CN107748018A - 基于马赫‑曾德尔干涉的光纤布喇格光栅温度弯曲传感器 - Google Patents
基于马赫‑曾德尔干涉的光纤布喇格光栅温度弯曲传感器 Download PDFInfo
- Publication number
- CN107748018A CN107748018A CN201710891547.9A CN201710891547A CN107748018A CN 107748018 A CN107748018 A CN 107748018A CN 201710891547 A CN201710891547 A CN 201710891547A CN 107748018 A CN107748018 A CN 107748018A
- Authority
- CN
- China
- Prior art keywords
- fiber
- bragg grating
- multimode fibre
- photonic crystal
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000005305 interferometry Methods 0.000 title 1
- 239000000835 fiber Substances 0.000 claims abstract description 111
- 239000004038 photonic crystal Substances 0.000 claims abstract description 33
- 239000013307 optical fiber Substances 0.000 claims description 11
- 235000001759 Citrus maxima Nutrition 0.000 claims description 4
- 244000276331 Citrus maxima Species 0.000 claims description 4
- 230000001953 sensory effect Effects 0.000 claims description 2
- 230000035945 sensitivity Effects 0.000 abstract description 20
- 230000009977 dual effect Effects 0.000 abstract description 3
- 238000005070 sampling Methods 0.000 abstract description 3
- 238000012360 testing method Methods 0.000 description 41
- 238000005452 bending Methods 0.000 description 31
- 230000003287 optical effect Effects 0.000 description 23
- 239000011521 glass Substances 0.000 description 11
- 230000004044 response Effects 0.000 description 9
- 238000002474 experimental method Methods 0.000 description 8
- 238000005259 measurement Methods 0.000 description 8
- 238000006073 displacement reaction Methods 0.000 description 5
- 238000005253 cladding Methods 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- 238000001228 spectrum Methods 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 238000010998 test method Methods 0.000 description 3
- 238000003466 welding Methods 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 239000005357 flat glass Substances 0.000 description 2
- 239000003345 natural gas Substances 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- 230000002411 adverse Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005489 elastic deformation Effects 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 230000002045 lasting effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 238000011017 operating method Methods 0.000 description 1
- 230000036632 reaction speed Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000000411 transmission spectrum Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K11/00—Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
- G01K11/32—Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres
- G01K11/3206—Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres at discrete locations in the fibre, e.g. using Bragg scattering
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/16—Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
- G01B11/161—Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge by interferometric means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/16—Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
- G01B11/165—Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge by means of a grating deformed by the object
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/24—Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
- G01B11/2441—Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures using interferometry
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/26—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
- G01D5/32—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
- G01D5/34—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
- G01D5/353—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
- G01D5/35306—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement
- G01D5/35309—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer
- G01D5/35316—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer using a Bragg gratings
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/26—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
- G01D5/32—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
- G01D5/34—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
- G01D5/353—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
- G01D5/35306—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement
- G01D5/35329—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using interferometer with two arms in transmission, e.g. Mach-Zender interferometer
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optical Transform (AREA)
Abstract
一种基于光纤布拉格光栅和多模光纤的温度弯曲双参量传感器,第一单模光纤、第一多模光纤、光子晶体光纤、第二多模光纤、第二单模光纤依次拼接在一起,第一单模光纤和第二单模光纤的结构相同,第一多模光纤和第二多模光纤的结构相同,光子晶体光纤的纤芯上刻有布喇格光栅。本发明具有结构紧凑、灵敏度高、温范围内线性度好、温度与应变交叉敏感性低的优点。
Description
技术领域
本发明属于宜采用光学方法为特征的计量仪器,具体涉及到一种基于马赫-曾德尔干涉的光纤布喇格光栅温度弯曲传感器。
背景技术
过去几十年以来,由于光纤传感器具有重量轻、成本低、抗电磁干扰能力强等方面的优点,故而备受青睐。物理参数传感对各种结构、化学制品以及石油和天然气工业的健康监测有着重要作用。其中,光纤传感器适合双参量同时监测吸引了国内外许多研究小组的注意。实现在航空工业、道路、天然气管道、桥梁、建筑等方面温度与弯曲的同时测量是至关重要的应用。
目前,已有许多基于温度与弯曲同时测量技术的报道。而对温度与弯曲的测量在现实生产活动中有着十分重要的意义。例如,马赫-曾德尔干涉(MZI)结构作为光纤传感器中比较成熟的一种传感器,由于其灵敏度高、抗电磁干扰能力强、动态范围宽以及易于复用等诸多优点,已被广泛的应用在工程结构检测、航天工业、电力工业等复杂恶劣环境中的弯曲和温度性能检测,并取得了持续且快速的发展。然而在实际的应用中,马赫-曾德尔干涉(MZI)结构对弯曲和温度都是敏感的,存在着严重的温度与弯曲的交叉敏感问题,成为实际应用中必然要面对和解决的问题。
发明内容
本发明所要解决的技术问题在于克服现有对温度与弯曲测量的光纤传感器的缺点,提供一种设计合理、结构紧凑、高灵敏度、可同时测量温度与弯曲的基于马赫-曾德尔干涉的光纤布喇格光栅温度弯曲传感器。
解决上述技术问题所采用的技术方案是:第一单模光纤、第一多模光纤、光子晶体光纤、第二多模光纤、第二单模光纤依次拼接在一起,第一单模光纤和第二单模光纤的结构相同,第一多模光纤和第二多模光纤的结构相同,光子晶体光纤的纤芯上刻有布喇格光栅。
作为一种优选的技术方案,所述的第一单模光纤的结构为SMF-28光纤。
作为一种优选的技术方案,所述第一多模光纤长度为100~180μm。
作为一种优选的技术方案,所述的光子晶体光纤为厚壁柚子型六孔光子晶体光纤。
作为一种优选的技术方案,所述的光子晶体光纤的长度为11.3mm、13.3mm、15.3mm。
作为一种优选的技术方案,所述的布喇格光栅的栅区长度为10mm,中心波长为1550nm。
本发明的有益效果如下:
本发明采用第一多模光纤与第二多模光纤之间设置有光子晶体光纤,光子晶体光纤采用厚壁柚子型六孔光子晶体光纤,具有反应速度快、测温范围内线性度好、温度与应变交叉敏感性的优点。本发明具有较低的温度敏感性以及高弯曲灵敏度,可实现在8℃~100℃和10m-1~22.4m-1之间的温度与弯曲的同时测量。
附图说明
图1是本发明的结构示意图。
图2为布喇格光栅波长λb和马赫-曾德尔干涉结构共振干涉波长λa的弯曲响应测试图。
图3为马赫-曾德尔干涉结构共振干涉波长λa与布喇格光栅波长λb在8℃到 100℃的温度响应测试图。
图4为马赫-曾德尔干涉结构共振干涉波长λa与布喇格光栅波长λb在8℃到 100℃的弯曲灵敏度测试图。
具体实施方式
下面结合附图和实施例对本发明进一步详细说明,但本发明不限于下述的实施方式。
实施例1
在图1中,本实施例的基于马赫-曾德尔干涉的光纤布喇格光栅温度弯曲传感器由第一单模光纤1、第一多模光纤2、光子晶体光纤4、第二多模光纤5、第二单模光纤6连接构成。
第一单模光纤1、第一多模光纤2、光子晶体光纤4、第二多模光纤5、第二单模光纤6依次通过电弧熔接机熔接在一起,第一多模光纤2和光子晶体光纤4以及第二多模光纤5构成马赫-曾德尔干涉结构,第一单模光纤1为SMF-28光纤,第一单模光纤1的纤芯直径为8.2μm,包层直径为125μm,第二单模光纤6与第一单模光纤1的结构相同,第一多模光纤2纤芯直径为105μm、包层直径为125μm、长度为140μm,第一多模光纤2用作光束扩展器使得光波模式在光子晶体光纤4中激发,第二多模光纤5与第一多模光纤2的结构相同,第二多模光纤5促使光子晶体光纤 4中更多的高阶模式耦合进输出端,以改善输出干涉谱的光谱可见度,光子晶体光纤4为厚壁柚子型六孔光子晶体光纤4,光子晶体光纤4的六个空气孔的横向孔径为19.7μm、纵向孔径的大小为15μm、相邻的气孔之间的距离为7.7μm,光子晶体光纤4纤芯的横向间距为13.2μm、纵向间距为14.2μm,光子晶体光纤4的长度为 15.3mm,光子晶体光纤4的纤芯上刻有布喇格光栅3,布喇格光栅3的栅区长度为 10mm,中心波长为1550nm。
光波在第一单模光纤1中传播到达第一多模光纤2,第一多模光纤2作为光束扩展器使得光波模式在光子晶体光纤4中激发,光波在光子晶体光纤4中的基模被激发产生高阶包层模,耦合与复耦合后产生干涉谱实现模式调制,第二多模光纤5 使得光子晶体光纤4中更多的高阶包层模式被耦合进第二单模光纤6的输出端。当外界环境发生变化时,本发明的有效折射率会发生改变或者干涉腔发生弹性形变,进而影响不同模式之间的耦合,所产生的干涉信号通过第二单模光纤6的输出端输出。可获知环境的温度与弯曲信息。
实施例2
在本实施例中,第一单模光纤1、第一多模光纤2、光子晶体光纤4、第二多模光纤5、第二单模光纤6依次通过电弧熔接机熔接在一起,第一多模光纤2纤芯直径为105μm、包层直径为125μm、长度为100μm,第二多模光纤5与第一多模光纤 2的结构相同,光子晶体光纤4的长度为11mm。其他零部件及零部件的连接关系与实施例1相同。
实施例3
在本实施例中,第一单模光纤1、第一多模光纤2、光子晶体光纤4、第二多模光纤5、第二单模光纤6依次通过电弧熔接机熔接在一起,第一多模光纤2纤芯直径为105μm、包层直径为125μm、长度为180μm,第二多模光纤5与第一多模光纤 2的结构相同,光子晶体光纤4的长度为13mm。其他零部件及零部件的连接关系与实施例1相同。
为了验证本发明的有益效果,发明人进行了温度灵敏度和弯曲灵敏度测试试验,试验情况如下:
试验1
一、测试仪器
玻璃管式炉、sm125光学解调仪、电脑、位移台、玻璃毛细管、温度计、隔离器、平面玻璃片。
二、温度灵敏度和弯曲灵敏度测试试验
1、试件设计参数
本试验所采用的试件与实施例1中的规格相同,玻璃毛细管的长度为20mm、内径为300μm,sm125光学解调仪的波长分辨率为1pm,玻璃管式炉的加热区域长度为200mm。
2、试验装置及操作步骤
1)验证本发明对弯曲响应的试验
①建立测试系统
试件1的两端通过光纤分别与sm125光学解调仪相连,sm125光学解调仪通过 USB数据线与电脑相连,测试系统建立完成。
②测试方法
试件1的两端分别穿过玻璃毛细管并用环氧树脂固定,两玻璃毛细管被分别固定于位移台上,位移台被固定于固定平台上,确保试件1在一个平面内弯曲,调整好试件1的马赫-曾德尔干涉结构的弯曲初始状态后,采用温度计做标准测温并使环境温度保持在20±1℃,转动位移台,在每个时间节点处记录弯曲响应数据之前,静置十分钟以稳定光谱波长漂移,对于试件1布喇格光栅波长λb和马赫-曾德尔干涉结构共振干涉波长λa的测试结果如图2所示。
③实验结果及分析
由图2可见,马赫-曾德尔干涉结构的共振干涉波长λa在曲率为10m-1到22.4m-1之间的关系是线性的,拟合后的线性度为0.99。所得到的马赫-曾德尔干涉结构弯曲线性响应灵敏度为-1.023nm/m-1,其中布喇格光栅4的波长λb对弯曲的响应灵敏度比马赫-曾德尔干涉结构干涉波长λa对弯曲的响应灵敏度低341倍,只有 -0.003nm/m-1。
实验结果显示基于马赫-曾德尔干涉的光纤布喇格光栅温度弯曲传感器具有较低的温度与弯曲交叉敏感性,将其选择为测量温度与弯曲双参量传感器,可以降低结构对温度和弯曲的交叉敏感问题。
2)验证本发明对温度响应的试验
①建立测试系统
试件1穿过玻璃管式炉,该传感器的两端通过光纤分别与sm125光学解调仪相连,sm125光学解调仪通过USB数据线与电脑相连,构成用于测试本发明的测试系统。
②测试方法
将曲率为15m-1的试件1固定在平面玻璃片上,并放置于玻璃管的中心位置,以确保其受热均匀,sm125光学解调仪所发出的宽带光通过光纤传入试件1,再由试件1通过光纤传入接收波长分辨率为1pm的sm125光学解调仪,sm125光学解调仪通过USB数据线与电脑相连,试件1的反射谱线便由电脑接收到。测量传感器的透射谱时,在试件1与sm125光学解调仪之间接入一隔离器。
玻璃管式炉的温度是以10℃为单位从8℃增加到100℃,光谱稳定后每10℃记录一次数据,实验结果如图3所示。
由图3可见试件1的马赫-曾德尔干涉结构共振干涉波长λa与布喇格光栅波长λb在8℃到100℃时温度灵敏度分别为60.3pm/℃和9.2pm/℃。
3)验证本发明对温度与弯曲响应的试验
①建立测试系统
试件1自由的穿过玻璃管式炉,试件1的两端通过光纤分别与sm125光学解调仪相连,其中的一端与sm125光学解调仪之间接有隔离器,sm125光学解调仪通过 USB数据线与电脑相连,构成用于测试本发明的测试系统。
②测试方法
测试试件1的马赫-曾德尔干涉结构共振干涉波长λa与布喇格光栅波长λb在温度范围8℃到100℃的弯曲灵敏度,试件1两端用环氧树脂固定到位移台上,位移台被固定于固定平台上,sm125光学解调仪所发出的宽带光通过光纤传入试件1,再由试件1通过光纤传入接收波长分辨率为1pm的sm125光学解调仪,马赫-曾德尔干涉结构与sm125光学解调仪之间接入一隔离器,sm125光学解调仪通过USB 数据线与电脑相连,试件1的透射谱线便由电脑接收到。
玻璃管式炉的温度在8℃-100℃的范围内以每步10℃的大小变化,在每一恒定温度下,控制位移台使试件1的曲率以每步1m-1的大小从10m-1增加到23m-1,然后再减少到10m-1,所施加的弯曲在每一个温度点下保持10分钟以确保炉管中温度均匀分布,实验结果如图4所示。
测试结果表明基于马赫-曾德尔干涉的光纤布喇格光栅温度弯曲传感器的弯曲灵敏度在8℃-100℃的温度范围内几乎保持不变,即弯曲的灵敏度波动很小,几乎不随温度的升高而发生变化。
3、实验结果及分析
综合上述试验1的测试结果可知,基于马赫-曾德尔干涉的光纤布喇格光栅温度弯曲传感器的马赫-曾德尔干涉结构的温度灵敏度与弯曲灵敏度分别为60.3pm/℃和 -1.023nm/m-1,布喇格光栅4的温度灵敏度与弯曲灵敏度分别为9.2pm/℃和 -0.003nm/m-1。两者对8℃-100℃范围内的温度与10m-1-22.4m-1范围内曲率的响应特性均具有线性区域,很明显可用于8℃-100℃和10m-1-22.4m-1范围之间的温度与弯曲双参量的同时测量。
当温度与弯曲同时作用于传感器时,在温度范围8℃到100℃及曲率范围为 10m-1到22.4m-1时,传感器可以用如下特征矩阵方程描述
式中ΔT为温度变化量,ΔC为曲率变化量,Δλ1为马赫-曾德尔干涉结构的波长变化量,Δλ2为布喇格光栅的波长变化量,该矩阵方程为温度与弯曲双参量传感器的特性矩阵方程。
4、试验结论
综合上述试验结果表明,基于马赫-曾德尔干涉的光纤布喇格光栅温度弯曲传感器,其结构简单、温度与弯曲交叉灵敏性低、成本低,在8℃~100℃和10m-1~22.4m-1范围之间的温度与弯曲测量具有良好的稳定性、灵敏度和响应特性。可用于在8℃~ 100℃和10m-1~22.4m-1之间的温度与弯曲的同时测量。
Claims (6)
1.一种基于马赫-曾德尔干涉的光纤布喇格光栅温度弯曲传感器,其特征在于:第一单模光纤(1)、第一多模光纤(2)、光子晶体光纤(4)、第二多模光纤(5)、第二单模光纤(6)依次拼接在一起,第一单模光纤(1)和第二单模光纤(6)的结构相同,第一多模光纤(2)和第二多模光纤(5)的结构相同,光子晶体光纤(4)的纤芯上刻有布喇格光栅(3)。
2.根据权利要求1所述的基于马赫-曾德尔干涉的光纤布喇格光栅温度弯曲传感器,其特征在于:所述的第一单模光纤(1)的结构为SMF-28光纤。
3.根据权利要求1所述的基于马赫-曾德尔干涉的光纤布喇格光栅温度弯曲传感器,其特征在于:所述第一多模光纤(2)长度为100~180μm。
4.根据权利要求1所述的基于马赫-曾德尔干涉的光纤布喇格光栅温度弯曲传感器,其特征在于:所述的光子晶体光纤(4)为厚壁柚子型六孔光子晶体光纤。
5.根据权利要求1或4所述的基于马赫-曾德尔干涉的光纤布喇格光栅温度弯曲传感器,其特征在于:所述的光子晶体光纤(4)的长度为11mm~15mm。
6.根据权利要求1所述的基于马赫-曾德尔干涉的光纤布喇格光栅温度弯曲传感器,其特征在于:所述的布喇格光栅(3)的栅区长度为10mm,中心波长为1550nm。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710891547.9A CN107748018A (zh) | 2017-09-27 | 2017-09-27 | 基于马赫‑曾德尔干涉的光纤布喇格光栅温度弯曲传感器 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710891547.9A CN107748018A (zh) | 2017-09-27 | 2017-09-27 | 基于马赫‑曾德尔干涉的光纤布喇格光栅温度弯曲传感器 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN107748018A true CN107748018A (zh) | 2018-03-02 |
Family
ID=61255919
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710891547.9A Pending CN107748018A (zh) | 2017-09-27 | 2017-09-27 | 基于马赫‑曾德尔干涉的光纤布喇格光栅温度弯曲传感器 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107748018A (zh) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108507490A (zh) * | 2018-03-19 | 2018-09-07 | 浙江师范大学 | 一种基于双芯光纤的弯曲传感方法 |
CN109061799A (zh) * | 2018-08-20 | 2018-12-21 | 西北大学 | 基于细芯光纤布拉格光栅的模式转换器 |
CN109855555A (zh) * | 2019-01-09 | 2019-06-07 | 西南交通大学 | 一种可实现轴向应变补偿的光纤弯曲传感器 |
CN110319786A (zh) * | 2019-07-30 | 2019-10-11 | 南京信息工程大学 | 一种应变传感Fabry-Perot干涉仪及基于该干涉仪的应变传感方法 |
FR3088722A1 (fr) * | 2018-11-20 | 2020-05-22 | Institut National Polytechnique De Toulouse | Réfractomètre à fibre optique hybride pour la mesure d’indice de réfraction d’un fluide et capteur correspondant |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103063238A (zh) * | 2012-12-27 | 2013-04-24 | 华中科技大学 | 一种基于马赫曾德尔干涉的全光纤传感器 |
CN104330101A (zh) * | 2014-10-28 | 2015-02-04 | 天津理工大学 | 一种可同时测量温度和微位移的光纤传感器 |
WO2015030891A2 (en) * | 2013-06-03 | 2015-03-05 | Massachusetts Institute Of Technology | Inductance-tuned electro-optic modulators |
CN106248248A (zh) * | 2015-10-13 | 2016-12-21 | 北京信息科技大学 | 一种基于细芯光纤马赫‑曾德干涉仪的温度测量方法 |
CN106546274A (zh) * | 2016-10-19 | 2017-03-29 | 暨南大学 | 细芯光纤布拉格光栅温度和应变传感器及其检测方法 |
-
2017
- 2017-09-27 CN CN201710891547.9A patent/CN107748018A/zh active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103063238A (zh) * | 2012-12-27 | 2013-04-24 | 华中科技大学 | 一种基于马赫曾德尔干涉的全光纤传感器 |
WO2015030891A2 (en) * | 2013-06-03 | 2015-03-05 | Massachusetts Institute Of Technology | Inductance-tuned electro-optic modulators |
CN104330101A (zh) * | 2014-10-28 | 2015-02-04 | 天津理工大学 | 一种可同时测量温度和微位移的光纤传感器 |
CN106248248A (zh) * | 2015-10-13 | 2016-12-21 | 北京信息科技大学 | 一种基于细芯光纤马赫‑曾德干涉仪的温度测量方法 |
CN106546274A (zh) * | 2016-10-19 | 2017-03-29 | 暨南大学 | 细芯光纤布拉格光栅温度和应变传感器及其检测方法 |
Non-Patent Citations (3)
Title |
---|
LECHENG LI 等: "Simultane ous measur ement of refractive index and temper ature using thinned fiber based Mach–Zehnder inter ferometer", 《OPTICS COMMUNICATIONS》 * |
刘慧 等: "Curvature and Temperature Measurement Based on a Few-Mode PCF Formed M-Z-I and an Embedded FBG", 《SENSORS》 * |
邵敏 等: "光纤布拉格光栅嵌入 SMS 光纤结构的湿度传感器", 《光谱学与光谱分析》 * |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108507490A (zh) * | 2018-03-19 | 2018-09-07 | 浙江师范大学 | 一种基于双芯光纤的弯曲传感方法 |
CN108507490B (zh) * | 2018-03-19 | 2020-05-22 | 浙江师范大学 | 一种基于双芯光纤的弯曲传感方法 |
CN109061799A (zh) * | 2018-08-20 | 2018-12-21 | 西北大学 | 基于细芯光纤布拉格光栅的模式转换器 |
FR3088722A1 (fr) * | 2018-11-20 | 2020-05-22 | Institut National Polytechnique De Toulouse | Réfractomètre à fibre optique hybride pour la mesure d’indice de réfraction d’un fluide et capteur correspondant |
WO2020104560A1 (fr) * | 2018-11-20 | 2020-05-28 | Institut National Polytechnique De Toulouse | Réfractomètre à fibre optique hybride pour la mesure d'indice de réfraction d'un fluide et capteur correspondant |
CN109855555A (zh) * | 2019-01-09 | 2019-06-07 | 西南交通大学 | 一种可实现轴向应变补偿的光纤弯曲传感器 |
CN110319786A (zh) * | 2019-07-30 | 2019-10-11 | 南京信息工程大学 | 一种应变传感Fabry-Perot干涉仪及基于该干涉仪的应变传感方法 |
CN110319786B (zh) * | 2019-07-30 | 2020-12-29 | 南京信息工程大学 | 一种应变传感Fabry-Perot干涉仪及基于该干涉仪的应变传感方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107748018A (zh) | 基于马赫‑曾德尔干涉的光纤布喇格光栅温度弯曲传感器 | |
CN107003473B (zh) | 用于应变和温度分离的多芯光纤中的不同的纤芯 | |
Bhaskar et al. | Recent advancements in fiber Bragg gratings based temperature and strain measurement | |
CN109470309A (zh) | 一种折射率和温度同时测量的全光纤传感器及其测量方法 | |
Wang et al. | Temperature, stress, refractive index and humidity multi parameter highly integrated optical fiber sensor | |
CN105371785B (zh) | 一种曲率测量方法 | |
Zhang et al. | High sensitivity optical fiber liquid level sensor based on a compact MMF-HCF-FBG structure | |
Wang et al. | Simultaneous measurement of torsion, strain and temperature using a side-leakage photonic crystal fiber loop mirror | |
Zhu et al. | Fabry-Perot vector curvature sensor based on cavity length demodulation | |
CN110057307A (zh) | 一种提高光纤干涉仪应变灵敏度的方法及光纤干涉仪 | |
Ma et al. | Vector curvature sensor based on asymmetrically polished long-period fiber grating | |
Cai et al. | Temperature-insensitive curvature sensor with few-mode-fiber based hybrid structure | |
Yan et al. | Optical fiber strain sensor with double S-tapers | |
Jin et al. | A strain sensor with low temperature crosstalk based on re-modulation of D-shaped LPFG | |
Shu et al. | Simultaneous measurement three parameters of temperature, strain, and curvature by thin-core fiber based-Mach-Zehnder interferometer | |
Wang et al. | Temperature-insensitive two-dimensional tilt sensor based on cylindrical pendulum and FBGs | |
Yu et al. | Dual-parameter measurements of curvature and strain using cladding-etched two-mode fiber Bragg grating | |
Liu et al. | Determination of temperature and strain by a compact optical fiber Mach-Zehnder interferometer (MZI) composed of a single-mode fiber (SMF), seven core fiber (SCF), and multimode fiber (MMF) with a fiber Bragg grating (FBG) | |
Lu et al. | Helical sensor for simultaneous measurement of torsion and temperature | |
Feng et al. | Monolithic multicore fiber based multi-parameter measurement based on spatial-division-multiplex sensing mechanisms | |
CN113167566A (zh) | 利用偏移芯光纤的高分辨率分布式传感器 | |
Wang et al. | Multi-parameter sensor based on cascaded multicore FBGs and an FPI for bending, temperature and pressure measurements | |
Xin et al. | Sensing Characteristics of Side‐Hole Fiber‐Based Long‐Period Grating | |
Liu et al. | Regional strain homogenized diaphragm based FBG high pressure sensor | |
Wang et al. | Research on novel optical fiber sensor network monitoring system for electrical equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20180302 |
|
RJ01 | Rejection of invention patent application after publication |