CN108255780A - 一种基于优化目标的舰队防空资源控制参量的求解计算方法 - Google Patents

一种基于优化目标的舰队防空资源控制参量的求解计算方法 Download PDF

Info

Publication number
CN108255780A
CN108255780A CN201711386359.7A CN201711386359A CN108255780A CN 108255780 A CN108255780 A CN 108255780A CN 201711386359 A CN201711386359 A CN 201711386359A CN 108255780 A CN108255780 A CN 108255780A
Authority
CN
China
Prior art keywords
state
time
task
model
resource
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711386359.7A
Other languages
English (en)
Other versions
CN108255780B (zh
Inventor
史红权
陈行军
张晓盼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Naval Vessels College Navy P L A
Original Assignee
Dalian Naval Vessels College Navy P L A
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Naval Vessels College Navy P L A filed Critical Dalian Naval Vessels College Navy P L A
Priority to CN201711386359.7A priority Critical patent/CN108255780B/zh
Publication of CN108255780A publication Critical patent/CN108255780A/zh
Application granted granted Critical
Publication of CN108255780B publication Critical patent/CN108255780B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/11Complex mathematical operations for solving equations, e.g. nonlinear equations, general mathematical optimization problems

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Analysis (AREA)
  • Computational Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Theoretical Computer Science (AREA)
  • Operations Research (AREA)
  • Algebra (AREA)
  • Databases & Information Systems (AREA)
  • Software Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Feedback Control In General (AREA)

Abstract

本发明涉及一种基于优化目标的舰队防空资源控制参量的求解计算方法,在舰队防空资源的子调度计划状态演化的有限状态机(FSM)模型基础上,转化为简化的0‑1整数线性规划模型,并在该模型基础上,能够以有限的计算资源快速求解全局最优解,最终实现了系统状态演化的控制变量的规范、高效求解,从而实现了舰队防空资源子调度过程中对防空资源设施基本无延迟的调度与控制。

Description

一种基于优化目标的舰队防空资源控制参量的求解计算方法
技术领域:
本发明涉及水面舰艇编队多平台协同防空指挥和调度领域,尤其涉及一种基于优化目标 的舰队防空资源控制参量的求解计算方法。
背景技术:
水面舰艇编队防空决策与自动化调度控制问题通常被归结于WTA(Weapon TargetAssignment)问题,主要考虑武器与目标的优化匹配,这种处理的合理性在于防空系统中武器通道不可重组。在水面舰艇编队多平台协同防空信息系统(简称MCE)支持下,编队可统一组织调度防空作战资源,针对来袭目标跨平台构建多个涵盖探测、决策、目指、跟踪、发射、制导全过程的武器信息通道对来自空中目标实施抗击,如何优化组织防空作战资源,提高编 队协同区域防空能力,成为迫切需要解决的问题。MCE条件下编队协同区域防空需要解决防空 通道的组织,以及武器通道与目标的匹配。现有技术中,通过先实现武器与目标的匹配,再 围绕武器为其组织信息通道来解决此问题,但基于这种分步优化的策略难以保障决策通道组 织与火力分配方案的整体优化。
动态调度策略有三种模式,分别是反应式(completely reactive scheduling)、规划- 重调度(predictive-reactive scheduling)及鲁棒性调度(robust pro-reactivescheduling)。协同区域防空资源调度的特点是集中规划、分散实施,考虑到通道组织需要有 一定的时间,因此反应式调度虽然具有实时性好的优势,却容易造成“顾此失彼”;防空作战 的特点是不确定性和准实时性,与生产过程调度中的不确定性相比,防空作战过程中的不确 定性部分源于对抗性;鲁棒性调度适于处理那些能够采用随机变量描述的不确定性因素,如 适用于处理方案执行偏差的不确定性,但无法从整体上来解决防空资源的动态调度。
规划-重调度的调度策略可以采用滚动时域的框架,该框架具有很强的适用性和可操作 性,且能兼顾动态调整和区段优化两方面的优势。滚动时域调度框架的基本要素是:场景预 测、子过程建模和重调度决策
其中,子过程建模一直是决定滚动时域调度质量的关键因素,因为它是优化计算的最终 载体,本质上它是一个短时段的静态调度建模,为了让滚动的短时段静态调度能够拼接成一 个长期的动态优化策略,需要从两方面来考虑,一是在静态模型中考虑波动抑制问题,也就 是考虑短时段静态模型在这个短时段内稳定的问题,如果子过程优化解在运用过程中被频繁 调整,也就没有“滚动时域”的意义了,但在动态环境下,所谓的“短时段”也是动态的, 所以子过程优化类似于鲁棒优化;另一方面是子过程终端目标的设置,这是滚动时域中的一 个重要概念,指的是子过程优化模型不能直接以全过程优化目标为目标,而应考虑时域滚动 的衔接问题,子过程的优化除了过程内的状态优化外,还要考虑将下一个过程开始时其状态 调配到一个比较好情况,这通常通过将下一个子过程开始状态设置为优化目标来实现。
重调度决策和子过程建模是紧密关联的,从本质上说,当子过程优化模型不能实现优化 效果了,就应启动重调度并进行时域滚动,因此子过程模型的质量和有效性直接影响重调度 决策的效果,如果子过程模型的稳定性强,那么可以采取简单的“到期滚动”策略,也就是 等待子过程自然结束到期,再启动下一阶段,但是在动态性较强的环境下,更多的是“事件 触发”策略,也就是对场景变化进行评价,当变化幅度超过子过程模型的处理能力就启动重 调度,因此触发的频度受到场景自然的动态性和子过程模型的鲁棒性两方面影响,考虑到联 合调度的对抗性较强,而场景变化主要受编队动作所影响,所以我们认为子过程模型的鲁棒 性在其中发挥更大的作用。
综合上述分析可以看出,子过程建模在舰队防空资源调度控制当中是主要的核心问题。 从另一个角度来分析子过程模型的要求,滚动时域调度本质上是一个用分段优化拟合原有非 线性动态优化的框架,因此子过程模型一定要比原有动态模型更简单才有意义,当然,子过 程参数规模一定比原有模型简单。因此,面向舰队防空资源的子调度过程,可以在系统演化 状态分析的基础上,定义演化状态分析的有限状态机(FSM)模型。
但更关键的是,我们希望子过程模型的形式和复杂度更简单,考虑实战要求,子过程模 型应该达到在短时间内精确求解的要求,否则就失去了滚动时域调度的意义,这一要求对子 过程模型的形式提出了限制,因而提出了对子调度过程的状态演化模型能在短时间内精确求 解,获得对舰队防空资源设施控制参量的问题。
发明内容
本申请提供了一种基于优化目标的舰队防空资源控制参量的求解计算方法。该方法在舰 队防空资源的子调度计划状态演化的有限状态机(FSM)模型基础上,转化为简化的0-1整数线 性规划模型,并在该模型基础上求解全局最优解,根据该最优解制定用于控制舰队防空资源 设施的任务安排方案。
本发明所述的基于优化目标的舰队防空资源控制参量的求解计算方法,其特征在于,包 括以下步骤:
在子调度计划的任务集的控制下,分析舰队防空作战系统的状态演化,建立系统状态演 化的有限状态机(FSM)模型;
采用0-1整数形式表达有限状态机(FSM)模型的状态变量,建立0-1整数型状态变量形式 下面向可行调度的FSM模型;
建立所述0-1整数型状态变量形式下面向可行调度的FSM模型的差分状态转移方程;
基于差分状态转移方程,确定0-1整数规划模型的决策变量和辅助参量,以及确定各类决 策变量和辅助参量之间的约束关系,确定优化目标,从而确定包括优化目标函数和约束条件 的0-1整数规划模型;
对所述0-1整数规划模型进行约束条件线性化以及优化目标融合的转换,获得0-1整数线 性规划模型;
对于0-1整数线性规划模型,进行松弛简化,获得简化的0-1整数线性规划模型;由简化 后的0-1整数线性规划模型获得差分状态转移方程,求解获得全局最优解;
根据全局最优解制定对舰队防空资源设施调度的任务安排方案。
优选的是,建立系统状态演化的有限状态机(FSM)模型具体包括:为舰队防空资源的子调 度计划建立任务集;在任务集的控制下,执行系统状态的演化分析;建立表示系统状态演化 的有限状态机(FSM)模型;其中,所述任务集M={m}由子调度计划中的若干个任务向量m构成, 所述任务向量m表示为m=(gm,fm,am,em,tm),其中gm∈G,fm∈F,am∈Z+,em∈E; G、F和E分别表示制导资源集合、发射资源集合和目标集合,gm和fm分别表示执行任务m的制导 资源和发射资源,am表示执行任务m时发射的弹药数量,em表示任务m打击的目标,tm表示任务 的时间属性
优选的是,所述0-1整数型状态变量形式下面向可行调度的FSM模型的差分状态转移方程 为:
其中上述方程满足以下约束条件:
以及,
在t时刻g同时执行跟踪制导任务的数量不能超过在t时刻制导资源g的最大容量,在 t时刻f同时执行打击任务的数量不能超过在t时刻发射资源f的最大容量,某个发射资源 计划期内所有任务所耗费的弹药量不能超过其计划期开始时的总载弹量;
其中,g为制导资源,f为发射资源,e为目标,a为弹药资源,sijgfet表示子系统(g,f, e)在时刻t处于s i.j状态,mgfaet表示任务集中在时刻t的一个任务;|G|、|F|、|A|分别表示计划期内跟踪资源、发射资源、导弹资源的规模,GELge表示由(g,e)参与的制导资源与目标 的关联关系G-E关联准备任务的执行时间,GFLgf表示由(g,f)参与的制导资源与发射资源的关 联关系G-F关联准备任务的执行时间,GELge和GFLgf均为整数值;ψgfet表示在t时刻是否产生 一个Close-GE(g,f,e,t)事件,表示在t时刻是否产生一个Close-GF(g,f,e,t)事件,φgfet表示在t时刻是否产生一个Close-ALL(g,f,e,t)事件,其中,Close-GE(g,f,e,t)事件表示 在t时刻仅关闭子系统(g,f,e)的G-E关联,Close-GF(g,f,e,t)事件表示在t时刻仅关闭子 系统(g,f,e)的G-F关联,Close-ALL(g,f,e,t)事件表示在t时刻关闭子系统(g,f,e)的所有 关联,ψgfetφgfet、的取值均为0或1;DMAX为所有Lgfe、GELge、GFLgf中的最大值,DMAX 表示所有的工作执行时间参量中的最大值。
优选的是,0-1整数规划模型的约束条件包括:1)控制变量和状态变量的互斥性约束;2) 资源容量限制性约束;其中,
所述控制变量和状态变量的互斥性约束具体包括:(1)子系统(g,f,e)控制的非歧义性, 即子系统在任意时刻接收的控制变量应该不多于一个;(2)子系统(g,f,e)状态互斥性,即任 意时刻任意子系统有且仅有一种状态;(3)目标打击状态互斥性,即在任意时刻针对同一目 标的所有子系统中处于目标打击状态的子系统不多于一个;
所述资源容量限制性约束是任务执行的实际物理限制,包括制导资源同时跟踪目标数量 限制、发射资源同时打击目标数量限制以及发射资源载弹量限制。
优选的是,所述优化目标包括:末端威胁等级最小化、末端抗击损耗最小化以及总耗弹 量最小化。
优选的是,对所述0-1整数规划模型进行的优化目标融合包括:将末端威胁等级最小化目 标转换为约束条件,对末端抗击损耗最小化和总耗弹量最小化目标进行加权求和。
优选的是,对于0-1整数线性规划模型进行的松弛简化包括:对差分状态转移方程状态 变迁条件和模型参量的松弛化。
可见,本发明基于优化目标的舰队防空资源控制参量的求解计算方法,在舰队防空资源 的子调度计划状态演化的有限状态机(FSM)模型基础上,转化为简化的0-1整数线性规划模型, 并在该模型基础上,能够以有限的计算资源快速求解全局最优解,最终实现了系统状态演化 的控制变量的规范、高效求解,从而实现了舰队防空资源子调度过程中对防空资源设施基本 无延迟的调度与控制。
附图说明
图1是本发明作战系统特定时刻状态示意图;
图2是本发明进行作战系统状态演化分析过程中的完全演化路径示意图;
图3是本发明的给定三元组(g,f,e)定义的子系统在t时刻状态演化FSM模型示意图;
图4是本发明简化的状态演化FSM模型示意图;
图5是本发明面向可行调度方案的0-1差分FSM模型示意图;
图6是本发明实现差分状态转移方程线性化过程中Y(e,t)线性化在[0.2,1]区间内的对比 图;
图7是本发明实现的简化的0-1整数线性规划模型的FSM模型示意图;
图8是本发明基于简化的0-1整数线性规划模型实现求解的实例中防御阵势示意图;
图9是本发明基于简化的0-1整数线性规划模型实现求解的实例中包含G-F关联准备时间 的FSM图。
具体实施方式
现在将参照附图详细说明本发明构思的特定实施例。
首先,针对本发明中使用的术语的含义定义如下:
资源:指的是参与到防空任务过程中的各类设备实体,包括三个类别:用于探测和跟踪 目标的资源,例如监测雷达、制导雷达等,由于协同防空主要针对舰空导弹的打击形式,因 此本方案中将这类资源称为“制导资源”;用于实施攻击的资源,主要是舰空导弹,因此本方 案中将这类资源称为“发射资源”;作为打击目标的资源主要是敌方飞行器,在本方案中称为 “目标资源”,或者在不发生歧义的情况下简称“目标”。
任务:一个协同防空任务指的是针对目标资源所制定的具有相对独立性的一次完整打击 过程,其中包括了对监测、定位、制导、武器发射、观效等过程的执行时间、协同方式、打 击强度、评判准则等参数的给定。
通道:基于任务中给定的具体参数值,可以针对特定目标在制导资源、发射资源、打击 强度3者上形成一个控制逻辑或者通讯上的联合体,这个联合体称为一个“通道”,是发起防 空打击的抽象主体,也是本方案调度模型中最小粒度的优化单元。
动态调度:动态调度指的是在给定防空时段内,基于对舰艇编队形式、资源工作状态、 目标运行状态的动态演化和不确定扰动的预测,通过优化计算形成迭代式的协同防空任务序 列和调整策略的过程。
本发明提供了基于优化目标的舰队防空资源控制参量的求解计算方法。
下面首先介绍本发明对子调度通用数学模型的建立。
舰队防空过程中的一次联合打击是利用监控资源发现目标、利用制导资源实施跟踪制导、 利用发射资源实施、对打击效果进行评估的一连串过程,子调度计划的目的是根据现有情况, 确定一个相关较短时段(计划期)内各种资源的任务序列。
真实的对抗过程具有高度的动态性和不确定性,而且涉及到各种博弈行为,进行精确建 模相当困难,但在滚动时域框架下,由于子调度计划期较短,且存在重调度机制,因此可以 对子调度的工作状态进行适当简化。
本发明以定义任务集的形式,建立子调度计划的概念模型。具体来说,我们在子调度的 计划期内可以不考虑监控资源的任务安排,从而将一个打击任务视为发射资源与制导资源组 合起来对特定目标实施的行为。调度计划可以视为一个任务集M={m},对于一个给定任务m, 需要确定其在资源属性和时间属性上的具体安排,可以给出任务的向量表示如下:
m=(gm,fm,am,em,gt1m,gt2m,ft1m,ft2m),
gm∈G,fm∈F,am∈Z+,em∈E,gt1m,gt2m,ft1m,ft2m∈R+.
其中:G、F和E分别表示制导资源集合、发射资源集合和目标集合,根据假设条件(2)-(3),这些集合在整个计划期内都是恒定不变的。gm和fm分别表示执行任务m的制导资源和发射资源,am表示执行任务m时发射的弹药数量,em表示任务m打击的目标,gt1m和gt2m分别表示任务m中制导资源工作的开始时间和结束时间,ft1m和ft2m分别表示任务m中发射资源 工作的开始时间和结束时间,Z+表示正整数。
资源工作过程同步进行的,也就是gt1m=ft1m,gt2m=ft2m,因此gt1m-gt2m=ft1m-ft2m,我们 称其为任务执行时间(打击时长)。任务执行时间可以表达为基于任务属性值的函数,且函数 的形式可以在计划期开始时确定。因此任务的时间属性可以进一步简化为一个实数变量tm, 表示任务开始时间(即制导资源和发射资源开始工作的时间),任务m的向量表示可以简化为:
m=(gm,fm,am,em,tm). (1)
本质上说,计划任务集M是对尚未开始的战斗过程的预编排,而实际发生的战斗过程是 动态的,我们真正关心的是在实际发生的战斗中各类资源和目标的状态演化及其所产生的效 果。为了描述子调度计划的概念模型,我们假定在计划期内所发生的实际战斗中,在启动重 调度之前,所有的攻击任务均严格按照计划执行,除非目标提前被消灭,那么在给定初始条 件下,资源和目标的状态演化过程将完全由任务集所控制。
在定义了子调度计划的任务集之后,可以在任务集的控制下,展开作战系统状态演化分 析。
作战系统状态演化分析,从系统动力学的角度来看,在整个打击过程中,由制导资源、 发射资源和目标共同组成作战系统的状态演化依赖于打击任务安排和目标状态演化。我们采 用图1的形式来形象表达一个作战系统在特定时刻的瞬态状态。
根据图1,在特定时刻,作战系统的状态可以用各类对象之间的关联关系来表达,其中 制导资源与目标的关联关系(简称G-E关联)表示了对目标的跟踪制导,制导资源与发射资 源的关联关系(简称G-F关联)表示了打击通道的建立,而发射资源与目标之间的关联关系 (简称F-E关联)表示了对目标实施的打击,根据实际的作战动作要求,每种关联都具有3 种状态:连接未建立(None,图1中用点划线表示)、连接准备中(Prepare,图1中用黑色虚线表示)和连接已建立(Ready,图1中用黑色实线表示);另一方面,每个对象具有两种 状态:可用(对于目标来说就是生存状态)、不可用(对于目标来说就是死亡状态)。在系统 状态演化分析过程中,我们主要对关联关系的状态演化特征进行分析。因此,作战系统状态演化分析可以包括以下步骤:
(1)确定给定打击任务所对应的完全演化路径。当给定某个任务m后,就建立了制导 资源gm、发射资源fm和目标em之间的耦合关联,我们称之为“子系统m”。完全演化路径考虑的是在所有可能情况下,子系统m的状态演化全过程,从时间上我们将其分为初始状态、通道准备、通道建立、实施打击和打击结束5个阶段状态,分别用s1~s5来表示,其中s1和s2状态又可以细分为3种情况,分别用s1.1~s1.3和s2.1~s2.3来表示,其演化路径可由图表2示。图中虚线箭头线表示状态转换可以瞬时发生,而实线箭头线表示状态转换需要消耗一定的工作时间。
(2)基于完全演化路径,分析打击过程。只有s4状态才是真正的打击任务执行状态, 而s5状态与s3状态在表现形式上是一致的,在状态空间中两者是重合的,但从演化过程的 时间序列来看,两者表达的是不同的工作阶段。考虑连续打击过程,根据图2所示,当任务 开始时子系统m可能处于s1或者s5状态下,在不同的初始状态下执行任务所需的时间是不 同的,令Lm表示从s4到s5的转换时间,RGLm表示制导资源对目标的重新跟踪定位时间(即 图中s2.3到s3的状态转换时间),GFLm表示制导资源与发射资源之间建立通道所需的时间(即 图中s2.2到s3的状态转换时间),如果重新跟踪定位和建立通道两个过程可以并行执行,那 么图中s2.1到s3的状态转换时间应为max{RGLm,GFLm},因此一个任务的完整执行时间有三 种情况:Lm、Lm+RGLm和Lm+GFLm。另一方面,子系统m进入s5状态后打击任务已经执行完毕, 此后的状态变迁反映了作战系统对目标信息和通道信息的保存策略,显然图2表明尽量保持 目标的跟踪信息和资源的通道关联信息有助于降低任务执行时间,但信息保存收到资源存储 能力的限制,我们假定在满足存储能力的前提下,作战系统将尽可能保持各种关联信息,即 图2中如果不违反存储能力,s5状态会一直保持下去,直至全系统状态在某个时刻转换到使 某个关联对应的资源能力达到限制容量,然后s5会相应的转化为s1状态的各种情况。
在演化状态分析的基础上,建立系统状态演化的有限状态机(FSM)模型。图2反映出由制 导资源、发射资源和目标组成的三元组(g,f,e)及其对象之间的关联构成了系统状态演化的基 本单元,利用FSM模型可以在更精细的层面刻画三元组在s1~s5状态之间的演化过程。促使 状态发生转化的事件有三类:任务安排、工作完毕、容量超限;其中从初始状态s1.x或者 s5转换至s2.x或者s3的触发条件是出现一个与该三元组对象相一致的任务,我们用 Attack(g,f,e,t)表示t时刻利用制导资源g和发射资源f打击目标e的任务安排,由于任务 本身是一个五元组(g,f,a,e,t),Attack(g,f,e,t)实际上对应于任意弹药量(a分量的取值) 情况下的(g,f,a,e,t);从s2.x或者s4转换至s3或者s5的触发条件是相应的通道准备工作 或者目标打击工作执行完毕,我们定义Finish-GE(g,t)、Finish-GF(f,t)、Finish-FE(e,t) 分别表示在t时刻与制导资源g、发射资源f和目标e相关的G-E关联、G-F关联和F-E关联 工作任务执行完毕的事件;任务完成后关联状态倾向于保持不变,即s5转换到s3,而此时 如果出现制导资源或者发射资源的任务容量超限,则会由s5转换到s1.x。实际上容量超限 事件并不仅仅作用于s5状态的转换,作为一种硬约束,在任意时刻如果发生容量超限事件, 子系统m的状态都会调整到相应的初始状态并退出任务执行过程。在t时刻,我们定义 Lmt-GE(g,t)表示由制导资源g所产生的“制导资源-目标”关联中发生了容量超限事件,其 具体含义是,制导资源g在t时刻同时跟踪的目标总数超过g的容量限制,而同时跟踪的目 标总数等价于t时刻全系统内由g所产生的“制导资源-目标”关联中处于Prepare或者 Ready状态的关联个数。同理,我们定义Lmt-GF(f,t)表示t时刻由发射资源f产生的“制导 资源-发射资源”关联中发生了容量超限事件,其具体含义是,发射资源f在t时刻同时攻击 的目标总数超过g的容量限制,其中同时攻击的目标总数等价于t时刻全系统内由f所产生 的“制导资源-发射资源”关联中处于Prepare或者Ready状态的关联个数。基于上述分析, 图3表示了由给定三元组(g,f,e)定义的子系统在t时刻状态演化FSM模型。
在上图中从s3到s4的状态转换不需要触发条件,如果将s3与s4合并,并不影响FSM模型的表达结果,但简化了状态空间,因此在后文的分析中我们基于图4所示的简化后的等价FSM模型,该模型取消了s3状态,将其合并入s4。
仔细分析状态演化的三种触发事件可以看出,在联合打击任务调度的背景下,“工作完 毕”和“容量超限”两类事件与系统的内生状态相关,是随着系统状态演化而自发产生的事 件,而“任务安排”来自于系统的外生状态,即系统控制者的主动调度行为,因此如果从系 统控制的角度来看,将“任务安排”作为系统状态演化的控制变量,这是求解调度计划编制 的基础。
在上述状态演化的有限状态机(FSM)模型基础上,求解系统状态演化的控制变量;并应用 控制变量进行防空资源子调度过程的计划编制和防空资源设施控制。
理论上说,子调度计划编制问题就是在指定目标下求解系统状态演化的控制变量,而控 制变量应等价于联合打击任务。系统状态演化的数学模型本质上应该是微分方程形式,但为 了便于计算机求解,需求将其转化为差分形式,并在此基础上构建离散时间变量支持下的数 学规划模型。
关于时间变量的离散化,合理设计离散化时间点,尽可能使所有可能发生的状态转换均 发生在离散化时间点所在的时刻。根据前文给出的FSM模型,状态演化时长主要由两类时间 变量控制:任务开始时间和工作持续时间;任务开始时间属于外生变量,由外部控制者主动 赋值,一般情况下其值域不具备有限可数性质,但从调度问题的本质来看,最终有效的任务 开始时间应达到指标的优化目标,一个优化的任务计划方案应满足尽早打击的要求,也就是 说合理的任务开始时间应与某些工作的结束时间重合,因此在给定计划期起始时间的条件 下,如果工作持续时间的值域属于有限可数实数集,那么合理的任务开始时间也构成有限可 数实数集。另一方面,如果考察FSM模型可以看出,工作持续时间主要由三类参数控制:G-E 关联的准备时长、G-F关联的准备时长、F-E关联的工作时长;严格的说,这三类参数与相关 资源和目标的时空状态和设备物理状态相关,是复杂的时变参数,但从统计意义上看在较短 的调度计划期内可以将这三类时间参数近似为与联结对象相关的非时变参数,而在不考虑对 象突发事件的前提下,这三类时间参数以及由其所控制的各种工作持续时间值域将构成有限 可数的非时变实数集。综上所述,本文的求解模型其差分时间间隔取值要求使得在所有情况 下的工作执行时间都是间隔时长的整数倍。
联合打击任务调度问题是一个典型的组合优化问题,且根据FSM模型,状态演化的触发 事件主要是逻辑运算操作形式,因此我们采用0-1整数形式表达状态变量。在离散时间条件 下,状态仅与三元组(g,f,e)和时间点t相关,所以状态变量的基本形式应为sgfet∈{0,1},当 取值为1时表示(g,f,e)在t时刻处于s状态。但是,在时间变量离散化分析中,为了得到时 间参量值域有限可数的条件,实际上已将原FSM模型中的“工作执行完毕”事件变更为“工 作执行到期”事件,其中执行时间期限为时不变整数参量,表示预定义的工作执行期离散时 间间隔跨度,这一变更使得在s2.x至s4以及s4至s5转换过程中需要等待相关工作执行完 毕,造成这两类转换不满足Markov条件,将给差分方程建模带来困难。因此,为了使所有转 换变迁都符合Markov条件,在离散时间条件下,将s2.x状态和s4状态拓展为(s2.x,τ)和(s4,τ) 的形式,其中1≤τ≤DMAX,表示状态对应工作的剩余执行时间跨度,DMAX表示所有的工作执行 时间参量中的最大值,通常DMAX<|T|,这一拓展过程实际上增加了状态变量数目。基于上 述分析,模型中的状态变量及其意义见下表所示:
表1模型状态变量表
在差分及0-1整数状态变量形式下,建立差分及0-1整数型状态变量形式下面向可行调 度的FSM模型。在差分及0-1整数状态变量形式下,系统状态的形式和演化过程均发生了变 化,基于前文中的简化FSM模型,我们给出差分形式下基于0-1状态变量的FSM模型(以下 称为“0-1差分FSM模型”),该模型建立的目的是为求解优化调度方案提供理论基础,因此 我们仅针对可行调度的情况进行建模,这将显著降低模型复杂度。从FSM模型的角度来看, 一个“可行”的调度计划方案指的是通过合理的状态控制使得在任意时刻系统都不触发容量 超限时间,在可行方案的背景下,FSM模型中所有由容量超限事件的引发的状态变迁都可以 忽略。观察前述简化FSM模型可以看出,一部分容量超限事件引发的状态变迁出现在s2.x至 s1.x变迁以及s4至s5变迁上,这两类变迁属于任务执行中断,一个可行的任务集方案应避 免出现这类情况,可行任务集控制下的状态演化过程在任务执行过程中不会触发容量超限事 件,但这并不能避免从s5至s1.x之间的容量超限事件,因此为了完全规避这类事件造成的 状态变迁,需要将s5至s1.x之间的状态变迁条件设计为新的控制事件从而取代容量超限的 判断,定义Close-GE(g,f,e,t)事件表示在t时刻仅关闭子系统(g,f,e)的G-E关联, Close-GF(g,f,e,t)事件表示在t时刻仅关闭子系统(g,f,e)的G-F关联,Close-ALL(g,f,e,t) 事件表示在t时刻关闭子系统(g,f,e)的所有关联。规避容量超限事件能使子系统演化的FSM 各种参量限制在子系统内部,而无需考虑全系统状态,大大降低状态转移方程的复杂度。
“时间变量的离散化”部分中假设各类任务的执行时间属于计划编制前已知的非时变参 数,且仅与执行任务的资源编号和目标编号相关,为此我们引入参量Lgfe表示由(g,f,e)参与 的打击任务的执行时间,参量GELge表示由(g,e)参与的G-E关联准备任务的执行时间,参量 GFLgf表示由(g,f)参与的G-F关联准备任务的执行时间,在差分形式下上述时间参量都是整数 值,表示时间跨度所包含的差分时间间隔数,在实际情况中一般认为GELge>GFLgf
另外,从连续时间演化的角度来看,差分化后的任何状态变迁都潜在包含了至少一个时 间间隔的原状态持续过程,瞬时状态变迁实际上是不存在的,因此对于原FSM模型中各种瞬 时状态变迁需要进行提前量的修正,主要针对s5至s1.x的状态变迁过程。
基于上述分析和相关参量设计,给出面向可行调度方案的0-1差分FSM模型如图5所示, 根据瞬时状态变迁的提前量修正要求,为了任务执行完毕后瞬时切断G-E或者G-F关联的状 态变迁过程,我们在(s4,1)状态后也添加至s1.x的状态变迁。另外,s1.x和s5属于非任务 执行状态,在这类状态下,系统具有保持关联信息的倾向,即在无事件输入的情况下将进行 自返式变迁。
根据0-1差分FSM模型,控制变量包括两类,分别对应于任务安排事件和关闭关联事件, 也应采用0-1整数形式。
根据前文分析,打击任务由五元组表达:m=(gm,fm,am,em,tm)
在时间离散化处理后,上述五元组中的所有元素都在有限可数整数集内取值,因此与任 务安排事件对应的0-1整数控制变量集为:
{mgfaet=0,1|1≤g≤|G|,1≤f≤|F|,1≤a≤|A|,1≤e≤|E|,1≤t≤|T|}
其中|G|、|F|、|A|、|E|、|T|分别表示计划期内各类资源、目标和离散时间点集的规模, mgfaet值为1表示任务集中存在一个任务(g,f,a,e,t),而无论下标a为何值都表示触发一个 Attack(g,f,e,t)事件,显然每个打击任务只能在可选的弹药发射量方案中选择一种,因此 Σ(1≤a≤|A|)mgfaet≤1,所以可以用Σ(1≤a≤|A|)mgfaet表达Attack(g,f,e,t)事件的发生。
而与Close-GE(g,f,e,t)、Close-GF(g,f,e,t)、Close-ALL(g,f,e,t)事件对应的控制变 量可以表示为0-1整数变量集:
gfet=0,1|1≤g≤|G|,1≤f≤|F|,1≤e≤|E|,1≤t≤|T|};
其中ψgfet=1表示在t时刻产生一个Close-GE(g,f,e,t)事件,表示在t时刻产生一 个Close-GF(g,f,e,t)事件,φgfet=1表示在t时刻产生一个Close-ALL(g,f,e,t)事件。
在以上状态变量表达形式的基础上,能够建立差分及0-1整数型状态变量形式下面向可 行调度的状态转移方程。基于上表的状态变量表达形式,给定三元组(g,f,e)在t时刻的状态 实际上是由所有下标包括(g,f,e,t)的状态变量构成的向量,其状态转移方程是由向量中每一 个分量对应的状态转移差分方程所构成的方程组,该方程组完全依赖于0-1差分FSM模型, 根据该模型可以得到如下形式:
上式可以看作0-1差分FSM模型的等价代数模型,但该模型并不能计算计划期起始时 刻(即t=1)的子系统状态,因为根据状态演化规律,计划期起始时刻的状态与计划期前的状态相关,我们称之为“初始状态”,由于初始状态在计划期开始前已经确定,因此与 之对应的代数量应称为“初始状态参量”,为了表达形式的一致性,我们将状态变量的t 下标扩展至0,并令t=0时的状态量表示初始状态参量,那么在0≤t<|T|的意义下(3.4.5.1) 式可以表达计划期内所有的状态变迁。
基于差分状态转移方程,可进一步获得0-1整数规划模型。利用差分状态转移方程可 以精确计算每个时间段内的系统状态,通过合理设计控制变量的取值,可以通过精确调整 系统状态演化进程来搜索优化任务集,这是基于差分状态转移方程构建子调度计划编制数 学规模模型的理论基础。
关于规划模型的决策变量,规划模型的决策变量由0-1差分FSM模型的控制变量和状 态变量组成,其中控制变量表达了任务集和任务结束后关联信息保持策略两方面的求解结 果,是主要的决策变量,而状态变量实际上依赖于控制变量,但将其作为决策变量有利于 简化模型表达以及模型线性化,因此属于辅助决策变量。
关于模型辅助参量,建立数学规划模型所需的参量包括初始状态参量和其他模型辅助 参量,初始状态参量已在前文描述过,其他的模型辅助参量及其意义如下表所示。
表2模型参量表
确定规划模型的约束条件。约束条件描述了数学规划模型中各类决策变量和模型参量之 间的约束关系,前述状态方程是状态变量之间的基本约束,但为了使调度方案可行,还需添 加其他的约束条件,可以分为两部分:1)控制变量和状态变量的互斥性约束;2)资源容量 限制性约束。其中控制变量和状态变量的互斥性约束分为三个层面:
(1)子系统(g,f,e)控制的非歧义性:子系统在任意时刻接收的控制变量应该不多于一个,否 则状态转换就出现了歧义性:
(2)子系统(g,f,e)状态互斥性:任意时刻任意子系统有且仅有一种状态,在0-1整数型状态 变量条件下,状态唯一性约束可以表达为:
(3)目标打击状态互斥性:根据编队打击的执行规则,不能在同一时刻对同一目标执行两个 不同的打击任务,从状态演化的角度来说,就是在任意时刻针对同一目标的所有子系统中 处于目标打击状态的子系统不多于一个,在0-1差分FSM模型中我们将(s2.x,*)和(s4,*) 状态集称为目标打击状态集,其互斥性约束可以由下式表达:
系统中各类资源的容量限制形成的约束是任务执行的实际物理限制,也是在0-1差分FSM 模型中规避容量超限事件的理论基础,主要包括制导资源同时跟踪目标数量限制、发射资源 同时打击目标数量限制以及发射资源载弹量限制三类约束。但是所有这些限制条件都以目标 打击任务的执行为基础,如果目标被击毁,那么后续计划中的任务将不被执行,然而在计划 编制时对于目标的生存状态只能进行概率估算,所以本质上说,对于计划任务资源使用状况 的一切计算都只有概率意义,针对这一特征,我们对每一类约束都给出3种形式:保守形式、 期望形式和概率形式。
“保守形式”指的是在所有目标都生存的情况下任务集需符合的约束,这是在任意概率 情况下都能保证任务集可行的约束;“期望形式”是指按照毁伤概率的期望值约束平均意义 下的任务集可行性,由于各个任务是独立执行,因此多个任务执行状态的总体期望值应等于 独立期望值之和,而任务独立执行的期望值由目标的毁伤概率决定;而“概率形式”是基于 各个时段内任务总体执行状态概率分布测算的精细化约束,通常先预定义违反约束状态的概 率上限Θ,然后依次考察各个时段,使每个时段内的总体执行状态违反约束的概率小于Θ,这 其中涉及到独立但不同分布组合随机过程的概率计算,往往非常复杂,但能更精确反映任务 集的可行程度。
值得注意的是,“保守形式”可以保证任务集在任意条件下可行,但在存在高毁伤概率 任务的情况下,资源利用效率会比较低,且目标状态空间的演化与预测情况会产生较大偏离; 而满足上述“平均形式”或者“概率形式”的任务集在实际执行中可能会出现资源冲突的情 况,需要进行临时的冲突消解操作,从而使得资源状态空间的演化与预测情况产生偏离;可 以利用这些偏移来定义重调度触发条件。
(1)制导资源同时跟踪目标数量限制。根据子系统状态的定义,当与给定制导资源g相关的 任意一个子系统(g,f,e)处于除s1.1和s1.3状态之外的任一状态下,都表示g在执行某 个跟踪制导任务,而在t时刻g同时执行跟踪制导任务的数量不能超过MGgt,因此:
i.保守形式:
ii.平均形式:
其中Y(e,t)表示目标e在t时刻的生存概率,因为假设目标的生存概率仅在打击任务结 束时(也就是s4gfet1=1的状态下)发生变化,但打击通道的信息是在任务开始时(mgfaet=1的事件 下)获取的,所以Y(e,t)的计算比较复杂,我们定义C(g,f,a,e,τ,t)∈{0,1}表示是否在τ时刻 开始执行了一个(g,f,a,e,τ)任务并在t时刻前结束,可按下式计算:
则Y(e,t)可由下式计算:
iii.概率形式:
(2)发射资源同时跟踪目标数量限制。根据子系统状态的定义,当与给定发射资源f相关的 任意一个子系统(g,f,e)处于除s1.1和s1.2状态之外的任一状态下,都表示f在执行某 个攻击任务,而在t时刻f同时执行打击任务的数量不能超过MFft,因此:
i.保守形式:
ii.平均形式:
iii.概率形式:
(3)弹药限制:对某个发射资源而言,其计划期内所有任务所耗费的弹药量不能超过其计划 期开始时的总载弹量,由于发射弹药仅与执行任务一一对应,因此可以不使用状态变量而 仅利用控制变量mgfaet进行简化表达。
i.保守形式:
ii.平均形式:
iii.概率形式:
确定优化目标。根据前文分析,我们主要从三个方面来评价任务集的打击效果;末端威胁等级、末端抗击损耗和总耗弹量,由于前两项指标本身就是基于目标毁伤 概率来构建的因此不存在如约束条件所述的形式差别,最后一项耗弹量目标需要进 行概率运算,作为整体目标,我们仅考虑其保守形式和平均形式。因此三个优化指 标如下:
(1)末端威胁等级最小化
(2)末端抗击损耗最小化
(3)总耗弹量最小化
i.保守形式:
ii.平均形式:
综上所述,可以分别总结出“保守形式”、“平均形式”和“概率形式”下的0-1整 数规划模型,如下表所示,其中各种形式下模型的决策变量都是一致的,包括控制变量mgfaet∈{0,1}、ψgfet∈{0,1}、φgfet∈{0,1}、和所有的状态变量。
此外,由于控制变量仅在某些特定的状态下起作用,为了简化模型的解空间,我们根据 0-1差分FSM模型对上述控制变量设置如下约束:
表3三种形式下的0-1整数规划模型
本发明主要研究保守形式下子调度计划编制的0-1整数规划模型求解问题,主要原因 是:1)保守形式下与状态变迁过程完全对应,利于展开深层次的理论分析;2)保守形式下 得到的计划方案具有最高的可靠性,并能反映出调度优化效果的下限,利于建立统一的优化 策略评价参考准则;3)保守形式下的模型更利于进行线性化处理,而将模型转化为线性形式 便于求解算法的快速运算,是模型求解的基本处理方法,本节首先提出保守形式下规划模型 的等价线性变换方法及等价的线性化形式,然后探讨松弛条件下的精确求解方法,并在此基 础上分析一般条件下的计划启发式调整策略。
在求解0-1整数规划模型过程中,首先实现约束条件线性化。由于约束条件主要通过表 3中的模型函数来表达,因此其线性化的基本方法是非线性逻辑函数(自变量和因变量都是布 尔值)与线性逻辑不等式组合的等价转换,在这种等价转换中通常需要添加新的辅助决策变 量。
保守形式下0-1规划模型的约束条件中,仅有差分状态转移方程(3.4.5.1,其中0≤t<|T|) 及辅助函数Y(e,t)中包含非线性的运算操作,是线性化的主要对象。
(1)差分状态转移方程的线性化
式(3.4.5.1,其中0≤t<|T|)中仅包含各种0-1型变量的逻辑运算,可以进行线性化,其 对应关系如下表所示
表4.约束条件(3.4.5.1)的线性化
(2)Y(e,t)的线性化
在Y(e,t)的计算中存在两类非线性因素:1)C(g,f,a,e,τ,t)中存在非线性逻辑运算;2) 在概率累积中存在决策变量的指数函数。对于C(g,f,a,e,τ,t),可以增加一个新的辅助决策 变量cgfaeτt∈{0,1},并利用下面的线性不等式组来计算其值:
则Y(e,t)可以利用cgfaeτt重新表示为:
上述指数函数由于其特殊的连续乘积形式,对数运算后成为分段线性表达式,如下所示:
由于数值上存在较大差异,我们不能直接用ln(Y(e,t))代替Y(e,t),为了保证线性化条件, 使用lyet=kln(Y(e,t))+b来近似代替Y(e,t),其计算式为
为了获得尽量好的近似效果,假设在模型的实际计算中Y(e,t)的毁伤概率主要在[α,1] 区间内,那么可以通过计算下式在[α,1]区间内的最小值来求解合适的参数k和b。
例如当α=0.2时,可得k≈0.50,b≈0.95,两者在[0.2,1]区间内对比如图6所示。
在求解0-1整数规划模型过程中,进而实现优化目标的转换与融合
子调度计划的编制本质上是一个多目标问题,但目标过多不利于求解,需要进行适当转 换与融合,根据实际情况,本发明主要的处理方案是:
(1)末端威胁等级最小化目标转换为约束条件。该目标主要对计划期结束时的目标生存状态 进行约束,考虑到实际打击过程的动态性和连续性,计划期结束时状态的不确定性较大, 且从全局来看调节的灵活性较大,因此将该目标转换为约束条件,从最保守情况下进行限 制是比较合理的。基于这一考虑,添加约束条件:
其中Ψe表示综合化后的目标末端生存概率约束,“末端”指的是最后一个时间间隔完毕 的时刻,在差分状态下实际上是(|T|+1)时刻,此次可直接采用对数变换从而得到线性不等式:
(2)加权求和。末端抗击损耗最小化和总耗弹量最小化目标都是针对打击过程的累计量,且 分别评价了收益和成本两方面特征,因此进行综合运算是比较合理的,考虑到量纲统一的 要求,我们对目标函数所比例化修正,并且采用Y(e,t)的替代形式,如下所示,其中LMIN 为所有Lgfe中的最小值,这样可以用2*|E|*|T|/LMIN来估算所有整个计划期内最大的可能 耗弹量:
i.保守形式
ii.平均形式
基于前述分析,我们已经将保守形式下基于差分状态转移方程的0-1非线性整数规划模 型完全转化为线性形式。在模型线性化处理中,此处得到的0-1整数线性规划模型是原静态 环境下子过程0-1整数非线性规划模型的等价模型。模型的线性化变换是子过程调度计划优 化求解的基础。
虽然保守形式下的模型已进行完全线性化,但在一般情况下规模仍然比较大。在一般情 况下,大规模0-1整数线性规划模型是难以在战场可接受的时间范围内精确求解的,为了对 优化调度方案的内在特征进行分析,本发明进而在松弛某些状态变迁条件和模型参量基础上 得到的简化模型的精确求解方法。
(1)子调度优化的松弛简化模型
对于一个给定战场环境,G、F、E集合已经确定,如果要简化调度计划的求解,只能通 过简化离散时间T和各类状态变量来实现。考虑一类特殊的联合打击模式,在该模式下打击 时长是与资源无关的恒定量L,而各类关联准备时间可以忽略不计,即GELge≡0、GFLgf≡0,由 于打击要尽早实施,相当于just-in-time攻击策略,那么计划期离散化时间步长可以设置为 打击时长L,这样模型中的相关参数Lgfe=DMAX=1,根据这一特征,可以对模型的决策变 量进行如下简化:
(1)由于DMAX=1,因此(s4,τ)状态仅有一种情况,即(s4,1);
(2)由于关联准备时间忽略不计,那么在差分形式的状态变迁过程中可以忽略s2.x状态;
(3)进一步根据实际作战背景,通常认为除非立即连续打击同一目标,否则G-F关联不会在 打击结束后保持连接,因此实际上s1.3和s5状态以及Close-GE(g,f,e,t)事件也可以取 消;
(4)由于所有的打击任务都会在1个时间间隔内结束,所以实际上因此 cgfaeτt可以取消。
综合上述假设,原0-1差分FSM模型可以简化为如图7所示形式。图7是一个非常简单 的差分FSM模型,线性条件下可以利用精确求解算法比较快速的求解出最优解。另一方面, 如果对比与实际保守形式优化目标相关的(4.3.1)和(4.3.2)式以及lyet变量的计算式可以看 出,简化后的FSM模型仍然包含用于计算目标函数的所有控制变量——mgfaet——和状态变 量——(s4,1)。所以实际情况下的优化解可以在修正上述简化FSM模型最优解的基础上得 到。后文首先讨论简化FSM的求解问题,然后在此基础上讨论获得实际最优解的修正策略。
在松弛简化模型的基础上,我们可以获得并简化求解简化FSM的0-1整数线性规划模型。
简化FSM模型意味着决策变量被简化为下列形式:
{mgfaetgfetgfet,s11gfet,s12gfet,s4gfet1}
其中1≤g≤|G|,1≤f≤|F|,1≤a≤|A|,1≤e≤|E|,1≤t≤|T|。另一方面,为了完整表达状态 转移方程,还定义了一组初始状态参量:
{s11gfe0,s12gfe0,s4gfe01}
这样,在下述状态转移方程中时间下标t的取值范围可以扩充为[0,|T|]。
根据简化后的0-1差分FSM模型可以写出差分状态转移方程如下式所示:
另外,为了简化解空间,由于Close-ALL(g,f,e,t)事件仅作用于(s4,1)状态,而Close-GE(g,f,e,t)事件仅作用于s1.2状态,因此可以添加事件与状态的关联性约束,以避免使事件相关的控制变量失去意义:
另外,还有状态变量和控制变量的互斥性条件:
可以对差分状态转移方程(4.5.2.1)进行等价线性化。
的线性化
可得等价的线性不等式如(4.5.2.4)所示,但该式规模过大,可以利用(4.5.2.2)和 (4.5.2.3)进行简化。
由于s11gfet+s12gfet+s4gfet1=1,因此s11gfe(t+1)≤s4gfet1+s12gfet+s11gfet恒成立,对状态 变量取值无约束作用,可以删去。
由于ψgfe(t+1)≤s12gfet,因此如形式的不等式组等价于s11gfe(t+1)≤a+ψgfe(t+1)
同理,由于φgfe(t+1)≤s4gfet1,形如的不等式组等价于s11gfe(t+1)≤a+φgfe(t+1)
如果反复利用上述规则,可以将(4.5.2.4)简化为(4.5.2.5)所示的简单形式:
的线性化
由于该式等价于:
可得等价的线性不等式如(4.5.2.6)所示。
考察(4.5.2.6)中下列部分:
在0-1整数变量范围内,上式中仅当不等式右边为0时才会对状态变量s12gfe(t+1)产生影响。进一步考察四元组{s4gfet1,s12gfet,(1-φgfe(t+1)),(1-ψgfe(t+1))},并令 Ω=s4gfet1+s12gfet+(1-φgfe(t+1))+(1-ψgfe(t+1))根据(4.5.2.2),其取值具有下表所示的9种情况
表5四元组取值情况表
s4gfet1 s12gfet (1-φgfe(t+1)) (1-ψgfe(t+1)) Ω
0 0 1 1 2
0 1 1 0 2
0 1 1 1 3
1 0 0 1 2
1 0 1 1 3
1 1 1 1 4
1 1 0 1 3
1 1 1 0 3
1 1 0 0 2
上表反映出Ω≥2,更重要的是,4种Ω=2的情况分别对应于(4.5.2.7)中不等式右边为 0的所有情况,因此(4.5.2.7)实际上可以合并为:
s12gfe(t+1)≤s4gfet1+s12gfet+(1-φgfe(t+1))+(1-ψgfe(t+1))-2
也就是说(4.5.2.6)可以简化为:
的线性化
由于s11gfet+s12gfet+s4gfet1=1,实际上该式等价于这说明可以删除 决策变量s4gfet1而由代替,但当t=0时仍然应使用初始状态参量s4gfe01
综上,状态转移方程对应的线性化不等式约束为:
同理,(4.5.2.2)和(4.5.2.3)也可以修改为:
此外,模型还需额外约束条件,根据前述完整FSM对应的约束(3.4.7.2)、(3.4.7.3)、 (3.4.7.7)、(3.4.7.10)和(4.3.1),以及简化模型FSM下对应的状态变量和控制变量缩减结 果,可得下列约束条件:
由此可以写出简化后的0-1整数线性规划模型为:
s.t.{(4.5.2.9),(4.5.2.10),(4.5.2.11),(4.5.2.12)}.
其中lyet按下式计算:
下面提供基于简化的0-1整数线性规划模型的求解实例及分析。以一个简单的算例来 展示上述简化模型的求解过程对线性化的效果进行对比分析。
设有四艘水面舰艇(分别用ship1~ship4表示)组成编队在航行过程中发现有三个目标 来袭,防御态势图如图8所示,其中ship4与ship3非常接近,且具有相同的物理参数,因 此在图中将其合并为一个对象:
目标的高度都在各区域防空导弹的射高及各跟踪制导雷达可跟踪高度范围之内,编队区 域防空资源其它相关参数如下表所示:
表6水面舰艇区域防空资源相关参数
根据有关模型计算得出各种通道针对三个目标的单次拦截成功概率如表7所示,由于ship4与ship3各方面参数都一致,因此其参与通道的毁伤概率与ship3也一致:
表7通道单次拦截毁伤概率
在当前的一般作战情况下,G-F关联通常是不保持连接的,因此在目标打击过程中将始 终包含G-F关联准备时间,状态变迁图可以转化为如图9所示的形式:
利用前述线性化过程,如果要求计划期结束时达到的毁伤概率下限分别为P1=0.8,P2=0.9, P3=0.8。在τ=L(g,f,e)/3,计划期时长T=4*L(g,f,e)的情况下,离散化时间间隔可以设置为 L(g,f,e)/3,这样G-E关联准备时长(即重新跟踪定位时长)可以表达为整数1,目标打击 时长表达为整数3,计划期时长表达为整数12。我们基于intel-Core i5双核处理器、4G内 存,运行64位Windows10操作系统的笔记本电脑,使用数学规划领域中常用的lingo软件(版 本11.0)进行了模型求解测试,如果直接使用差分非线性规划模型,则在有限时间内无法得 到可行解,而采用线性化后的模型可以通过5分钟30秒的计算获得全局最优解,采用的算法 为“分支定界算法”,任务计算结果如下表8所示:
表8.算例求解结果
上表结果符合实战中提出的“尽早打击、尽量增加近期任务的毁伤概率以及尽量避免平 台转换”的任务安排原则,但本文得出的结果来源于数学规划模型的全局优化精确解,具有 更高的优化质量。如果采用原有
假设子过程的计划期是打击时长(L)的4倍,即|T|=4,而在计划期开始时所有关联均 处于关闭状态,即s11的状态。设各个目标计划期结束时
根据上述案例,可以计算出模型参量为下表所示:
表9.算例中的模型参量
算例测试基于intel-Core i5双核处理器、4G内存,运行64位Windows10操作系统的笔 记本电脑,使用lingo软件(版本11.0)求解0-1整数线性规划模型。对于目标函数中权重 w的取值,我们分别测试了单纯耗弹量目标(w1=0,w2=1)和综合目标(w1=1,w2=1)两种情况,以 对比抗击的积累过程目标的效果。
利用lingo软件可以在较短的时间内计算出该模型的全局最优解,下图是综合目标下 lingo求解状态的截图,可见lingo软件利用分支定界算法(B-and-B)在1s之内就求出了 模型的全局最优解(Global Opt.)。
下表列出了两种目标下得到的任务安排方案,来自于mgfaet=1的变量,为了便于阅读,我 们将表达方式进行了调整,并对应附上每次打击任务的毁伤概率。
表10.算例求解结果
从上表可以明显看出两种目标下求解结果的区别。实际上由于目标数量非常少,在给定 毁伤概率上限条件下,最小耗弹量问题有多个最优解,从表中给出的结果来看,每个目标的 打击时段都不连续,而且目标1的打击任务是从第二时段开始,明显不符合实际情况。而在 综合目标下由于添加了对打击过程的评价,因此打击任务都实现了尽早开始、尽可能高概率 打击的效果,两者对比充分体现出综合目标的合理性。但是由于简化模型并没有考虑各种关 联的准备时间耗费,因此求解结果与实际情况仍然存在一定差距,我们将在后文详细探讨符 合实际情况的模型修正和启发式求解方案。
最后,我们在lingo中尝试直接求解逻辑运算形式的状态方程模型,即将约束条件中的 (4.5.2.9)还原为初始状态转移方程(4.5.2.1),lingo在耗费较长时间后仍无法求出可行的 结果,求解过程中的状态及无法求出可行解的反馈状态,这一现象充分说明模型线性化的有 效性。
以上实施例仅用于说明本发明,而并非对本发明的限制,有关技术领域的普通技术人员, 在不脱离本发明的精神和范围的情况下,还可以做出各种变化和变型,因此所有等同的技术 方案也属于本发明的范畴,本发明的专利保护范围应由权利要求限定。

Claims (7)

1.一种基于优化目标的舰队防空资源控制参量的求解计算方法,其特征在于,包括以下步骤:
在子调度计划的任务集的控制下,分析舰队防空作战系统的状态演化,建立系统状态演化的有限状态机(FSM)模型;
采用0-1整数形式表达有限状态机(FSM)模型的状态变量,建立0-1整数型状态变量形式下面向可行调度的FSM模型;
建立所述0-1整数型状态变量形式下面向可行调度的FSM模型的差分状态转移方程;
基于差分状态转移方程,确定0-1整数规划模型的决策变量和辅助参量,以及确定各类决策变量和辅助参量之间的约束关系,确定优化目标,从而确定包括优化目标函数和约束条件的0-1整数规划模型;
对所述0-1整数规划模型进行约束条件线性化以及优化目标融合的转换,获得0-1整数线性规划模型;
对于0-1整数线性规划模型,进行松弛简化,获得简化的0-1整数线性规划模型;由简化后的0-1整数线性规划模型获得差分状态转移方程,求解获得全局最优解;
根据全局最优解制定对舰队防空资源设施调度的任务安排方案。
2.根据权利要求1所述的求解计算方法,其特征在于,建立系统状态演化的有限状态机(FSM)模型具体包括:为舰队防空资源的子调度计划建立任务集;在任务集的控制下,执行系统状态的演化分析;建立表示系统状态演化的有限状态机(FSM)模型;其中,所述任务集M={m}由子调度计划中的若干个任务向量m构成,所述任务向量m表示为m=(gm,fm,am,em,tm),其中gm∈G,fm∈F,am∈Z+,em∈E;G、F和E分别表示制导资源集合、发射资源集合和目标集合,gm和fm分别表示执行任务m的制导资源和发射资源,am表示执行任务m时发射的弹药数量,em表示任务m打击的目标,tm表示任务的时间属性,Z+表示正整数。
3.根据权利要求2所述的求解计算方法,其特征在于,所述0-1整数型状态变量形式下面向可行调度的FSM模型的差分状态转移方程为:
其中上述方程满足以下约束条件:
以及,
在t时刻g同时执行跟踪制导任务的数量不能超过在t时刻制导资源g的最大容量,在t时刻f同时执行打击任务的数量不能超过在t时刻发射资源f的最大容量,某个发射资源计划期内所有任务所耗费的弹药量不能超过其计划期开始时的总载弹量;
其中,g为制导资源,f为发射资源,e为目标,a为弹药资源,sijgfet表示子系统(g,f,e)在时刻t处于s i.j状态,mgfaet表示任务集中在时刻t的一个任务;|G|、|F|、|A|分别表示计划期内跟踪资源、发射资源、导弹资源的规模,GELge表示由(g,e)参与的制导资源与目标的关联关系G-E关联准备任务的执行时间,GFLgf表示由(g,f)参与的制导资源与发射资源的关联关系G-F关联准备任务的执行时间,GELge和GFLgf均为整数值;ψgfet表示在t时刻是否产生一个Close-GE(g,f,e,t)事件,表示在t时刻是否产生一个Close-GF(g,f,e,t)事件,φgfet表示在t时刻是否产生一个Close-ALL(g,f,e,t)事件,其中,Close-GE(g,f,e,t)事件表示在t时刻仅关闭子系统(g,f,e)的G-E关联,Close-GF(g,f,e,t)事件表示在t时刻仅关闭子系统(g,f,e)的G-F关联,Close-ALL(g,f,e,t)事件表示在t时刻关闭子系统(g,f,e)的所有关联,ψgfetφgfet、的取值均为0或1;DMAX为所有Lgfe、GELge、GFLgf中的最大值,DMAX表示所有的工作执行时间参量中的最大值。
4.根据权利要求3所述的求解计算方法,其特征在于,0-1整数规划模型的约束条件包括:1)控制变量和状态变量的互斥性约束;2)资源容量限制性约束;其中,
所述控制变量和状态变量的互斥性约束具体包括:(1)子系统(g,f,e)控制的非歧义性,即子系统在任意时刻接收的控制变量应该不多于一个;(2)子系统(g,f,e)状态互斥性,即任意时刻任意子系统有且仅有一种状态;(3)目标打击状态互斥性,即在任意时刻针对同一目标的所有子系统中处于目标打击状态的子系统不多于一个;
所述资源容量限制性约束是任务执行的实际物理限制,包括制导资源同时跟踪目标数量限制、发射资源同时打击目标数量限制以及发射资源载弹量限制。
5.根据权利要求4所述的求解计算方法,其特征在于,所述优化目标包括:末端威胁等级最小化、末端抗击损耗最小化以及总耗弹量最小化。
6.根据权利要求5所述的求解计算方法,其特征在于,对所述0-1整数规划模型进行的优化目标融合包括:将末端威胁等级最小化目标转换为约束条件,对末端抗击损耗最小化和总耗弹量最小化目标进行加权求和。
7.根据权利要求6所述的求解计算方法,其特征在于,对于0-1整数线性规划模型进行的松弛简化包括:对差分状态转移方程状态变迁条件和模型参量的松弛化。
CN201711386359.7A 2017-12-20 2017-12-20 一种基于优化目标的舰队防空资源控制参量的求解计算方法 Active CN108255780B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711386359.7A CN108255780B (zh) 2017-12-20 2017-12-20 一种基于优化目标的舰队防空资源控制参量的求解计算方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711386359.7A CN108255780B (zh) 2017-12-20 2017-12-20 一种基于优化目标的舰队防空资源控制参量的求解计算方法

Publications (2)

Publication Number Publication Date
CN108255780A true CN108255780A (zh) 2018-07-06
CN108255780B CN108255780B (zh) 2021-11-16

Family

ID=62723427

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711386359.7A Active CN108255780B (zh) 2017-12-20 2017-12-20 一种基于优化目标的舰队防空资源控制参量的求解计算方法

Country Status (1)

Country Link
CN (1) CN108255780B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109460027A (zh) * 2018-11-16 2019-03-12 中国人民解放军海军大连舰艇学院 基于事件图的编队防空调度方法和系统
CN110673635A (zh) * 2019-09-30 2020-01-10 华南理工大学 一种基于无线能量传输网络的无人机三维轨迹的设计方法
CN114047761A (zh) * 2021-11-12 2022-02-15 中国电子科技集团公司第十五研究所 基于编队跨平台资源调度的弹性杀伤网构建方法及装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7007888B2 (en) * 2003-11-25 2006-03-07 The Boeing Company Inertial position target measuring systems and methods
CN1818946A (zh) * 2006-03-15 2006-08-16 孙玲 海军信息战资源目标规划最优分配方法
CN102269593A (zh) * 2010-06-01 2011-12-07 北京航空航天大学 基于模糊虚拟力的无人机航路规划方法
CN103091679A (zh) * 2013-02-04 2013-05-08 中国科学院声学研究所 水下运动目标识别方法
US8572746B2 (en) * 2010-01-21 2013-10-29 The Regents Of The University Of California Predictive blacklisting using implicit recommendation
CN105631528A (zh) * 2015-09-22 2016-06-01 长沙理工大学 一种基于nsga-ii和近似动态规划的多目标动态最优潮流求解方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7007888B2 (en) * 2003-11-25 2006-03-07 The Boeing Company Inertial position target measuring systems and methods
CN1818946A (zh) * 2006-03-15 2006-08-16 孙玲 海军信息战资源目标规划最优分配方法
US8572746B2 (en) * 2010-01-21 2013-10-29 The Regents Of The University Of California Predictive blacklisting using implicit recommendation
CN102269593A (zh) * 2010-06-01 2011-12-07 北京航空航天大学 基于模糊虚拟力的无人机航路规划方法
CN103091679A (zh) * 2013-02-04 2013-05-08 中国科学院声学研究所 水下运动目标识别方法
CN105631528A (zh) * 2015-09-22 2016-06-01 长沙理工大学 一种基于nsga-ii和近似动态规划的多目标动态最优潮流求解方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
侯洪涛: "海上补给仿真训练系统模型框架设计与实现", 《中国优秀硕士学位论文全文数据库 信息科技辑》 *
刘小玲 等: "FSM在海军作战仿真CGF中的应用", 《计算机仿真》 *
朱一凡 等: "反导防空导弹拦截决策分析模型", 《国防科技大学学报》 *
朱淋淋: "弹药转运系统优化设计及调度仿真的研究", 《中国优秀硕士学位论文全文数据库 工程科技Ⅱ辑》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109460027A (zh) * 2018-11-16 2019-03-12 中国人民解放军海军大连舰艇学院 基于事件图的编队防空调度方法和系统
CN109460027B (zh) * 2018-11-16 2021-11-16 中国人民解放军海军大连舰艇学院 基于事件图的编队防空调度方法和系统
CN110673635A (zh) * 2019-09-30 2020-01-10 华南理工大学 一种基于无线能量传输网络的无人机三维轨迹的设计方法
CN110673635B (zh) * 2019-09-30 2021-10-26 华南理工大学 一种基于无线能量传输网络的无人机三维轨迹的设计方法
CN114047761A (zh) * 2021-11-12 2022-02-15 中国电子科技集团公司第十五研究所 基于编队跨平台资源调度的弹性杀伤网构建方法及装置

Also Published As

Publication number Publication date
CN108255780B (zh) 2021-11-16

Similar Documents

Publication Publication Date Title
CN108460509B (zh) 一种动态环境下舰队防空资源调度优化控制方法与系统
CN108287473B (zh) 一种舰队防空资源子调度控制系统与方法
CN108287472B (zh) 采用滚动时域框架的舰队防空决策与自动化调度系统与方法
CN108255780B (zh) 一种基于优化目标的舰队防空资源控制参量的求解计算方法
CN111784135B (zh) 基于超网络和ooda环理论的体系作战能力量化分析方法
CN109408877B (zh) 一种反坦克导弹分队的智能射击决策方法
Ha et al. A stochastic game-based approach for multiple beyond-visual-range air combat
CN114047761A (zh) 基于编队跨平台资源调度的弹性杀伤网构建方法及装置
Liu et al. A Time-Driven Dynamic Weapon Target Assignment Method
CN114565261B (zh) 基于gmqn的协同作战控制方法、系统、设备及介质
Wang et al. Research on naval air defense intelligent operations on deep reinforcement learning
Gallagher et al. Probabilistic analysis of complex combat scenarios
CN110826877B (zh) 一种针对多个点目标的火力分配方法
Yu et al. Method of Unknown Target Risk Analysis and Threat Assessment for UUVs
Chen et al. Multi-platform air defence scheduling based on 0-1 integer linear programming
CN109460027B (zh) 基于事件图的编队防空调度方法和系统
Li et al. Double Deep Q-learning for Anti-saturation Attack Problem of Warship Group
Suseno et al. Development of air combat effectiveness simulation and analysis scheme for beyond visual range (BVR) case
Yao Study on the bvr cooperative air combat based on bp neural network
Gong et al. Event graph based warship formation air defense scheduling model and algorithm
Xu et al. A Combat Decision Support Method Based on OODA and Dynamic Graph Reinforcement Learning
CN116026188B (zh) 一种基于拦截适宜度的多阵地防空体系射手推荐方法
Hua et al. Evaluation of contribution rate of armaments to system-of-systems based on complex network and improved information entropy
Lai et al. Research on Intelligent Missile Target Assignment Method Based on Target System Value and Deep Reinforcement Learning
CN116485039B (zh) 一种基于强化学习的打击序列智能规划方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant