CN106546274A - 细芯光纤布拉格光栅温度和应变传感器及其检测方法 - Google Patents

细芯光纤布拉格光栅温度和应变传感器及其检测方法 Download PDF

Info

Publication number
CN106546274A
CN106546274A CN201610913073.9A CN201610913073A CN106546274A CN 106546274 A CN106546274 A CN 106546274A CN 201610913073 A CN201610913073 A CN 201610913073A CN 106546274 A CN106546274 A CN 106546274A
Authority
CN
China
Prior art keywords
thin
core fibers
grating
resonance peak
interference fringe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610913073.9A
Other languages
English (en)
Inventor
武创
冯紫微
关柏鸥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jinan University
Original Assignee
Jinan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jinan University filed Critical Jinan University
Priority to CN201610913073.9A priority Critical patent/CN106546274A/zh
Publication of CN106546274A publication Critical patent/CN106546274A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35306Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement
    • G01D5/35309Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer
    • G01D5/35316Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer using a Bragg gratings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35306Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement
    • G01D5/35329Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using interferometer with two arms in transmission, e.g. Mach-Zender interferometer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/3537Optical fibre sensor using a particular arrangement of the optical fibre itself
    • G01D5/3538Optical fibre sensor using a particular arrangement of the optical fibre itself using a particular type of fiber, e.g. fibre with several cores, PANDA fiber, fiber with an elliptic core or the like

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Transform (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

本发明公开了一种细芯光纤布拉格光栅温度和应变传感器及其检测方法,包括光源、传感头和光谱仪,传感头为带空气包层且刻有布拉格光栅的细芯光纤,细芯光纤两端分别通过第一单模光纤和第二单模光纤连接光源和光谱仪。光源出射的光经过第一单模光纤、细芯光纤和第二单模光纤后输入至光谱仪,单模光纤与细芯光纤模场失配以及布拉格光栅的存在,使得光谱仪输出光谱中包括干涉条纹和光栅谐振峰;本发明在通过光谱仪输出的干涉条纹和光栅谐振峰获知干涉条纹波谷波长的漂移和光栅谐振峰波长漂移的情况下,能够同时实现温度变化和应变的检测;细芯光纤的空气包层使得干涉条纹和光栅谐振峰都对外界折射率变化不敏感,能够有效应用在高湿度和液体环境下。

Description

细芯光纤布拉格光栅温度和应变传感器及其检测方法
技术领域
本发明涉及一种光纤光栅传感器,特别涉及一种细芯光纤布拉格光栅温度和应变传感器及其检测方法。
背景技术
在光纤传感领域,光纤布拉格光栅为最常使用的器件之一,作为传感元器件,它除了具有普通光纤传感器体积小、灵敏度高、带宽宽、抗电磁干扰能力强和耐腐蚀等优点外,还具有易集成、本征自相干性好、能够实现多点分布式测量以及克服传统传感器测量成本高和精度小的缺点。光纤布拉格光栅是在光纤纤芯形成的周期性结构,在满足相位匹配条件的波长处会发生模间耦合,使纤芯模式反向耦合到纤芯或包层中传输。光纤布拉格光栅传感器的基本原理一般基于检测反射的布拉格信号波长的漂移。但由于光纤布拉格光栅对温度与应变同时敏感,即温度与应变能够同时引起光纤布拉格光栅耦合波长移动,使得通过测量光纤布拉格光栅耦合波长移动无法对温度与应变加以区分,这种交叉敏感效应严重影响着光纤布拉格光栅在传感领域的应用。另外,在温度和应变交叉敏感的同时,外界折射率变化也会引起光谱的漂移,因此这种传感器无法用于高湿度或液体环境中。
发明内容
本发明的目的在于克服现有技术的缺点与不足,提供一种结构简单的细芯光纤布拉格光栅温度和应变传感器,该传感器能够同时实现温度和应变的测量,并且解决了折射率交叉敏感问题,能够有效的应用在高湿度和液体环境下。
本发明的另一目的在于提供一种上述细芯光纤布拉格光栅温度和应变传感器的检测方法。
本发明的第一目的通过下述技术方案实现:一种细芯光纤布拉格光栅温度和应变传感器,包括依次连接的光源、传感头和光谱仪,所述传感头为带空气包层且刻有布拉格光栅的细芯光纤,所述细芯光纤的一端通过第一单模光纤连接光源,所述细芯光纤的另一端通过第二单模光纤连接光谱仪。
优选的,所述细芯光纤由内至外分别是纤芯、内包层、空气包层和外包层。
更进一步的,所述细芯光纤的外包层直径为124~126μm,内包层直径为15~20μm,所述细芯光纤的纤芯直径为2~3μm;所述细芯光纤的纤芯为掺锗纤芯;
所述第一单模光纤和第二单模光纤包层直径为124~126μm,第一单模光纤和第二单模光纤的纤芯直径为8~8.4μm,第一单模光纤和第二单模光纤的纤芯为掺锗纤芯。
优选的,所述细芯光纤空气包层包括六个环形布置的空气孔。
更进一步的,所述空气孔直径为10~30μm。
优选的,所述细芯光纤中的布拉格光栅通过光栅刻写装置刻写得到,所述光栅刻写装置包括计算机、193nm准分子激光器、反射镜、紫外光束柱面透镜和相位掩膜板,所述193nm准分子激光器连接计算机,通过计算机控制193nm准分子激光器输出紫外光束,所述反射镜与193nm准分子激光器输出紫外光束构造一个夹角,193nm准分子激光器输出紫外光束为反射镜的入射光,反射镜的出射光通过紫外光束柱面透镜后入射到相位掩膜板,通过相位掩膜板刻写出细芯光纤中的布拉格光栅。
本发明的第二目的通过下述技术方案实现:一种基于上述细芯光纤布拉格光栅温度和应变传感器的检测方法,其特征在于,包括如下步骤:
S1、光源输出入射光;
S2、入射光经过第一单模光纤、细芯光纤和第二单模光纤后传送至光谱仪;
S3、通过光谱仪获取到两个传感信号,分别是干涉条纹输出光谱和光栅谐振峰输出光谱;
S4、通过干涉条纹输出光谱和光栅谐振峰输出光谱分别对应获取到干涉条纹波谷波长和光栅谐振峰波长,并且计算出干涉条纹波谷波长漂移和光栅谐振峰波长漂移;
S5、根据步骤S4中获取到的干涉条纹波谷波长漂移以及光栅谐振峰波长漂移计算出待测应变和待测温度变化,具体如下:
其中ε为待测应变,ΔT为待测温度变化;ΔλMZI为干涉条纹波谷波长漂移;ΔλFBG为光栅谐振峰波长漂移;A为应变对应的干涉条纹波谷波长漂移系数,B为温度变化对应的干涉条纹波谷波长漂移系数,C为应变对应的光栅谐振峰波长漂移系数,D为温度变化对应的光栅谐振峰波长漂移系数。
优选的,步骤S5中,干涉条纹波谷波长漂移ΔλMZI为步骤S4获取到的干涉条纹波谷波长减去室温下无应变时光谱仪中读取的干涉条纹波谷波长;步骤S5中,光栅谐振峰波长漂移ΔλFBG为步骤S4获取到的光栅谐振峰波长减去室温下无应变时光谱仪中读取的光栅谐振峰波长。
更进一步的,室温下无应变时光谱仪中读取的干涉条纹波谷波长为1551.2nm,室温下无应变时光谱仪中读取的光栅谐振峰波长为1543.5nm。
优选的,所述应变对应的干涉条纹波谷波长漂移系数A=-1.93×10-3,温度变化对应的干涉条纹波谷波长漂移系数B=-30.58×10-3,应变对应的光栅谐振峰波长漂移系数C=0.52×10-3,温度变化对应的光栅谐振峰波长漂移系数D=9.99×10-3
本发明相对于现有技术具有如下的优点及效果:
(1)本发明温度和应变传感器包括依次连接的光源、传感头和光谱仪,传感头为带空气包层且刻有布拉格光栅的细芯光纤,细芯光纤两端分别通过单模光纤连接光源和光谱仪,可见,本发明传感器组成结构非常简单。
(2)本发明温度和应变传感器中光源出射的光经过单模光纤后进入到细芯光纤,由于单模光纤与细芯光纤模场失配,同时激发了细芯光纤中的基模和高阶模,形成一个马赫—曾德尔模式干涉仪,因此在输出光谱中产生一个光强随波长周期性变化的干涉条纹;另外由于细芯光纤张刻写有布拉格光栅,因此在输出光谱中会产生光栅谐振峰,由于应变和温度的变化均能够引起干涉条纹波谷波长的漂移以及光栅谐振峰波长的漂移,并且应变和温度与干涉条纹波谷波长的漂移和光栅谐振峰波长的漂移均存在一定的关系,因此在通过光谱仪输出的干涉条纹和光栅谐振峰获知干涉条纹波谷波长的漂移和光栅谐振峰波长的漂移的情况下,能够同时计算出温度变化和应变,实现温度和应变的同时测量。另外细芯光纤中的空气包层使得干涉条纹和光栅谐振峰都对外界折射率的变化不敏感,因此本发明传感器能够有效的应用在高湿度和液体环境下。
附图说明
图1是本发明温度和应变传感器的结构示意图。
图2是本发明细芯光纤的结构示意图。
图3是本发明光栅刻写装置的结构示意图。
图4是本发明温度和应变传感器在室温25℃且无应变情况下的输出光谱图。
图5a是本发明光谱仪输出光谱中光栅谐振峰位置对应的波长随温度变化的漂移图;
图5b是本发明光谱仪输出光谱中干涉条纹波谷位置对应的波长随温度变化的漂移图。
图5c是本发明光栅谐振峰波长漂移和干涉条纹波谷波长漂移的温度响应曲线图。
图6a是本发明光谱仪输出光谱中光栅谐振峰位置对应的波长随应变变化的漂移图。
图6b是本发明光谱仪输出光谱中干涉条纹波谷位置对应的波长随应变变化的漂移图。
图6c是本发明光栅谐振峰波长漂移和干涉条纹波谷波长漂移的应变响应曲线图。
图7是本发明光栅谐振峰波长和干涉条纹波谷波长的折射率响应曲线。
具体实施方式
下面结合实施例及附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。
实施例
本实施例公开了一种细芯光纤布拉格光栅温度和应变传感器,如图1所示,包括依次连接的光源1、传感头3和光谱仪4,传感头3为带空气包层且刻有布拉格光栅的细芯光纤,细芯光纤的一端通过第一单模光纤21连接光源1,细芯光纤的另一端通过第二单模光纤22连接光谱仪4。
如图2所示,本实施例中细芯光纤由内至外分别是纤芯44、内包层43、空气包层和外包层41。细芯光纤空气包层包括六个环形布置的空气孔42。细芯光纤的外包层直径可为124~126μm,内包层直径可为15~20μm,空气孔直径可为10~30μm,纤芯直径可为2~3μm,其中在本实施例中细芯光纤外包层直径为125μm,内包层直径为15.8μm,空气孔直径为20μm,纤芯直径为2.2μm。本实施例中的细芯光纤的纤芯为掺锗纤芯。
本实施例中第一单模光纤和第二单模光纤包层直径都为124~126μm,第一单模光纤和第二单模光纤纤芯直径都为8~8.4μm,第一单模光纤和第二单模光纤的纤芯都为掺锗纤芯。
本实施例中光源1为宽带光源BBS,宽带光源输出的光谱为1250~1650nm。
本实施例中细芯光纤中的布拉格光栅通过光栅刻写装置刻写得到,其中如图3所示,本你是谁了中光栅刻写装置包括计算机8、193nm准分子激光器7、反射镜9、紫外光束柱面透镜10和相位掩膜板6,193nm准分子激光器7连接计算机8,通过计算机8控制193nm准分子激光器7输出紫外光束,反射镜10与193nm准分子激光器7输出紫外光束构造一个夹角,193nm准分子激光器7输出紫外光束为反射镜10的入射光,反射镜9的出射光通过紫外光束柱面透镜10后入射到置于细芯光纤附近的相位掩膜板6,通过相位掩膜板6刻写出细芯光纤中的布拉格光栅。
本实施例还公开了一种上述细芯光纤布拉格光栅温度和应变传感器的检测方法,包括如下步骤:
S1、光源输出入射光;
S2、入射光经过第一单模光纤、细芯光纤和第二单模光纤后传送至光谱仪;
S3、通过光谱仪获取到两个传感信号,分别是干涉条纹输出光谱和光栅谐振峰输出光谱;其中由于第一单模光纤为普通光纤,第一单模光纤与细芯光纤模场失配,同时激发了细芯光纤中的基模和高阶模,形成一个马赫—曾德尔模式干涉仪,因此在输出光谱中产生一个光强随波长周期性变化的干涉条纹;另外由于细芯光纤中刻写有布拉格光栅,因此在输出光谱中产生光栅谐振峰,使得输出光谱包含干涉条纹和光栅谐振峰两个传感信号。
S4、通过干涉条纹输出光谱和光栅谐振峰输出光谱分别对应获取到干涉条纹波谷波长和光栅谐振峰波长,并且计算出干涉条纹波谷波长漂移和光栅谐振峰波长漂移;
S5、根据步骤S4中获取到的干涉条纹波谷波长漂移以及光栅谐振峰的波长漂移计算出待测应变和待测温度变化,具体如下:
其中ε为待测应变,ΔT为待测温度变化(单位为℃);ΔλMZI为干涉条纹波谷波长漂移(单位为纳米),该值步骤S4获取到的干涉条纹波谷波长减去相对于室温下无应变时光谱仪中读取的干涉条纹波谷波长;ΔλFBG为光栅谐振峰波长漂移(单位为纳米),该值为步骤S4获取到的光栅谐振峰波长减去相对于室温下无应变时光谱仪中读取的光栅谐振峰波长;A为应变对应的干涉条纹波谷波长漂移系数,B为温度变化对应的干涉条纹波谷波长漂移系数,C为应变对应的光栅谐振峰波长漂移系数,D为温度变化对应的光栅谐振峰波长漂移系数。
在本实施例应变对应的干涉条纹波谷波长漂移系数A=-1.93×10-3,温度变化对应的干涉条纹波谷波长漂移系数B=-30.58×10-3,应变对应的光栅谐振峰波长漂移系数C=0.52×10-3,温度变化对应的光栅谐振峰波长漂移系数D=9.99×10-3。即:
本实施例在通过光谱仪获取到干涉条纹波谷波长漂移ΔλMZI和光栅谐振峰的波长漂移ΔλFBG的情况下,根据上式即可计算出待测应变和待测温度变化,实现应变和温度的同时测量。
图4所示为在室温25℃且无应变的情况下,本实施例光谱仪输出的光谱图,其中λFBG是室温下无应变时光谱仪中读取的光栅谐振峰波长,λMZI是室温下无应变时光谱仪中读取的干涉条纹波谷波长。在1500-1600nm波长范围内,输出光谱中干涉条纹(MZI)出现3个波谷,我们选择1551.2nm的干涉条纹波谷作为传感信号,追踪其波长漂移,即室温下无应变时光谱仪中读取的干涉条纹波谷波长确定为1551.2nm;布拉格光栅(FBG)共出现4个谐振峰,最右侧峰对应于基模谐振,左侧3个谐振峰对应于高阶模谐振,我们选择最右侧基模谐振峰1543.5nm作为传感信号,追踪其波长漂移,即室温下无应变时光谱仪中读取的光栅谐振峰波长确定为1543.5nm。
其中在应变不变的情况下,将细芯光纤部分放置于温控箱,通过改变温控箱内部温度,从而改变环境的温度,其中环境温度变化自然作用于传感头,由于热光效应和热膨胀效应,导致干涉条纹波谷的波长和光栅谐振峰波长发生漂移,如图5a所示为光谱仪输出光谱中光栅谐振峰位置对应的波长随温度变化的漂移图,如图5b所示为光谱仪输出光谱中干涉条纹波谷对应的波长随温度变化的漂移图。如图5c所示为光栅谐振峰波长漂移和干涉条纹波谷波长漂移的温度响应曲线,其中图5c中圆圈和正方形分别代表测到的数据点,其中圆圈为干涉条纹波谷波长漂移的温度响应,正方形为光栅谐振峰波长漂移的温度响应,实线表示经过数值线性拟合得到的曲线。从图5c中可看出测量值与理论值基本相符合;干涉条纹波谷波长随温度的增大而减小,光栅谐振峰波长随温度的增大而增大,两个光谱的温度灵敏度可分别达到-30.58pm/℃和9.99pm/℃。
将传感头的两端利用环氧树脂胶固定的方式安装于待测部位,当待测部位发生形变时,产生一个轴向应变作用于传感头,由于弹光效应和传感头长度变化,导致干涉条纹波谷波长和光栅谐振峰波长发生漂移,如图6a所示为光谱仪输出光谱中光栅谐振峰位置对应的波长随应变变化的漂移图,如图6b所示为光谱仪输出光谱中干涉条纹波谷位置对应的波长随应变变化的漂移图。如图6c所示为光栅谐振峰波长漂移和干涉条纹波谷波长漂移的应变响应曲线,其中图6c中圆圈和正方形分别代表测到的数据点,其中圆圈为干涉条纹波谷波长漂移的应变响应,正方形为光栅谐振峰波长漂移的应变响应,实线表示经过数值线性拟合得到的曲线。从图6c中可看出测量值与理论值基本相符合;干涉条纹波谷波长随应变的增大而减小,光栅谐振峰波长随应变的增大而增大,两个光谱的应变灵敏度可分别达到-1.93pm/με和0.52pm/με。
本实施例中由于细芯光纤内包层被六个大空气孔环形包围,因此干涉条纹波谷和光栅谐振峰都对外界折射率的变化不敏感;如图7所示为光栅谐振峰波长和干涉条纹波谷波长的折射率响应曲线,其中圆圈为干涉条纹波谷波长的折射率响应曲线,正方形为光栅谐振峰波长折射率响应曲线,从该图中可以看出,本实施例中光栅谐振峰波长和干涉条纹波谷波长不随外界折射率的变化而变化。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

1.一种细芯光纤布拉格光栅温度和应变传感器,包括依次连接的光源、传感头和光谱仪,其特征在于,所述传感头为带空气包层且刻有布拉格光栅的细芯光纤,所述细芯光纤的一端通过第一单模光纤连接光源,所述细芯光纤的另一端通过第二单模光纤连接光谱仪。
2.根据权利要求1所述的细芯光纤布拉格光栅温度和应变传感器,其特征在于,所述细芯光纤由内至外分别是纤芯、内包层、空气包层和外包层。
3.根据权利要求2所述的细芯光纤布拉格光栅温度和应变传感器,其特征在于,所述细芯光纤的外包层直径为124~126μm,内包层直径为15~20μm,所述细芯光纤的纤芯直径为2~3μm;所述细芯光纤的纤芯为掺锗纤芯;
所述第一单模光纤和第二单模光纤包层直径为124~126μm,第一单模光纤和第二单模光纤的纤芯直径为8~8.4μm,第一单模光纤和第二单模光纤的纤芯为掺锗纤芯。
4.根据权利要求1至3中任一项所述的细芯光纤布拉格光栅温度和应变传感器,其特征在于,所述细芯光纤空气包层包括六个环形布置的空气孔。
5.根据权利要求4所述的细芯光纤布拉格光栅温度和应变传感器,其特征在于,所述空气孔直径为10~30μm。
6.根据权利要求1至3中任一项所述的细芯光纤布拉格光栅温度和应变传感器,其特征在于,所述细芯光纤中的布拉格光栅通过光栅刻写装置刻写得到,所述光栅刻写装置包括计算机、193nm准分子激光器、反射镜、紫外光束柱面透镜和相位掩膜板,所述193nm准分子激光器连接计算机,通过计算机控制193nm准分子激光器输出紫外光束,所述反射镜与193nm准分子激光器输出紫外光束构造一个夹角,193nm准分子激光器输出紫外光束为反射镜的入射光,反射镜的出射光通过紫外光束柱面透镜后入射到相位掩膜板,通过相位掩膜板刻写出细芯光纤中的布拉格光栅。
7.一种基于权利要求1所述的细芯光纤布拉格光栅温度和应变传感器的检测方法,其特征在于,包括如下步骤:
S1、光源输出入射光;
S2、入射光经过第一单模光纤、细芯光纤和第二单模光纤后传送至光谱仪;
S3、通过光谱仪获取到两个传感信号,分别是干涉条纹输出光谱和光栅谐振峰输出光谱;
S4、通过干涉条纹输出光谱和光栅谐振峰输出光谱分别对应获取到干涉条纹波谷波长和光栅谐振峰波长,并且计算出干涉条纹波谷波长漂移和光栅谐振峰波长漂移;
S5、根据步骤S4中获取到的干涉条纹波谷波长漂移以及光栅谐振峰波长漂移计算出待测应变和待测温度变化,具体如下:
Δλ M Z I = A ϵ + B Δ T Δλ F B G = C ϵ + D Δ T ;
其中ε为待测应变,ΔT为待测温度变化;ΔλMZI为干涉条纹波谷波长漂移;ΔλFBG为光栅谐振峰波长漂移;A为应变对应的干涉条纹波谷波长漂移系数,B为温度变化对应的干涉条纹波谷波长漂移系数,C为应变对应的光栅谐振峰波长漂移系数,D为温度变化对应的光栅谐振峰波长漂移系数。
8.根据权利要求7所述的细芯光纤布拉格光栅温度和应变传感器的检测方法,其特征在于,步骤S5中,干涉条纹波谷波长漂移ΔλMZI为步骤S4获取到的干涉条纹波谷波长减去室温下无应变时光谱仪中读取的干涉条纹波谷波长;步骤S5中,光栅谐振峰波长漂移ΔλFBG为步骤S4获取到的光栅谐振峰波长减去室温下无应变时光谱仪中读取的光栅谐振峰波长。
9.根据权利要求8所述的细芯光纤布拉格光栅温度和应变传感器的检测方法,其特征在于,室温下无应变时光谱仪中读取的干涉条纹波谷波长为1551.2nm,室温下无应变时光谱仪中读取的光栅谐振峰波长为1543.5nm。
10.根据权利要求7至9中任一项所述的细芯光纤布拉格光栅温度和应变传感器的检测方法,其特征在于,所述应变对应的干涉条纹波谷波长漂移系数A=-1.93×10-3,温度变化对应的干涉条纹波谷波长漂移系数B=-30.58×10-3,应变对应的光栅谐振峰波长漂移系数C=0.52×10-3,温度变化对应的光栅谐振峰波长漂移系数D=9.99×10-3
CN201610913073.9A 2016-10-19 2016-10-19 细芯光纤布拉格光栅温度和应变传感器及其检测方法 Pending CN106546274A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610913073.9A CN106546274A (zh) 2016-10-19 2016-10-19 细芯光纤布拉格光栅温度和应变传感器及其检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610913073.9A CN106546274A (zh) 2016-10-19 2016-10-19 细芯光纤布拉格光栅温度和应变传感器及其检测方法

Publications (1)

Publication Number Publication Date
CN106546274A true CN106546274A (zh) 2017-03-29

Family

ID=58369312

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610913073.9A Pending CN106546274A (zh) 2016-10-19 2016-10-19 细芯光纤布拉格光栅温度和应变传感器及其检测方法

Country Status (1)

Country Link
CN (1) CN106546274A (zh)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107064827A (zh) * 2017-04-12 2017-08-18 中国计量大学 一种基于柚子型光纤和布拉格光纤光栅的磁场传感器
CN107748018A (zh) * 2017-09-27 2018-03-02 西北大学 基于马赫‑曾德尔干涉的光纤布喇格光栅温度弯曲传感器
CN108037079A (zh) * 2017-12-13 2018-05-15 北京信息科技大学 基于二氧化碳激光刻写的长周期光纤光栅的蛋白质浓度检测方法
CN108195410A (zh) * 2017-12-25 2018-06-22 北京信息科技大学 基于mzi和fpi级联的多参数光纤干涉传感器及其制备方法
CN108225603A (zh) * 2017-12-29 2018-06-29 北京信息科技大学 基于lpfg与fbg级联的双参数光纤传感器及其制备方法
CN108254018A (zh) * 2017-12-29 2018-07-06 北京信息科技大学 基于lpfg级联fbg的应力与温度双参数传感器的制备方法
CN108279029A (zh) * 2017-12-29 2018-07-13 北京信息科技大学 基于lpfg和fbg级联结构的双参数光纤传感器及其制备方法
CN108318062A (zh) * 2018-03-08 2018-07-24 云南电网有限责任公司电力科学研究院 一种光纤光栅温湿度传感器及温湿度测量系统
CN108801308A (zh) * 2018-08-29 2018-11-13 闫静 一种光纤光栅多功能传感器
CN109444079A (zh) * 2018-12-12 2019-03-08 中国计量大学 一种光纤测氧气传感器
CN109631788A (zh) * 2018-12-27 2019-04-16 北京信息科技大学 基于马赫曾德尔结构的位移温度双参数检测光纤传感器
CN110208216A (zh) * 2019-07-04 2019-09-06 中国计量大学 一种基于fbg的细芯光纤m-z的氢气传感装置
CN110672135A (zh) * 2019-11-18 2020-01-10 哈尔滨理工大学 一种可温度补偿的光纤光栅紫外传感方法及装置
CN111174896A (zh) * 2019-12-25 2020-05-19 浙江大学 光纤声波传感器、制造方法和光纤声波传感系统
CN112146690A (zh) * 2020-09-07 2020-12-29 桂林电子科技大学 一种基于双包层光纤的多参量测量装置
CN112146799A (zh) * 2020-09-07 2020-12-29 桂林电子科技大学 一种扭转和湿度一体化测量的光纤传感装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1866607A4 (en) * 2005-04-05 2012-07-25 Agency Science Tech & Res SENSOR FIBER CONSTRAINTS SENSOR
CN102944328A (zh) * 2012-12-17 2013-02-27 南京大学 折射率不敏感的温度传感器的制备方法及测量装置
CN205642669U (zh) * 2016-04-15 2016-10-12 哈尔滨理工大学 基于光纤光栅传感头的马赫-曾德温度传感器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1866607A4 (en) * 2005-04-05 2012-07-25 Agency Science Tech & Res SENSOR FIBER CONSTRAINTS SENSOR
CN102944328A (zh) * 2012-12-17 2013-02-27 南京大学 折射率不敏感的温度传感器的制备方法及测量装置
CN205642669U (zh) * 2016-04-15 2016-10-12 哈尔滨理工大学 基于光纤光栅传感头的马赫-曾德温度传感器

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
孙苗: "基于模间干涉的马赫-泽德光纤传感器的研究", 《信息科技辑》 *
张炜: "光子晶体光纤在光纤光栅中的应用与研究进展", 《光电技术》 *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107064827A (zh) * 2017-04-12 2017-08-18 中国计量大学 一种基于柚子型光纤和布拉格光纤光栅的磁场传感器
CN107748018A (zh) * 2017-09-27 2018-03-02 西北大学 基于马赫‑曾德尔干涉的光纤布喇格光栅温度弯曲传感器
CN108037079A (zh) * 2017-12-13 2018-05-15 北京信息科技大学 基于二氧化碳激光刻写的长周期光纤光栅的蛋白质浓度检测方法
CN108195410A (zh) * 2017-12-25 2018-06-22 北京信息科技大学 基于mzi和fpi级联的多参数光纤干涉传感器及其制备方法
CN108225603A (zh) * 2017-12-29 2018-06-29 北京信息科技大学 基于lpfg与fbg级联的双参数光纤传感器及其制备方法
CN108254018A (zh) * 2017-12-29 2018-07-06 北京信息科技大学 基于lpfg级联fbg的应力与温度双参数传感器的制备方法
CN108279029A (zh) * 2017-12-29 2018-07-13 北京信息科技大学 基于lpfg和fbg级联结构的双参数光纤传感器及其制备方法
CN108318062B (zh) * 2018-03-08 2023-10-13 云南电网有限责任公司电力科学研究院 一种光纤光栅温湿度传感器及温湿度测量系统
CN108318062A (zh) * 2018-03-08 2018-07-24 云南电网有限责任公司电力科学研究院 一种光纤光栅温湿度传感器及温湿度测量系统
CN108801308A (zh) * 2018-08-29 2018-11-13 闫静 一种光纤光栅多功能传感器
CN109444079B (zh) * 2018-12-12 2023-08-01 中国计量大学 一种光纤测氧气传感器
CN109444079A (zh) * 2018-12-12 2019-03-08 中国计量大学 一种光纤测氧气传感器
CN109631788A (zh) * 2018-12-27 2019-04-16 北京信息科技大学 基于马赫曾德尔结构的位移温度双参数检测光纤传感器
CN110208216A (zh) * 2019-07-04 2019-09-06 中国计量大学 一种基于fbg的细芯光纤m-z的氢气传感装置
CN110672135A (zh) * 2019-11-18 2020-01-10 哈尔滨理工大学 一种可温度补偿的光纤光栅紫外传感方法及装置
CN111174896A (zh) * 2019-12-25 2020-05-19 浙江大学 光纤声波传感器、制造方法和光纤声波传感系统
CN111174896B (zh) * 2019-12-25 2022-07-29 浙江大学 光纤声波传感器、制造方法和光纤声波传感系统
CN112146690A (zh) * 2020-09-07 2020-12-29 桂林电子科技大学 一种基于双包层光纤的多参量测量装置
CN112146799A (zh) * 2020-09-07 2020-12-29 桂林电子科技大学 一种扭转和湿度一体化测量的光纤传感装置

Similar Documents

Publication Publication Date Title
CN106546274A (zh) 细芯光纤布拉格光栅温度和应变传感器及其检测方法
Zhao et al. Femtosecond laser-inscribed fiber-optic sensor for seawater salinity and temperature measurements
Bouzid et al. Fiber-optic four-detector polarimeter
JP4083809B2 (ja) 光ファイバーグレーチング横歪みセンサーシステム
US5726744A (en) Rosette-type optical microsystem of strain gauges having dielectric guides for measuring a longitudinal strain in a planar structure
Silva et al. A reflective optical fiber refractometer based on multimode interference
US5563967A (en) Fiber optic sensor having a multicore optical fiber and an associated sensing method
US8727613B2 (en) Method and system for measuring a parameter in a high temperature environment using an optical sensor
Meltz et al. Fiber optic temperature and strain sensors
US6069985A (en) Cross-fiber Bragg grating transducer
JP2008538607A (ja) 光ファイバ加速度変換器
JPH067049B2 (ja) 分散的,離間的に解析する光ファイバひずみ計
CN103852191B (zh) 一种折射率不敏感的光纤温度传感器
Liu et al. Review of fiber mechanical and thermal multi-parameter measurement technologies and instrumentation
Zhang et al. Off-axis ultraviolet-written thin-core fiber Bragg grating for directional bending measurements
Yang et al. Dual-FBG and FP cavity compound optical fiber sensor for simultaneous measurement of bending, temperature and strain
US5572609A (en) Optical fiber vibration modal filter for flexible structures produced by the photorefractive effect
WO1997010697A9 (en) An optical fiber vibration modal filter for flexible structures produced by the photorefractive effect
Qi et al. Fiber bending sensor with turning point in a multimode fiber peanut-like structure
Yan et al. Design and simulation of ultra-sensitivity reflective SRI sensor based on TLPFG
Daud et al. Operational Principles of Fibre Bragg Grating and No-Core Fibre
Lu et al. High sensitivity interferometric optical fiber humidity sensor based on a moisture sensitive film
Kisała et al. Spectral properties of tilted Bragg gratings with different tilt angles and variable surrounding conditions
Sahota et al. Investigating the effect of modulation depth of refractive index in cascaded FBGs for dual sensing of strain and temperature
Cui Fiber bragg grating-based multi-dimensional sensing and their applications using multi-core fibers

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20170329

RJ01 Rejection of invention patent application after publication