CN108254018A - 基于lpfg级联fbg的应力与温度双参数传感器的制备方法 - Google Patents

基于lpfg级联fbg的应力与温度双参数传感器的制备方法 Download PDF

Info

Publication number
CN108254018A
CN108254018A CN201711475061.3A CN201711475061A CN108254018A CN 108254018 A CN108254018 A CN 108254018A CN 201711475061 A CN201711475061 A CN 201711475061A CN 108254018 A CN108254018 A CN 108254018A
Authority
CN
China
Prior art keywords
fbg
optical fiber
lpfg
temperature
single mode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711475061.3A
Other languages
English (en)
Inventor
祝连庆
张雯
董明利
娄小平
李红
何巍
陈少华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Information Science and Technology University
Original Assignee
Beijing Information Science and Technology University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Information Science and Technology University filed Critical Beijing Information Science and Technology University
Priority to CN201711475061.3A priority Critical patent/CN108254018A/zh
Publication of CN108254018A publication Critical patent/CN108254018A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • G01D21/02Measuring two or more variables by means not covered by a single other subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/16Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/32Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/24Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet
    • G01L1/242Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet the material being an optical fibre

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

本发明提供了一种基于长周期光纤光栅和光纤布拉格光栅的光纤级联应力与温度测量传感结构,采用两种灵敏度不同的LPFG结构和FBG结构进行级联,通过观察其透射光谱,得到该双参数传感器的温度传感特性和应变传感特性,进而求得LPFG和FBG两种微结构的温度灵敏度和应变灵敏度,进而带入灵敏度矩阵,实现对温度和应变的双参数测量。本发明的该光纤传感器灵敏度高,线性度好,可以同时动态实现应变和温度的测量,具有广阔的应用前景和重要的参考价值。

Description

基于LPFG级联FBG的应力与温度双参数传感器的制备方法
技术领域
本发明涉及光纤传感器件领域,特别涉及一种基于LPFG级联FBG的应力与温度双参数传感器的制备方法。
背景技术
光纤传感技术是20世纪70年代发展起来的新型传感技术,通过调制光纤中传输光的强度、相位、波长、偏振态并对这些变化进行监测,实现对温度、应变、压力、声振动、角速度等多种参量的测量。由于光纤传感器具有体积小、重量轻、测量灵敏度高、复用能力强、抗电磁干扰、易于嵌入材料内部等优点,近年来受到广泛关注,成为传感技术研究领域的热点之一。与传统的机电或电子传感器相比,光纤传感器更符合现代生物传感技术的需求,具有重要的学术价值和应用前景。
然而,目前针对传感器的研究更多的是单一变量的传感测量,而实际环境并不是简单的单一变量,交叉敏感问题无处不在。近年来,对于双参数测量传感器的研究也受到研究者的广泛青睐。2012年葡萄牙C.Gouveia等人利用高双折射光纤制作了能够同时传感折射率和温度的光栅腔传感器,通过分别测量干涉条纹对比度和波长漂移变化来解调折射率和温度的变化,实现的快慢轴折射率灵敏度分别达到-1.06%0.01RIU和-0.96%.0.0RIU,温度灵敏度达到10.52pm/℃和10.13pm/℃。2014年JianyingYuan等人利用长周期光纤光栅与Sagnac干涉环串联,实现了温度及折射率的同时测量,折射率灵敏度为16.864nm/RIU,温度灵敏度为1.533nm/℃。2015年,简永生课题组提出了一种基于耦合型双芯光纤级联布拉格光纤光栅的温度与应力双参数解耦测量的全光纤型传感系统,可以分别实现4.3048με及0.4562℃的应力与温度传感测量分辨率。2016年,ShengnanWu等人通过FBG连接侧面开口的光纤F-P腔,并应用于气体压力和温度的测量,气体压力灵敏度分别为4.063pm/kPa和4.071pm/kPa,温度交叉敏感度为214Pa/℃和204Pa/℃。2017年,天津大学徐德刚设计了一种基于级联保偏光纤和长周期光纤光栅的Sagnac环温度和环境折射率双参量传感器,其温度灵敏度1.2nm/℃,环境折射率灵敏度为15nm/RIU。
温度和应变都是表征物质物理和化学性质的重要参数,温度和应变测量在大型飞行器质量监控、生物医疗、石油探测、桥梁建筑等重要领域有着极其广泛的应用,已经广泛地应用到国民经济的各个领域;但是,复杂的现实环境中存在着各种变量,单一的干涉式光纤传感器对压强和温度两种物理参数都敏感,测量压强或温度时会出现交叉敏感的问题,很难实现压强和温度的同时测量。双参数的实时测量对于真实的现实环境显得尤为重要。
因此,需要一种能有效地对应力与温度进行实时动态测量的基于LPFG级联FBG的应力与温度双参数传感器的制备方法。
发明内容
为了解决上述问题,本发明提供一种基于LPFG级联FBG的应力与温度双参数传感器的制备方法,包括以下步骤:
步骤一:利用CO2激光器加工第一单模光纤,得到LPFG;
步骤二:利用准分子激光加工第二单模光纤,得到FBG;
步骤三:重复步骤二,得到与步骤二中波段范围不同的FBG;
步骤三:利用光纤熔接机将上述LPFG与两个上述FBG级联,制成应力与温度双参数光纤传感器。
优选地,所述CO2激光器的激光束功率为1mV,加工速度为10m/s。
根据本发明的另一个方面,本发明还提供一种基于LPFG级联FBG的应力与温度双参数传感器,包括:第一单模光纤、第二单模光纤和第三单模光纤,所述第一单模光纤包括LPFG结构,所述第二单模光纤和第三光模光纤均包括FBG结构,所述第一单模光纤、第二单模光纤与第二单模光纤进行级联,构成传感结构。
优选地,两个FBG结构在不同的波段范围内。
优选地,所述单模光纤采用SMF-28单模光纤。
优选地,所述FBG结构为采用准分子激光加工得到,所述LPFG结构为采用CO2激光器加工得到。
本发明提出一种将LPFG与FBG的级联结构,当温度或应变发生变化时,中心波长也随之发生变化。由于LPFG和FBG的光栅周期和光学系数是不同的,所以温度和应变灵敏度不同,因此,灵敏度矩阵可用于双参数测量。
本发明提出一种基于长周期光纤光栅和光纤布拉格光栅的光纤级联应力与温度测量传感结构,采用两种灵敏度不同的LPFG结构和FBG结构进行级联,通过观察其透射光谱,得到该双参数传感器的温度传感特性和应变传感特性,进而求得LPFG和FBG两种微结构的温度灵敏度和应变灵敏度,进而带入灵敏度矩阵,实现对温度和应变的双参数测量。本发明的该光纤传感器灵敏度高,线性度好,可以同时动态实现应变和温度的测量,具有广阔的应用前景和重要的参考价值。
应当理解,前述大体的描述和后续详尽的描述均为示例性说明和解释,并不应当用作对本发明所要求保护内容的限制。
附图说明
参考随附的附图,本发明更多的目的、功能和优点将通过本发明实施方式的如下描述得以阐明,其中:
图1示出了本发明的双参数传感器的透射谱图。
图2示出了在升温过程中本发明的双参数传感器的透射谱图,其中,(a)为整体图,(b)为FBG1的细节图,(c)为LPFG的细节图,(d)为FBG2的细节图。
图3示出了在降温过程中本发明的双参数传感器的透射谱图,其中,(a)为整体图,(b)为FBG1的细节图,(c)为LPFG的细节图,(d)为FBG2的细节图。
图4示出了本发明的双参数传感器的温度响应曲线。
图5示出了加载过程中本发明的双参数传感器的透射谱图,其中,(a)为整体图,(b)为FBG1的细节图,(c)为LPFG的细节图,(d)为FBG2的细节图。
图6示出了在卸载过程中本发明的双参数传感器的透射谱图,其中,(a)为整体图,(b)为FBG1的细节图,(c)为LPFG的细节图,(d)为FBG2的细节图。
图7示出了本发明的双参数传感器的应变响应曲线。
具体实施方式
通过参考示范性实施例,本发明的目的和功能以及用于实现这些目的和功能的方法将得以阐明。然而,本发明并不受限于以下所公开的示范性实施例;可以通过不同形式来对其加以实现。说明书的实质仅仅是帮助相关领域技术人员综合理解本发明的具体细节。
在下文中,将参考附图描述本发明的实施例。在附图中,相同的附图标记代表相同或类似的部件,或者相同或类似的步骤。
本发明提供一种一种基于LPFG级联FBG的应力与温度双参数传感器,包括:第一单模光纤、第二单模光纤和第三单模光纤,所述第一单模光纤包括LPFG结构,所述第二单模光纤和第三光模光纤均包括FBG结构,所述第一单模光纤、第二单模光纤与第二单模光纤进行级联,构成传感结构。
具体的,两个FBG结构在不同的波段范围内。所述单模光纤采用SMF-28单模光纤。所述FBG结构为采用准分子激光加工得到,所述LPFG结构为采用CO2激光器加工得到。
本发明提出的一种将LPFG与FBG的级联结构,当温度或应变发生变化时,中心波长也随之发生变化。由于LPFG和FBG的光栅周期和光学系数是不同的,所以温度和应变灵敏度不同,因此,灵敏度矩阵可用于双参数测量。
本发明还提供一种基于LPFG级联FBG的应力与温度双参数传感器的制备方法,包括以下步骤:
步骤一:利用CO2激光器加工第一单模光纤,得到LPFG;
步骤二:利用准分子激光加工第二单模光纤,得到FBG;
步骤三:重复步骤二,得到与步骤二中波段范围不同的FBG;
步骤三:利用光纤熔接机将上述LPFG与两个上述FBG级联,制成应力与温度双参数光纤传感器。
本发明采用两种灵敏度不同的LPFG结构和两个FBG结构进行级联,通过观察其透射光谱,得到该双参数传感器的温度传感特性和应变传感特性,进而求得LPFG和FBG两种微结构的温度灵敏度和应变灵敏度,进而带入灵敏度矩阵,实现对温度和应变的双参数测量。本发明的该光纤传感器灵敏度高,线性度好,可以同时动态实现应变和温度的测量,具有广阔的应用前景和重要的参考价值。
进一步地,本发明制备得到的双参数传感器能够实现温度与应力的双参数监测与测量,双参数测量的解调过程可以表示为:
设外界温度T和应力ε发生变化时,光纤LPFG和FBG的透射谱波长变化与温度变化ΔT、应力变化Δε存在如下相关关系:
其中:当i=1,2,Δλ1是中心波长漂移量。ΔT和Δε分别为温度和应变的变化,KTi和Kεi分别为温度灵敏度和应变灵敏度;
由可得,LPFG与FBG的温度、应变、波长漂移存在如下关系:
对求其逆矩阵,可得
两种微结构具有相似的灵敏度,将导致两个相邻的波长移动。因此,方程中的矩阵可以简化为:
因此,无法进行双参数测量。所以,需要两个灵敏度不同的微结构才可实现双参数的测量。
以下通过实验分别对本发明的双参数传感器的温度传感特性和应变传感特性进行研究分析。
所述实验系统包括C+L波段宽带光源、光谱仪、1×2光纤耦合器,加热平台或等强度梁。将所制备的双参数传感器接入1×2耦合器连接光谱仪和光源,其中,所述C+L波段宽带光源的波长范围为1520-1610nm,功率变化范围在2.6dBmm;所述光谱仪采用YokogawaAQ6375光谱仪(1200nm~2400nm),最小分辨精度为0.05nm。由于滤波效应的不同,级联结构的透射谱也不同。
参见图1,为实验系统的3个光栅结构的透射谱图,为了验证本发明的结构的正确性,本发明的级联结构接入两支波长相差较大的FBG和一支LPFG,透射谱分别位于1536.3nm、1551.2nm、1577.3nm。实验选取FBG和LPFG的波谷作为检测点,对应的检测点分别为DipA,DipB,DipC,对两处波长漂移进行解调,验证该级联光栅结构的双参数传感特性。
温度传感特性
为保证实验环境的洁净度与温湿度,实验均在恒温25℃的超净间环境下对250~500με应变变化范围内对传感器应变特性进行测试。
将三支光栅级联的光纤传感结构固定在加热平台的上表面上,温度变化范围为45-70℃,步长5℃,待温度稳定后记录光谱仪中光谱数据,实验结果如图2、图3所示。
参见图2,为升温过程双光栅级联结构透射光谱,其中,(a)为整体图、(b)为FBG1细节图、(c)LPFG细节图,(d)为FBG2细节图。由图可知:升温过程三支光栅发生红移;其中,在25℃温度变化范围内,Di P,DipB,DipC的波长漂移最大为0.44nm,0.98nm和0.46nm;温度灵敏度分别为17.26pm/℃,40.69pm/℃和18.17pm/℃。
相似地,降温过程双光栅级联结构透射光谱如图3所示,整体图、FBG1细节图、LPFG细节图和FBG2细节图分别如图3中(a)、(b)、(c)(d)所示。结合实验数据可知:降温过程三支光栅发生蓝移。具体参数列入表1中。
表1双光栅级联结构温度传感特性参数
以初始传输频谱为基线,其余的实验数据都减去基线,双光栅级联结构的温度响应曲线如图4所示,由图可知:FBG1与FBG2具有相近的温度灵敏度,约18.43pm/℃;LPFG具有更高的温度灵敏度,为41.66pm/℃;三个光栅结构包含有接受的回程误差,表现出良好的线性度。
应变传感特性
以厚度2mm、中心线280mm的航铝7075-0等强度梁为测试基体,将双光栅级联结构的3个光栅结构等距粘贴于等强度梁中心点的位置。粘贴前对3个光栅结构进行一定预紧,用低温胶将其固定,并于室温下固化24小时。
为保证实验环境的洁净度与温湿度,实验均在恒温25℃的超净间环境内完成。加载或卸载过程中对应的应变范围为250~500με,步长50με,加载及卸载过程波长变化如图5、图6所示。
由图5、及其细节图(b)(c)(d)可以看出,加载过程三支光栅发生蓝移。其中,Di P,DipB,DipC的波长漂移最大为0.32nm,0.44nm和0.32nm;温度灵敏度分别为-1.51pm/με,-1.93pm/με和-1.30pm/με。相似地,卸载过程中,卸载过程三支光栅发生红移,如图6所示。具体参数列入表2中。
表2双光栅级联结构应变传感特性参数
以初始传输频谱为基线,其余的实验数据都减去基线,双光栅级联结构的应变响应曲线如图7所示,由图可知:FBG1与FBG2具有相近的应变灵敏度,约-1.32pm/με;LPFG具有更高的应变灵敏度,为-2.23pm/με;三支光栅结构包含有接受的回程误差,表现出良好的线性度。
综合图4-图7可知:不考虑他们的初始波长距离时,长周期光纤光栅与布拉格光纤的级联结构可用于温度和应变的双参数测量,而两个布拉格光栅的级联结构不能用于双参数的测量。由于回程误差,对表1和表2中相关参数取平均值作为相应的灵敏度系数并代入公式(4),可得到该双光栅级联机构的温度应变传感矩阵方程,为:
综上,本发明的基于LPFG级联FBG的应力与温度双参数传感器,在理论和实验上均验证可用于实现对温度和应力的测量。实验结果表明:在45~70℃温度变化范围内,波谷位置分别为1536.3nm、1551.2nm、1577.3nm的三支光栅的温度灵敏度分别为18.06pm/℃、41.66pm/℃、18.80pm/℃。在250~500με应变范围内,三支光栅的应变灵敏度分别为-1.26pm/με、-2.23pm/με、-1.39pm/με。通过分析三支光栅的波长漂移和参数响应参数,可以确定灵敏度矩阵;因此,本发明提出的基于LPFG与FBG级联的双参数光纤传感器可有效地用于双参数测量。
本发明提出一种基于长周期光纤光栅和光纤布拉格光栅的光纤级联应力与温度测量传感结构,采用两种灵敏度不同的LPFG结构和FBG结构进行级联,通过观察其透射光谱,得到该双参数传感器的温度传感特性和应变传感特性,进而求得LPFG和FBG两种微结构的温度灵敏度和应变灵敏度,进而带入灵敏度矩阵,实现对温度和应变的双参数测量。本发明的该光纤传感器灵敏度高,线性度好,可以同时动态实现应变和温度的测量,具有广阔的应用前景和重要的参考价值。
结合这里披露的本发明的说明和实践,本发明的其他实施例对于本领域技术人员都是易于想到和理解的。说明和实施例仅被认为是示例性的,本发明的真正范围和主旨均由权利要求所限定。

Claims (7)

1.一种基于LPFG级联FBG的应力与温度双参数传感器的制备方法,其特征在于,包括以下步骤:
步骤一:利用CO2激光器加工第一单模光纤,得到LPFG;
步骤二:利用准分子激光加工第二单模光纤,得到FBG;
步骤三:重复步骤二,利用准分子激光加工第三单模光纤,得到与步骤二中波段范围不同的FBG;
步骤三:利用光纤熔接机将上述LPFG与两个上述FBG级联,制成应力与温度双参数光纤传感器。
2.根据权利要求1所述的应力与温度双参数传感器的制备方法,其特征在于,所述CO2激光器的激光束功率为1mV,加工速度为10m/s。
3.一种基于LPFG级联FBG的应力与温度双参数传感器,其特征在于,包括第一单模光纤、第二单模光纤和第三单模光纤,所述第一单模光纤包括LPFG结构,所述第二单模光纤和第三光模光纤均包括FBG结构,所述第一单模光纤、第二单模光纤与第二单模光纤进行级联,构成传感结构。
4.根据权利要求3所述的应力与温度双参数传感器,其特征在于,两个FBG结构在不同的波段范围内。
5.根据权利要求3所述的应力与温度双参数传感器,其特征在于,所述单模光纤采用SMF-28单模光纤。
6.根据权利要求3所述的应力与温度双参数传感器,其特征在于,所述FBG结构为采用准分子激光加工得到,所述LPFG结构为采用CO2激光器加工得到。
7.根据权利要求3所述的应力与温度双参数传感器,其特征在于,将LPFG与FBG级联得到的传感结构中,LPFG和FBG的光栅周期和光学系数是不同的,即温度和应变灵敏度不同,可用于双参数测量。
CN201711475061.3A 2017-12-29 2017-12-29 基于lpfg级联fbg的应力与温度双参数传感器的制备方法 Pending CN108254018A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711475061.3A CN108254018A (zh) 2017-12-29 2017-12-29 基于lpfg级联fbg的应力与温度双参数传感器的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711475061.3A CN108254018A (zh) 2017-12-29 2017-12-29 基于lpfg级联fbg的应力与温度双参数传感器的制备方法

Publications (1)

Publication Number Publication Date
CN108254018A true CN108254018A (zh) 2018-07-06

Family

ID=62725258

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711475061.3A Pending CN108254018A (zh) 2017-12-29 2017-12-29 基于lpfg级联fbg的应力与温度双参数传感器的制备方法

Country Status (1)

Country Link
CN (1) CN108254018A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109668518A (zh) * 2019-01-03 2019-04-23 广西师范大学 一种级联lpfg自滤波传感系统
CN110008574A (zh) * 2019-03-29 2019-07-12 京东方科技集团股份有限公司 温度参数及压力参数获取方法、装置、设备及存储介质
CN111174827A (zh) * 2019-12-10 2020-05-19 中国科学院合肥物质科学研究院 基于光纤传感的智能螺杆及其应用
CN113686460A (zh) * 2021-03-17 2021-11-23 广东工业大学 基于游标效应的光纤光栅温度传感器和传感装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001272213A (ja) * 2000-03-24 2001-10-05 Mitsubishi Heavy Ind Ltd 歪み評価装置
US20030142319A1 (en) * 2000-12-12 2003-07-31 Erlend Ronnekleiv Fiber optic sensor systems
CN1844856A (zh) * 2006-05-26 2006-10-11 北京交通大学 写有光栅的光子晶体光纤的横向应力传感系统及实现方法
CN101592757A (zh) * 2009-06-25 2009-12-02 清华大学 级联长周期光纤光栅装置及其制造方法及湿敏传感系统
CN103616091A (zh) * 2013-12-06 2014-03-05 山东大学 一种分布式光纤温度和应力传感装置
CN105424068A (zh) * 2015-11-19 2016-03-23 宁波工程学院 Fbg传感头及其制备方法、使用fbg传感头的多参量传感器
CN106546274A (zh) * 2016-10-19 2017-03-29 暨南大学 细芯光纤布拉格光栅温度和应变传感器及其检测方法
CN206281595U (zh) * 2016-12-08 2017-06-27 宁波大学 一种基于级联长周期光纤光栅的用于测量应力的传感装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001272213A (ja) * 2000-03-24 2001-10-05 Mitsubishi Heavy Ind Ltd 歪み評価装置
US20030142319A1 (en) * 2000-12-12 2003-07-31 Erlend Ronnekleiv Fiber optic sensor systems
CN1844856A (zh) * 2006-05-26 2006-10-11 北京交通大学 写有光栅的光子晶体光纤的横向应力传感系统及实现方法
CN101592757A (zh) * 2009-06-25 2009-12-02 清华大学 级联长周期光纤光栅装置及其制造方法及湿敏传感系统
CN103616091A (zh) * 2013-12-06 2014-03-05 山东大学 一种分布式光纤温度和应力传感装置
CN103616091B (zh) * 2013-12-06 2015-08-19 山东大学 一种分布式光纤温度和应力传感装置
CN105424068A (zh) * 2015-11-19 2016-03-23 宁波工程学院 Fbg传感头及其制备方法、使用fbg传感头的多参量传感器
CN106546274A (zh) * 2016-10-19 2017-03-29 暨南大学 细芯光纤布拉格光栅温度和应变传感器及其检测方法
CN206281595U (zh) * 2016-12-08 2017-06-27 宁波大学 一种基于级联长周期光纤光栅的用于测量应力的传感装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
孙睿: "关于 FBG 传感器应力-温度交叉敏感问题的研究", 《信息通信》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109668518A (zh) * 2019-01-03 2019-04-23 广西师范大学 一种级联lpfg自滤波传感系统
CN109668518B (zh) * 2019-01-03 2023-09-26 广西师范大学 一种级联lpfg自滤波传感系统
CN110008574A (zh) * 2019-03-29 2019-07-12 京东方科技集团股份有限公司 温度参数及压力参数获取方法、装置、设备及存储介质
CN110008574B (zh) * 2019-03-29 2022-12-13 京东方科技集团股份有限公司 温度参数及压力参数获取方法、装置、设备及存储介质
CN111174827A (zh) * 2019-12-10 2020-05-19 中国科学院合肥物质科学研究院 基于光纤传感的智能螺杆及其应用
CN113686460A (zh) * 2021-03-17 2021-11-23 广东工业大学 基于游标效应的光纤光栅温度传感器和传感装置
CN113686460B (zh) * 2021-03-17 2024-01-23 广东工业大学 基于游标效应的光纤光栅温度传感器和传感装置

Similar Documents

Publication Publication Date Title
CN108254018A (zh) 基于lpfg级联fbg的应力与温度双参数传感器的制备方法
CN108279029A (zh) 基于lpfg和fbg级联结构的双参数光纤传感器及其制备方法
Huang et al. Microwave interrogated sapphire fiber Michelson interferometer for high temperature sensing
Li et al. Simultaneous measurement of air pressure and temperature using fiber-optic cascaded Fabry–Perot interferometer
Liu et al. Hollow-core fiber-based all-fiber FPI sensor for simultaneous measurement of air pressure and temperature
CN108195485A (zh) 基于lpfg与mz级联测量温度与应变的双参数传感器及其制备方法
Zhang et al. Bidirectional torsion sensor based on a pair of helical long-period fiber gratings
Wang et al. Seawater temperature measurement based on a high-birefringence elliptic fiber Sagnac loop
Zhou et al. A multi-core fiber based interferometer for high temperature sensing
CN205655942U (zh) 一种应变和温度同时测量的光纤传感器
Wu et al. Highly sensitive Fabry–Perot demodulation based on coarse wavelength sampling and Vernier effect
Lu et al. Fiber-optic temperature sensor using a Fabry–Pérot cavity filled with gas of variable pressure
CN108225603A (zh) 基于lpfg与fbg级联的双参数光纤传感器及其制备方法
CN110333016A (zh) 基于混合级联光纤干涉仪的应力传感装置及解调方法
Yi et al. PDMS-coated no-core fiber interferometer with enhanced sensitivity for temperature monitoring applications
CN203908582U (zh) S型锥内嵌式光纤布拉格光栅双参数传感器
Ma et al. Simultaneous measurement of temperature and pressure by utilizing an integrated Mach-Zehnder
CN112525372A (zh) 基于保偏光纤双臂异轴干涉仪的应变温度同时测量装置及方法
Shao et al. A high-sensitivity low-temperature sensor based on Michelson interferometer in seven-core fiber
Wang et al. Wavelength-interrogation Fabry–Perot refractive index sensor based on a sealed in-fiber cavity
Jin et al. A strain sensor with low temperature crosstalk based on re-modulation of D-shaped LPFG
Martincek et al. A PDMS microfiber Mach-Zehnder interferometer and determination of nanometer displacements
Li et al. An ultrasensitive gas pressure sensor based on single-core side-hole fiber with optical vernier effect
Li et al. Ultrasensitive measurement of gas refractive index based on cascaded Mach–Zehnder interferometers and Vernier effect
Zhang et al. High Sensitivity Hollow-Core Fiber Strain Sensor Based on Signal Processing Assisted Vernier Effect

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20180706