行二维网格划分。平面网格划分可以参照本申请中其他地方的描述,例如,图12以及 描述。
[0112] 在1010中,可以根据边界区域和侧壁的面网格划分结果对模型进行体网格划分 (也被称为三维网格划分)。所述体网格划分可以是将模型用三维的网格进行划分。所述三 维网格可以包括四面体网格、六面体网格、棱柱体网格(边界层网格)、四面体与六面体混合 网格、笛卡尔网格、球填充法网格等。在一些实施例中,1004至1008可以被跳过,即可以直接 对模型进行体网格划分。
[0113] 根据本申请的一些实施例,图12是网格划分的示例性流程图。在一些实施例中,流 程1200可以通过多时相特征生成模块430实现。在一些实施例中,图6中的608,图10中的 1006等可以根据流程1200实施。
[0114] 在1202中,可以获取一个二维图像。在一些实施例中,所述二维图像可以通过数据 获取单元510获得。在一些实施例中,二维图像可以是一个二维医学图像,或者其中用户感 兴趣的部分(例如,冠脉血管所在的区域,大脑区域等)。仅仅作为示例,二维图像可以是一 个CT图像、MRI图像、PET图像等。二维图像可以以灰度或者彩色的方式呈现出来。在一些实 施例中,二维图像可以是一个时相模型的二维显示。例如,二维图像可以是一个与1006中的 时相模型的边界区域有关的图像。更具体地,二维图像可以显示一个血流模型的入口/出口 区域(例如,如图9所示)。二维图像可以是一个由图像处理设备(例如,处理设备120)重建的 图像。二维图像可以来自一个本地存储装置或者外界的存储装置(例如,存储设备130)。
[0115] 在1204中,网格生成单元540可以提取二维图像中感兴趣区域的轮廓点。在一些实 施例中,提取二维图像中感兴趣区域的轮廓点包括先分割感兴趣区域,再对分割后的感兴 趣区域提取轮廓点。所述对感兴趣区域的分割方法见本申请中其他地方的描述。在一些实 施例中,感兴趣区域的轮廓点可以包括一个或多个位于感兴趣区域边界的像素点(也称为 “轮廓像素点”)。例如,冠脉入口截面处的轮廓点可以包括一个或多个位于冠脉壁的轮廓像 素点。在一些实施例中,感兴趣区域的轮廓像素点可以是连续的,部分连续的,或者不连续 的。这里所说的连续是指一个轮廓像素点与至少一个或多个其他轮廓像素点相临。提取出 的轮廓点的信息可以保存在一个或者多个存储装置中(例如,存储设备130,存储模块260 等)。轮廓点的信息可以在后续流程中被网格生成单元540或者其他可以进行数据分析的单 元/模块使用。示例性的轮廓点的信息可以包括轮廓点的位置,轮廓点的数量,或者类似的, 或者一个或多个的组合。
[0116] 在1206中,可以根据轮廓点确定一个或多个区域。在一些实施例中,所述一个或多 个区域的确定可以通过网格生成单元540实现。所述一个或多个区域可以通过依次连接感 兴趣区域的轮廓点形成。仅仅作为示例,确定一个或多个区域可以包括确定一个感兴趣区 域的初始轮廓像素点(例如,初始轮廓像素点可以选为轮廓像素点中x/y坐标最小的点)。按 照顺时针或者逆时针方向,将感兴趣区域的轮廓像素点进行排序。从初始轮廓像素点开始, 用线条连接前一个轮廓像素点与后一个轮廓像素点以形成短边。当最后一个轮廓像素点与 初始轮廓像素点连接形成短边后,可以形成一个封闭的轮廓曲线。在一些实施例中,感兴趣 区域可以位于一条封闭的轮廓曲线的内部。例如,图11中模型入口 1140的感兴趣区域(即, 进行网格划分的区域)位于轮廓曲线的内部。在一些实施例中,感兴趣区域可以是位于两条 封闭的轮廓曲线之间的区域。例如,感兴趣区域可以是一个二维环状结构,或者与二维环状 结构拓扑等价的结构。一个或多个区域的信息(例如,区域对应的网格曲线)可以保存在一 个或者多个存储装置中(例如,存储设备130,存储模块260等)。一个或多个区域的信息可以 在后续流程中被网格生成单元540或者其他可以进行数据分析的单元/模块使用。
[0117] 在1208中,可以对一个区域是否需要进行网格划分进行判断。在一些实施例中,所 述判断可以由判断单元580实现。在判定出该区域不需要进行网格划分之后,流程1200进入 1210。在判定出该区域需要进行网格划分之后,流程1200进入1212。在一些实施例中,判断 单元580进行判断的条件可以是该区域是否是感兴趣区域。当该区域是感兴趣区域时,则被 判定为需要进行网格划分。如本披露书中在其他地方描述的,感兴趣区域可以包括需要进 行血液状态分析的区域,例如,特定血管中血液流动的区域。
[0118] 在1210中,可以对该区域进行标记。在一些实施例中,对区域的标记可以由网格生 成单元540实施。标记可以采用计算机可读取的代码或者可执行的指令的形式。被标记的区 域信息可以被保存在一个或多个存储装置(例如,存储设备130,存储模块260等)。被标记的 区域信息可以在后续流程中被网格生成单元540或者其他可以进行数据分析的单元/模块 读取,从而在进行网格划分时剔除该被标记的区域。
[0119] 在1212中,可以对该区域进行网格划分。在一些实施例中,网格划分可以由网格生 成单元540实施。在一些实施例中,网格的划分可以基于该区域的轮廓点进行。网格的划分 算法包括三角网格划分,四角网格划分,六角网格划分,或者类似的,或者一个或多个的组 合。示例性的网格划分算法包括Loop算法,蝶型细分算法,Catmul I-Clark算法,Doo-Sabin 算法,Delaunay三角划分算法等。仅仅作为举例,网格生成单元540可以利用Delaunay三角 划分(Delaunay triangulation)算法对该区域的所有轮廓点进行网格划分。又例如,网格 生成单元540可以先将该区域的轮廓点分成不同子集,并对各个子集轮廓点进行网格划分。 然后,网格生成单元540可以将各个子集的网格划分合并形成该区域的网格划分。具体地, 可以将该区域所有的轮廓点按照χ/y坐标进行排序(例如,先按照X坐标进行非递减排序,对 于X坐标相同的点,按照y坐标非递减排序)。将排序后的轮廓点按照数量分成子集A和子集 B,并分别完成Delaunay三角划分。再将子集A和子集B的Delaunay三角划分合并成所有轮廓 点的Delaunay三角划分。在一些实施例中,网格划分还可以包括将该区域的轮廓曲线与通 过划分算法划分的网格进行叠加,从而划分的网格中保留该区域的轮廓曲线(例如,1206中 提到的由轮廓像素点连接形成的一个或多个短边)。
[0120] 在一些实施例中,对一个区域的网格的划分可以采用并行技术的网格生成方法。 例如,应用区域分裂或类似算法将该区域分为若干个子区域,在每个子区域内独立进行网 格划分,再修复相邻子区域的边界网格,进而获得该区域的完整网格。
[0121] 在1214中,可以对该区域设置网格划分控制条件。在一些实施例中,网格划分控制 条件的设置可以由网格生成单元540实现。网格划分控制条件可以控制网格的数量,大小, 分布,形状,或者类似的,或者一个或多个的组合。在一些实施例中,网格生成单元540可以 设置一个网格单元的面积约束条件,使得任意网格单元的面积满足该面积约束条件。例如, 网格生成单元540可以设置一个面积约束值,使得任意网格单元的面积都不大于该面积约 束值。在一些实施例中,网格生成单元540可以设置一个网格单元的内角约束条件,使得任 意网格单元的内角都满足该内角约束条件。例如,网格生成单元540可以设置一个三角网格 单元的内角约束值,使得任意三角网格单元的最小内角都不小于该内角约束值。在一些实 施例中,网格划分控制条件可以由用户通过,例如,交互设备140,输入后获得。网格划分控 制条件也可以由网格生成单元540或者其他具有数据分析功能的单元/模块根据特定条件 分析获得。特定条件可以包括生成网格需要的时间,生成的网格的数量,根据生成的网格进 行模型计算的时间,根据生成的网格计算获得的结果的精确程度等。
[0122] 在1216中,可以判断划分的网格是否满足控制条件。在一些实施例中,对网格划分 的判断可以由网格生成单元540完成。如果划分的网格不满足控制条件,则流程1200进入 1218〇
[0123] 在1218中,可以对网格进行处理。在一些实施例中,对网格的处理可以由网格生成 单元540完成。网格处理可以包括调整网格数量,改变网格大小等一个或多个操作。调整网 格数量可以包括提高网格密度,降低网格密度等。改变网格大小可以包括分割网格,合并网 格,对网格进行重组等。
[0124] 在一些实施例中,如果一个三角网格单元不满足面积约束条件(例如,该三角网格 单元的面积大于面积约束值),则可以在该三角网格单元中插入一个或多个辅助点。辅助点 的插入可以是随机的,也可以按照原三角网格的特征点的位置插入。网格生成单元540可以 根据辅助点生成新的网格。例如,可以在三角网格单元的内部,例如,重心处插入一个辅助 点。连接辅助点和原三角网格的顶点可以生成三个新的三角网格单元。又例如,可以在三角 网格单兀内部随机性地或者与非随机性地插入多个辅助点。根据多个辅助点利用De I aunay 三角划分(Delaunay triangulation)算法划分出DeIaunay三角网格。在一些实施例中,如 果一个三角网格单元不满足内角约束条件,则可以采用特定的算法对三角网格单元进行处 理。例如,可以采用flip算法更新三角网格单元。具体地,flip算法可以包括通过选择一个 包含两个相邻的三角网格单元的四边形(四边形的一条对角线为两个三角网格单元相邻的 边),选择该四边形中另一条对角线作为两个新三角形的边),获得两个新的三角网格单元。 内角约束条件可以包括三角网格单元的最小内角不小于一个内角约束值。内角约束值可以 是5°、10°、15°、20°、25°,或者其他数值。
[0125] 网格经过处理后重新返回1216,由网格生成单元540判断处理后的网格是否满足 控制条件。直到网格满足控制条件,则流程1200进入1220。
[0126] 在1220,网格生成单元540可以判断是否已经遍历所有区域。如果否,则流程1200 返回到1208,对没有处理到的区域进行是否划分网格的判断。如果已经遍历所有区域,则在 1222中,由网格生成单元540生成感兴趣区域的网格。在一些实施例中,划分不同区域的网 格类型的算法可以相同,或不同。例如,所有区域可以都采用Delaunay三角划分算法划分网 格。又例如,一部分区域可以采用Delaunay三角划分算法划分网格,一部分区域可以采用四 角网格划分算法或者六角网格划分算法进行网格划分。在一些实施例中,不同区域的网格 划分控制条件可以相同,或不同。例如,所有区域的网格划分控制条件可以包括面积约束条 件和/或内角约束条件。不同区域的面积约束条件和/或内角约束条件可以相同,或不同。具 体地,所有区域的内角约束条件可以是任意三角网格的最小内角不小于一个内角约束值 (例如,20°)。又例如,脑部图像的面积约束条件可以包括最大三角网格单元的面积不大于 A,血管图像的面积约束条件可以包括最大三角网格单元的面积不大于B,其中A小于B。
[0127] 以上的描述仅仅是本发明的具体实施例,不应被视为是唯一的实施例。显然,对于 本领域的专业人员来说,在了解本发明内容和原理后,都可能在不背离本发明原理、结构的 情况下,进行形式和细节上的各种修正和改变。在一些实施例中,1210可以被跳过。例如,如 果一个区域被判断为不需要进行网格划分,则可以直接删除该区域。在一些实施例中,1214 可以移到1208之前,即网格生成单元540可以对所有需要划分网格的区域设置相同的网格 划分控制条件。在一些实施例中,流程1200可以对三维图像进行网格划分。例如,对三维区 域的网格划分可以采用快速Delaunay的球充填法(ball-packing)。网格生成单元540可以 在三维几何区域内用球充填法布点,依据几何模型的几何特征和空间关系自适应地分布疏 密合适的节点,然后采用快速Delaunay插入技术生成三维网格。
[0128] 根据本申请的一些实施例,图13是描述获得一个位点对应的血流动力学参数的示 例性流程图。在一些实施例中,获得一个位点对应的血流动力学参数的流程可以通过多时 相特征处理模块440实现。在一些实施例中,图4B中的468可以根据获得一个位点对应的血 流动力学参数的流程实施。
[0129] 在1302中,多时相特征处理模块440可以获得多时相的血流动力学参数值。在一些 实施例中,多时相的血流动力学参数值可以与所述获取多时相特征的流程中614-618有关。 所述血流动力学参数值可以表示冠状动脉血管区域、腹部动脉血管区域、大脑动脉血管区 域、下肢动脉血管区域等血管区域的血流状态。血流动力学参数可以包括血液流速、血液压 力、血管壁应力、血管壁切应力、血流储备系数(FFR)、冠状动脉血流储备(CFR)等中的一种 或多种的组合。在一些实施例中,多时相的血液动力学参数值可以对应一个特定时间段内 的血流状态。例如,可以获取一个心脏跳动周期内不同时相的血流动力学参数值,从而获得 在该心脏跳动周期内的血流状态。获取的时相数量可以是3个,或者5个,或者8个,或者10 个,或者15个等。
[0130] 在1304中,多时相特征处理模块440可以确定一个血管中的位点。所述位点可以是 血管入口/出口的平面上的任意一点,或血管壁或者血管内部空间上的任意一点。在一些实 施例中,所述位点的确定可以由用户通过,例如,交互设备140,输入后实现。
[0131] 在1306中,多时相特征处理模块440可以拟合位点的血流动力学参数曲线。在一些 实施例中,所述血流动力学参数曲线可以表示一个心脏跳动周期内的血流状态。所述拟合 可以包括将多时相的血流动力学参数按照一个函数进行拟合。用于拟合的函数可以是线性 的,或非线性的。适用的非线性函数可以包括多项式函数,对数函数,指数函数,或者类似 的,或者其中多个的组合。例如,根据冠脉血管入口平面上一个位点多时相的FFR值,可以拟 合出在一定时间范围内所述位点的FFR曲线。进一步的,在获得所述位点在一个心脏跳动周 期内的FFR拟合曲线后,可以根据心脏跳动的周期性,生成所述为点在任意时刻的FFR曲线。
[0132] 在1308中,多时相特征处理模块440可以根据参数曲线获得位点一个感兴趣时相 的血流动力学参数值(例如,FFR值)。所述感兴趣时相可以不同于1302中获得的多时相中任 意一个。在一些实施例中,所述感兴趣时相的选择可以是由用户通过,例如,交互设备140, 输入后实现。在一些实施例中,多时相特征处理模块440可以根据血流动力学参数曲线对所 述位点的血流动力学参数值进行处理。例如,可以根据一段时间的血流动力学参数值(例 如,FFR值),获取平均血流动力学参数值(例如,平均FFR值)。
[0133] [1]以上的描述仅仅是本发明的具体实施例,不应被视为是唯一的实施例。显然, 对于本领域的专业人员来说,在了解本发明内容和原理后,都可能在不背离本发明原理、结 构的情况下,进行形式和细节上的各种修正和改变。在一些实施例中,在进行拟合位点的血 流动力学参数曲线之前,多时相特征处理模块440可以获得为点额外的血流动力学参数。所 述额外的血流动力学参数可以是通过插值方法处理后获得,也可以是用户通过,交互设备 140,输入后获得。
[0134] 根据本申请的一些实施例,图14是描述获得位点对应的血流动力学参数的示意 图。图片1402显示包含心脏区域和腹部区域的多时相图像数据。图片1406显示一个时相的 图像中对应的冠脉以及建立的冠脉模型。图像1408显示所述冠脉在不同时相的FFR分布。所 述不同时相的血液流动状态可以根据获取多时相特征的流程获得。图片1404显示对象的特 异性临床数据,包括对象的主动脉压随时间的变化曲线,相位冠脉血流量随时间的变化曲 线。图片1410显示对象的FFR随时间变化的曲线。
[0135] 上文已对基本概念做了描述,显然,对于本领域技术人员来说,上述发明披露仅仅 作为示例,而并不构成对本申请的限定。虽然此处并没有明确说明,本领域技术人员可能会 对本申请进行各种修改、改进和修正。该类修改、改进和修正在本申请中被建议,所以该类 修改、改进、修正仍属于本申请示范实施例的精神和范围。
[0136] 本发明虽然已以较佳实施例公开如上,但其并不是用来限定本发明,任何本领域 技术人员在不脱离本发明的精神和范围内,都可以利用上述揭示的方法和技术内容对本发 明技术方案做出可能的变动和修改,因此,凡是未脱离本发明技术方案的内容,依据本发明 的技术实质对以上实施例所作的任何简单修改、等同变化及修饰,均属于本发明技术方案 的保护范围。

Claims (10)

1. 一种血流状态分析方法,其特征在于:所述方法包括: 获取一个第一时相的图像和一个第二时相的图像; 在所述第一时相的图像中选择一个第一血管区域,其中,所述第一血管区域包含一个 血管; 在所述第二时相的图像中选择一个第二血管区域,其中,所述第二血管区域包含至少 一部分所述血管; 建立一个第一血管模型,其中,所述第一血管模型与所述第一血管区域相对应; 建立一个第二血管模型,其中,所述第二血管模型与所述第二血管区域相对应; 设定所述第一血管模型的边界条件和所述第二血管模型的边界条件; 根据所述第一血管模型的边界条件,确定所述第一血管模型中所述血管在所述第一时 相的状态; 基于所述血管在所述第一时相的状态,关联所述第一血管模型和所述第二血管模型; 以及 根据所述关联结果以及所述第二血管模型的边界条件,确定所述第二血管模型中所述 血管在所述第二时相的状态。
2. 如权利要求1所述的方法,其特征在于:所述第一血管区域和所述第二血管区域包括 冠状动脉、腹部动脉、大脑动脉或下肢动脉。
3. 如权利要求1所述的方法,其特征在于:所述关联所述第一血管模型和所述第二血管 模型包括关联所述第一血管模型和所述第二血管模型的所述血管的入口段、所述血管的分 叉段、所述血管的狭窄段、或所述血管的出口段。
4. 如权利要求1所述的方法,其特征在于:所述方法进一步包括对所述第一血管模型得 到第一血管模型的网格和对所述第二血管模型进行网格化处理后得到第二血管模型的网 格,所述关联所述第一血管模型和所述第二血管模型包括将第一血管模型的网格和所述第 二血管模型的网格进行匹配。
5. 如权利要求1所述的方法,其特征在于:所述血管在所述第一时相的状态或在第二时 相的状态分别包括血流速、血压力、血管壁应力、血管壁切应力或血流储备系数(FFI?)。
6. 如权利要求1所述的方法,其特征在于:所述确定所述第一血管模型中所述血管在所 述第一时相的状态或所述确定所述第二血管模型中所述血管在所述第二时相的状态包括 使用计算流体力学(CFD)方法。
7. —个血流状态分析系统,包括至少一个处理器和存储设备,其特征在于:所述系统包 括: 一个接收模块,被配置为: 获取一个第一时相的图像和一个第二时相的图像;以及 一个多时相特征生成模块,被配置为: 在所述第一时相的图像中选择一个第一血管区域,其中,所述第一血管区域包含一个 血管; 在所述第二时相的图像中选择一个第二血管区域,其中,所述第二血管区域包含至少 一部分所述血管; 建立一个第一血管模型,其中,所述第一血管模型与所述第一血管区域相对应; 建立一个第二血管模型,其中,所述第二血管模型与所述第二血管区域相对应; 设定所述第一血管模型的边界条件和所述第二血管模型的边界条件; 根据所述第一血管模型的边界条件,确定所述第一血管模型中所述血管在所述第一时 相的状态; 基于所述血管在所述第一时相的状态,关联所述第一血管模型和所述第二血管模型; 以及 根据所述关联结果以及所述第二血管模型的边界条件,确定所述第二血管模型中所述 血管在所述第二时相的状态。
8. —种血流状态分析方法,所述分析方法包括: 获取多个时相的血管图像,包括一个第一时相的血管图像和一个第二时相的血管图 像,所述多个时相的血管图像分别对应于同一个血管或其一部分; 建立多个血管模型,所述多个血管模型分别对应于所述多个时相的血管图像; 根据所述多个血管模型,获得所述血管或其一部分的多个状态,包括一个第一血管状 态和一个第二血管状态,其中,所述第一血管状态对应于所述第一时相的血管图像,所述第 二血管状态对应于所述第二时相的血管图像; 根据所述血管或其一部分的所述多个状态,获得所述血管或其一部分的状态随时间变 化的关系;以及 根据所述关系,获得所述血管或其一部分的第三血管状态。
9. 如权利要求8所述的方法,其特征在于:所述方法进一步包括: 关联所述多个血管模型;以及 根据所述关联结果,采用计算流体力学(CFD)分析所述多个血管状态,所述关联所述多 个血管模型包括关联所述多个血管模型中至少两个血管模型的入口段、分叉段、狭窄段或 出口段。
10. 如权利要求8所述的方法,其特征在于:所述方法进一步包括对所述多个血管模型 分别进行网格化处理得到多个血管模型的网格,以及将所述多个血管模型的网格进行匹 配。
CN201710257724.8A 2017-01-23 2017-04-19 血流状态分析系统及方法 Active CN107123112B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CNPCT/CN2017/072256 2017-01-23
PCT/CN2017/072256 WO2018133118A1 (zh) 2017-01-23 2017-01-23 血流状态分析系统及方法

Publications (2)

Publication Number Publication Date
CN107123112A true CN107123112A (zh) 2017-09-01
CN107123112B CN107123112B (zh) 2020-08-04

Family

ID=59724862

Family Applications (3)

Application Number Title Priority Date Filing Date
CN201710257724.8A Active CN107123112B (zh) 2017-01-23 2017-04-19 血流状态分析系统及方法
CN201710257262.XA Active CN107115111B (zh) 2017-01-23 2017-04-19 血流状态分析系统及方法
CN201710258086.1A Pending CN107123159A (zh) 2017-01-23 2017-04-19 血流状态分析系统及方法

Family Applications After (2)

Application Number Title Priority Date Filing Date
CN201710257262.XA Active CN107115111B (zh) 2017-01-23 2017-04-19 血流状态分析系统及方法
CN201710258086.1A Pending CN107123159A (zh) 2017-01-23 2017-04-19 血流状态分析系统及方法

Country Status (4)

Country Link
US (4) US10360682B2 (zh)
EP (1) EP3375364A4 (zh)
CN (3) CN107123112B (zh)
WO (1) WO2018133118A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108186038A (zh) * 2018-02-11 2018-06-22 杭州脉流科技有限公司 基于动脉造影影像计算冠脉血流储备分数的系统
CN108257214A (zh) * 2018-02-12 2018-07-06 成都信息工程大学 心脏左心室流场域数值模拟方法、计算机、计算机程序
CN112561871A (zh) * 2020-12-08 2021-03-26 中国医学科学院北京协和医院 一种基于平扫ct图像的主动脉夹层分割方法和装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6653673B2 (ja) * 2017-02-28 2020-02-26 富士フイルム株式会社 血流解析装置および方法並びにプログラム
CN107610773A (zh) * 2017-09-12 2018-01-19 北京即刻叁维数据科技股份有限公司 一种基于主动脉医学影像的血管夹层辅助诊断方法
CN109616200A (zh) * 2018-11-06 2019-04-12 北京三普威盛科技有限公司 用于冠脉狭窄评估的方法,装置,存储介质及电子设备
CN109620199B (zh) * 2018-11-30 2021-03-16 博动医学影像科技(上海)有限公司 建立血管截面函数、血管压力差和血管应力的方法及装置
CN109567776A (zh) * 2018-12-31 2019-04-05 深圳北芯生命科技有限公司 用于测试ffr主机系统的导管模拟器
CN109948622B (zh) * 2019-03-26 2020-12-11 数坤(北京)网络科技有限公司 一种头颈体动脉瘤检测方法、装置及计算机可读存储介质
US10861157B2 (en) 2019-04-04 2020-12-08 Medtronic Vascular, Inc. System and methods for determining modified fractional flow reserve values
CN112434676B (zh) * 2021-01-26 2021-04-20 北京圣点云信息技术有限公司 一种基于汇流累计量信息的体内静脉识别方法及装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101347343A (zh) * 2007-07-17 2009-01-21 株式会社东芝 超声波图像取得装置
CN101527047A (zh) * 2008-03-05 2009-09-09 深圳迈瑞生物医疗电子股份有限公司 使用超声图像检测组织边界的方法与装置
CN102274046A (zh) * 2010-06-08 2011-12-14 株式会社东芝 超声波诊断装置、超声波图像处理装置以及医用图像诊断装置
CN104720894A (zh) * 2015-02-11 2015-06-24 中山大学附属第一医院 一种血管手术方式的合理性分析方法
CN104720851A (zh) * 2013-12-23 2015-06-24 Ge医疗系统环球技术有限公司 计算机断层扫描成像的方法和装置
CN105096388A (zh) * 2014-04-23 2015-11-25 北京冠生云医疗技术有限公司 基于计算流体力学的冠状动脉血流仿真系统和方法
CN105190630A (zh) * 2013-01-15 2015-12-23 凯瑟沃克斯有限公司 计算血流储备分数
CN106327487A (zh) * 2016-08-18 2017-01-11 苏州润心医疗科技有限公司 基于x射线冠脉造影图像的冠状动脉血流储备分数计算方法
CN106539622A (zh) * 2017-01-28 2017-03-29 北京欣方悦医疗科技有限公司 基于血流动力学分析的冠脉虚拟支架植入方法和系统

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2488105A4 (en) 2009-10-13 2014-05-07 Agency Science Tech & Res METHOD AND SYSTEM ADAPTED TO SEGMENT AN OBJECT IN AN IMAGE (A LIVER IN THE OCCURRENCE)
US8682626B2 (en) 2010-07-21 2014-03-25 Siemens Aktiengesellschaft Method and system for comprehensive patient-specific modeling of the heart
US8315812B2 (en) 2010-08-12 2012-11-20 Heartflow, Inc. Method and system for patient-specific modeling of blood flow
US9119540B2 (en) 2010-09-16 2015-09-01 Siemens Aktiengesellschaft Method and system for non-invasive assessment of coronary artery disease
US9141763B2 (en) 2011-02-07 2015-09-22 Siemens Aktiengesellschaft Method and system for patient-specific computational modeling and simulation for coupled hemodynamic analysis of cerebral vessels
CN103930037A (zh) 2011-08-26 2014-07-16 Ebm株式会社 血管治疗效果的血流模拟的系统、其方法及计算机软件程序
US10162932B2 (en) 2011-11-10 2018-12-25 Siemens Healthcare Gmbh Method and system for multi-scale anatomical and functional modeling of coronary circulation
US10373700B2 (en) 2012-03-13 2019-08-06 Siemens Healthcare Gmbh Non-invasive functional assessment of coronary artery stenosis including simulation of hyperemia by changing resting microvascular resistance
US9135699B2 (en) * 2012-03-15 2015-09-15 Siemens Aktiengesellschaft Method and system for hemodynamic assessment of aortic coarctation from medical image data
CN103635138B (zh) * 2012-06-27 2016-01-20 株式会社东芝 X射线诊断装置
US10398386B2 (en) 2012-09-12 2019-09-03 Heartflow, Inc. Systems and methods for estimating blood flow characteristics from vessel geometry and physiology
RU2015121362A (ru) 2012-11-06 2016-12-27 Конинклейке Филипс Н.В. Индекс фракционного резерва кровотока (фрк)
JP2014100249A (ja) * 2012-11-19 2014-06-05 Toshiba Corp 血管解析装置、医用画像診断装置、血管解析方法、及び血管解析プログラム
JP6334902B2 (ja) 2012-11-30 2018-05-30 キヤノンメディカルシステムズ株式会社 医用画像処理装置
JP6091870B2 (ja) 2012-12-07 2017-03-08 東芝メディカルシステムズ株式会社 血管解析装置、医用画像診断装置、血管解析方法、及び血管解析プログラム
CN104871211B (zh) * 2012-12-11 2018-09-11 皇家飞利浦有限公司 确定通过冠状动脉的血液流量的方法
WO2014097063A1 (en) 2012-12-18 2014-06-26 Koninklijke Philips N.V. Method and apparatus for simulating blood flow under patient-specific boundary conditions derived from an estimated cardiac ejection output
US9042613B2 (en) 2013-03-01 2015-05-26 Heartflow, Inc. Method and system for determining treatments by modifying patient-specific geometrical models
CN108992058A (zh) 2013-07-30 2018-12-14 哈特弗罗公司 为优化诊断性能利用边界条件模型化血流的方法和系统
US9700219B2 (en) * 2013-10-17 2017-07-11 Siemens Healthcare Gmbh Method and system for machine learning based assessment of fractional flow reserve
US10595806B2 (en) 2013-10-22 2020-03-24 Koninklijke Philips N.V. Fractional flow reserve (FFR) index with adaptive boundary condition parameters
JP6362853B2 (ja) * 2013-11-20 2018-07-25 キヤノンメディカルシステムズ株式会社 血管解析装置、および血管解析装置の作動方法
US9390232B2 (en) * 2014-03-24 2016-07-12 Heartflow, Inc. Systems and methods for modeling changes in patient-specific blood vessel geometry and boundary conditions
CN106659399B (zh) * 2014-05-05 2020-06-16 西门子保健有限责任公司 使用患病和假想正常解剖学模型中的流计算的冠状动脉狭窄的非侵入功能评价的方法和系统
US10206587B2 (en) * 2014-05-16 2019-02-19 Toshiba Medical Systems Corporation Image processing apparatus, image processing method, and storage medium
US9747525B2 (en) * 2014-06-16 2017-08-29 Siemens Healthcare Gmbh Method and system for improved hemodynamic computation in coronary arteries
JP6553099B2 (ja) 2014-06-30 2019-07-31 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 血流予備量比値を算出するための機器
CN106572824A (zh) 2014-07-18 2017-04-19 皇家飞利浦有限公司 狭窄评估
JP6377856B2 (ja) 2014-08-29 2018-08-22 ケーエヌユー−インダストリー コーポレーション ファウンデーション 患者別の心血管情報を決定する方法
CN105513036B (zh) * 2014-09-26 2019-05-31 上海联影医疗科技有限公司 三维ct图像的分割方法及装置
JP6505444B2 (ja) 2015-01-16 2019-04-24 キヤノンメディカルシステムズ株式会社 観察装置
US9928609B2 (en) 2015-03-10 2018-03-27 Toshiba Medical Systems Corporation Medical image processing apparatus and medical image processing method
CN106033603B (zh) * 2015-03-10 2019-06-11 东芝医疗系统株式会社 医用图像处理装置和医用图像处理方法
US10716513B2 (en) 2015-04-17 2020-07-21 Heartflow, Inc. Systems and methods for cardiovascular blood flow and musculoskeletal modeling for predicting device failure or clinical events
DE102015207596A1 (de) * 2015-04-24 2016-10-27 Siemens Healthcare Gmbh Verfahren sowie Rechen- und Druckeinheit zum Erstellen einer Gefäßstütze
CN105654497B (zh) * 2016-01-20 2019-03-01 华北电力大学(保定) 一种血管内光声图像的时间反演重建方法
CN106127819B (zh) 2016-06-30 2019-10-08 上海联影医疗科技有限公司 医学图像中提取血管中心线的方法及其装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101347343A (zh) * 2007-07-17 2009-01-21 株式会社东芝 超声波图像取得装置
CN101527047A (zh) * 2008-03-05 2009-09-09 深圳迈瑞生物医疗电子股份有限公司 使用超声图像检测组织边界的方法与装置
CN102274046A (zh) * 2010-06-08 2011-12-14 株式会社东芝 超声波诊断装置、超声波图像处理装置以及医用图像诊断装置
CN105190630A (zh) * 2013-01-15 2015-12-23 凯瑟沃克斯有限公司 计算血流储备分数
CN104720851A (zh) * 2013-12-23 2015-06-24 Ge医疗系统环球技术有限公司 计算机断层扫描成像的方法和装置
CN105096388A (zh) * 2014-04-23 2015-11-25 北京冠生云医疗技术有限公司 基于计算流体力学的冠状动脉血流仿真系统和方法
CN104720894A (zh) * 2015-02-11 2015-06-24 中山大学附属第一医院 一种血管手术方式的合理性分析方法
CN106327487A (zh) * 2016-08-18 2017-01-11 苏州润心医疗科技有限公司 基于x射线冠脉造影图像的冠状动脉血流储备分数计算方法
CN106539622A (zh) * 2017-01-28 2017-03-29 北京欣方悦医疗科技有限公司 基于血流动力学分析的冠脉虚拟支架植入方法和系统

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108186038A (zh) * 2018-02-11 2018-06-22 杭州脉流科技有限公司 基于动脉造影影像计算冠脉血流储备分数的系统
CN108186038B (zh) * 2018-02-11 2020-11-17 杭州脉流科技有限公司 基于动脉造影影像计算冠脉血流储备分数的系统
CN108257214A (zh) * 2018-02-12 2018-07-06 成都信息工程大学 心脏左心室流场域数值模拟方法、计算机、计算机程序
CN112561871A (zh) * 2020-12-08 2021-03-26 中国医学科学院北京协和医院 一种基于平扫ct图像的主动脉夹层分割方法和装置

Also Published As

Publication number Publication date
CN107123159A (zh) 2017-09-01
CN107115111B (zh) 2020-11-27
CN107115111A (zh) 2017-09-01
US9984465B1 (en) 2018-05-29
US10776922B2 (en) 2020-09-15
US20180211388A1 (en) 2018-07-26
US20180211386A1 (en) 2018-07-26
WO2018133118A1 (zh) 2018-07-26
CN107123112B (zh) 2020-08-04
EP3375364A4 (en) 2019-01-23
EP3375364A1 (en) 2018-09-19
US10360682B2 (en) 2019-07-23
US20190340764A1 (en) 2019-11-07
US10325369B2 (en) 2019-06-18

Similar Documents

Publication Publication Date Title
CN107123112A (zh) 血流状态分析系统及方法
CN102525443B (zh) 用于基于医学图像数据对心血管循环建模的方法和设备
US20180055572A1 (en) Method and system for image processing to determine blood flow
US20160103972A1 (en) Method and system for sensitivity analysis in modeling blood flow characteristics
CN110853029B (zh) 用于基于医学图像自动预测血流特征的方法、系统和介质
CN108109698B (zh) 计算血流储备分数的系统和设置边界条件的方法
CN106887000A (zh) 医学图像的网格化处理方法及其系统
CN106537392A (zh) 用于冠状动脉中的血液动力学计算的方法和系统
CN108122616B (zh) 个体特异性的心血管模型的生成方法及其应用
CN106659399A (zh) 使用患病和假想正常解剖学模型中的流计算的冠状动脉狭窄的非侵入功能评价的方法和系统
US20200202973A1 (en) Method and system for facilitating physiological computations
US20210161384A1 (en) System and methods for estimation of blood flow characteristics using reduced order model and machine learning
JP2019512131A (ja) 画像ベースの患者固有の血流力学的モデルにおいて解像されていない血管を特定してモデル化するためのシステム及び方法
CN106709920A (zh) 血管提取方法及其装置
CN107665737A (zh) 血管壁应力应变状态获取方法、计算机可读介质及系统
Gharleghi et al. Deep learning for time averaged wall shear stress prediction in left main coronary bifurcations
Mu et al. Construction of anatomically accurate finite element models of the human hand and a rat kidney
JP2020513978A5 (zh)
JP2019518266A (ja) ヒト又は動物の胴体のための生体力学的モデル生成
Abdallah et al. Effect of surface re-meshing on hemodynamic simulations quality in carotid arteries
Debbich et al. Impact of Surface Mesh Simplification on Hemodynamic Simulations
do Vale Afonso Breast Modeling Towards an Educational Tool for Breast Cancer Surgeons

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP01 Change in the name or title of a patent holder

Address after: 201807 Shanghai city Jiading District Industrial Zone Jiading Road No. 2258

Patentee after: Shanghai Lianying Medical Technology Co., Ltd

Address before: 201807 Shanghai city Jiading District Industrial Zone Jiading Road No. 2258

Patentee before: SHANGHAI UNITED IMAGING HEALTHCARE Co.,Ltd.

CP01 Change in the name or title of a patent holder