CN108251149B - 一种利用煤与生物质生产燃料油和化工原料的工艺 - Google Patents

一种利用煤与生物质生产燃料油和化工原料的工艺 Download PDF

Info

Publication number
CN108251149B
CN108251149B CN201711431424.3A CN201711431424A CN108251149B CN 108251149 B CN108251149 B CN 108251149B CN 201711431424 A CN201711431424 A CN 201711431424A CN 108251149 B CN108251149 B CN 108251149B
Authority
CN
China
Prior art keywords
biomass
coal
oil
slurry
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711431424.3A
Other languages
English (en)
Other versions
CN108251149A (zh
Inventor
林科
李林
郭立新
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Haixin Energy Technology Co ltd
Original Assignee
Beijing SJ Environmental Protection and New Material Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing SJ Environmental Protection and New Material Co Ltd filed Critical Beijing SJ Environmental Protection and New Material Co Ltd
Priority to CN201711431424.3A priority Critical patent/CN108251149B/zh
Publication of CN108251149A publication Critical patent/CN108251149A/zh
Application granted granted Critical
Publication of CN108251149B publication Critical patent/CN108251149B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/06Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal by destructive hydrogenation
    • C10G1/065Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal by destructive hydrogenation in the presence of a solvent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/30Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/08Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal with moving catalysts
    • C10G1/086Characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1003Waste materials
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1011Biomass
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/70Catalyst aspects

Abstract

本发明涉及清洁能源技术领域,具体涉及一种煤与生物质的共炼工艺。本发明创造性的首次实现了煤、生物质及油的混炼液化。通过先对煤与生物质原料进行“粉碎+压缩+再次粉碎”处理,再配制浆液,成功得到了固含量高、且能够用泵平稳输送的生物质煤油浆,使得现有技术中不能作为煤与生物质液化溶剂的高粘度废油也能够得到利用。本发明工艺使得煤与生物质依次发生初级裂化、加氢反应和深度裂化、加氢反应,从而实现由煤与生物质向燃料油和化工原料的转变,煤与生物质转化率可达90~99%,燃料油的收率可达60~80%,且残渣量不足3%。

Description

一种利用煤与生物质生产燃料油和化工原料的工艺
技术领域
本发明涉及清洁能源技术领域,具体涉及一种煤与生物质的共炼工艺。
背景技术
目前,我国以煤炭为主要能源,传统的煤炭利用方式为燃烧,但是煤炭燃烧所导致的大气污染问题已经日益严重;并且,我国的煤炭品质逐年下降使得原煤入洗比例连年提高,洗煤废水带来了严重的水污染。严峻的环境问题已使能源结构调整成为我国能源发展的重要任务之一。然而,我国自身的能源资源储存情况为贫油富煤,每年已经需要依赖大量的石油进口才能满足生产发展需求,若通过减少对煤炭资源的利用来调整我国的能源结构,不仅空置了储量丰富的能源资源,还会大大增加石油的进口量,这必将严重影响我国的能源安全。
更适合我国国情的能源结构调整方式是实现煤炭资源的清洁高效利用。煤油共炼技术是近期发展起来的一种煤与重油共同加工的技术,其克服了煤直接液化的苛刻条件,并且还能同时利用重油,已经成为了煤清洁利用的研究热点。例如,中国专利文献CN102191072就公开了一种煤油共炼的煤液化技术,该技术首先将煤颗粒与油配制成悬浮液,使所述悬浮液先后通过两个串联的加有催化剂和氢气的沸腾床从而发生液化反应,再将所得到的较轻组分送入固定床反应器进一步进行加氢反应,最终得到石脑油、煤油和/或柴油,以及重质组分。所述两个沸腾床内的反应条件依次为325~420℃、16~20MPa,以及350~450℃、16~20MPa,并且第二个沸腾床的温度始终高于第一个沸腾床10℃以上;所述固定床反应器的反应条件为250~480℃、2~25MPa。
然而,该技术与现有技术中绝大多数煤油混炼工艺共同存在两个问题:液化效率低和耗氢量大。
1.液化效率低
由煤粉和油配制得到的煤油浆需要由泵输送入裂解加氢装置,为了保证泵的平稳运转和输送,煤油浆的粘度不可太高,而油煤浆中作为分散剂的重油、渣油等均为较粘稠的液体,这就使得煤油共炼技术中煤油浆中煤粉的含量不可过高,从而导致反应物料的浓度有限,造成液化效率较低。
2.耗氢量大
煤的加氢裂化机理如下:
第一阶段,煤裂解生成前沥青烯、沥青烯,并伴随生成一些气体、液化油及大分子缩聚物。
第二阶段,在富氢条件下,一部分前沥青烯加氢生成液化油,也有部分大分子缩聚物再次加氢裂解生成低分子质量的液化油。
当温度过高或供氢不足时,前沥青烯和沥青烯中的部分不溶有机物会生成炭或半焦。氢气的高浓度和高分压有利于煤的加氢裂化反应向正向进行,并降低生焦。所以煤油共炼技术往往耗氢量很高。
针对第一个问题,为了提高液化效率,研究人员致力于提高煤油浆中煤粉的含量,例如尝试尽可能的减小煤粉粒度,以求通过增加煤粉在煤油浆中的分散性而提高煤粉的比例。然而,煤粉具有大量的孔隙结构,减小煤粉粒度的操作使得这些微小孔隙进一步暴露,从而吸附大量的溶剂油。结果,由更小粒度的煤粉配制得到的煤油浆,在相同煤粉重量比重下,黏度反而比较大颗粒的煤粉配制得到的煤油浆更高,根本无法实现泵的平稳运输。
针对第二个问题,为了减少对氢的消耗,研究人员尝试利用生物质与煤共同热解加氢来实现。煤油共炼技术中与裂解的煤粉反应的氢源主要来自于:溶解于溶剂油中的氢在催化剂作用下转变生成的活性氢、溶剂油可供给的或传递的氢、煤本身裂解所产生的活性氢和反应生成的氢。而生物质的H/C比较高,研究人员希望通过利用生物质中的氢就来降低煤液化的耗氢量,减缓反应条件的苛刻度,实现煤的温和液化。
生物质的液化机理如下:生物质首先裂解成低聚体,然后再经脱水、脱羟基、脱氢、脱氧和脱羧基而形成小分子化合物,小分子化合物接着通过缩合、环化、聚合等反应而生成新的化合物。已有研究报道,木粉热解形成的产物有助于煤液化中间产物(前沥青烯与沥青烯)的加氢反应,进而形成液体油;生物质的加入还有利于煤中硫和氮的热解脱除,并阻止煤裂解过程中颗粒之间的黏结。
但是由于煤油浆本身已经具有很高的黏度,生物质颗粒的加入会导致黏度进一步升高而无法用泵进行输送,所以目前对于煤和生物质的共同液化仅局限于在实验室中利用黏度较低的四氢萘作溶剂来进行煤粉和生物质颗粒的分散,也即是目前并没有真正实现煤、生物质及油的混炼生产的技术。
综上所述,如何增加煤油浆中煤粉的含量、提高液化效率,并进一步降低煤油浆的黏度,从而实现煤、生物质及油的混炼液化、减少氢耗,是目前本领域技术人员尚未解决的技术难题。
发明内容
本发明首先要解决的技术问题在于克服现有技术中煤浆的煤粉含量有限而导致液化效率较低的问题,并在此基础上进一步克服现有技术中没有实现煤、生物质及油的混炼生产技术的缺陷,进而提供一种氢耗少,液化效率高的利用煤与生物质生产燃料油和化工原料的工艺。
为此,本发明解决上述问题所采用的技术方案如下:
一种利用煤与生物质生产燃料油和化工原料的工艺,包括如下步骤:
生物质煤油浆的配制:
收集生物质并控制含水率低于2wt%,然后粉碎至中位粒径为100~300μm;
将粉碎后的生物质进行压缩成型,压缩压力为2~5MPa,压缩温度为30~60℃;
将压缩成型后的生物质再次粉碎处理,粉碎至中位粒径为30~50μm,得生物质粉末;
收集煤并控制含水率低于2wt%,然后粉碎至中位粒径为50~100μm,压缩温度为30~60℃;
对粉碎后的煤进行压缩成型,压缩压力为5~15MPa;
对压缩成型后的煤再次粉碎处理,粉碎至中位粒径为30~50μm,得煤粉;
将所述生物质粉末、所述煤粉、第一催化剂、硫化剂与溶剂油按比例进行配比混合、研磨制浆得到生物质煤油浆,所述生物质粉末和所述煤粉共占所述生物质煤油浆的60~70wt%;
催化剂浆液的配制:将第二催化剂、硫化剂与溶剂油混合制得催化剂浆液,待用;
一级加氢反应:向所述生物质煤油浆中通入氢气以发生一级加氢反应,并控制反应压力为15~25MPa、反应温度为270~350℃,得到一级加氢产物;
二级加氢反应:向所述一级加氢产物中加入所述催化剂浆液并通入氢气以发生二级加氢反应,控制反应压力为15~25MPa、反应温度为380~480℃,得到二级加氢产物;
产物的分离:将所述二级加氢产物进行气、液、固三相分离,再对得到的生物油进行蒸馏,<200℃的馏分油用于制备化工原料,其余用作燃料油;
在生物质煤油浆的配制步骤中,进行所述混合时,为先将所述生物质粉末和所述煤粉进行除灰并与所述第一催化剂以及所述硫化剂进行预混合后,再将所得预混料与所述油品混合,或者,为直接将所述生物质粉末、所述煤粉、所述催化剂与所述溶剂油混合。
所述生物质煤油浆中,生物质的浓度为20~30wt%,煤粉的浓度为30~45wt%。
采用烘干脱水控制含水率,所述烘干脱水温度均为50~70℃,烘干脱水时间为3~5h。
所述压缩成型为压块成型、压片成型或压条成型。
生物质煤油浆的配制步骤中控制所述生物质粉末的堆密度为300~500kg/m3,控制所述煤粉的堆密度为1000~1200kg/m3
所述粉碎为锤片式磨粉碎、球磨粉碎、棒磨粉碎、超微粉碎或气流粉碎。
所述研磨制浆为搅拌制浆、分散制浆、乳化制浆、剪切制浆、均质制浆或胶体磨制浆。
所述研磨制浆的时间为2~8min。
所述生物质煤油浆的粘度为550~1000mPa·s(50℃)。
所述生物质煤油浆配制的步骤中:
所述第一催化剂的粒度为5~500μm。
所述硫化剂与所述第一催化剂的质量比为(0.4~1):1;
所述第一催化剂的添加量为所述生物质煤油浆质量的0.1~10wt%,优选为2wt%;
所述一级加氢反应步骤中通入氢气的具体方法为:
向所述生物质煤油浆中注入高压氢气,并控制所述高压氢气与所述生物质煤油浆的体积比为(600~1000):1,从而形成一级反应原料;将所述一级反应原料送入第一浆态床反应器内以发生一级加氢反应,同时向所述第一浆态床反应器内注入高压冷氢,控制所述第一浆态床反应器内的总气速为0.02~0.2m/s,优选为0.05~0.08m/s;
所述高压氢气和高压冷氢的压力均为15~25MPa,所述高压冷氢的温度为50~135℃。
将所述高压氢气分两次注入至所述生物质煤油浆中,具体为:
向所述生物质煤油浆中第一次注入高压中温氢气后将所述生物质煤油浆换热升温至200~350℃,而后再向所述生物质煤油浆中第二次注入高压高温氢气;
所述高压中温氢气的温度为180~350℃,所述高压高温氢气的温度为360~510℃。
所述二级加氢反应步骤中:
在所述催化剂浆液中所述第二催化剂与所述溶剂油的质量比为(1~2):10;
所述第二催化剂的添加量为所述一级加氢产物质量的0.5~2wt%;
所述硫化剂与所述第二催化剂的质量比为(0.01~1):1;
所述第二催化剂的粒度为5-500μm。
所述二级加氢反应步骤中通入氢气的方法为:
将所述一级加氢产物与所述催化剂浆液的混合物升温至380~480℃,优选为430℃,而后将所述混合物送入至第二浆态床反应器内并通入高压高温氢气以发生二级加氢反应,同时向所述第二浆态床反应器内注入高压冷氢,并控制所述第二浆态床反应器内的总气速为0.06~0.1m/s,且氢气与所述一级加氢产物的体积比为(1000~1500):1;
所述高压高温氢气和高压冷氢的压力均为13~27MPa,所述高压高温氢气的温度为430~480℃,所述高压冷氢的温度为50~135℃。
所述高压冷氢经由所述第一浆态床反应器或所述第二浆态床反应器侧壁上的3~5个注入口注入。
所述第一催化剂在所述第一浆态床反应器内的存量控制在所述第一浆态床反应器内液相质量的5~30wt%,所述第二催化剂在所述第二浆态床反应器内的存量控制在所述第二浆态床反应器内液相质量的5~30wt%。
所述一级加氢反应的时间为30~60min,所述二级加氢反应的时间为30~90min。
还包括在压力为7~23MPa、温度为250~460℃的条件下对所述二级加氢产物进行加氢重整的步骤。
所述第一催化剂为负载有第一活性组分的生物质炭,所述第一活性组分为氧化铁、羟基氧化铁或氢氧化铁中的一种或多种;所述第二催化剂为负载有第二活性组分的生物质炭,所述第二活性组分为Mo、W、Fe、Co、Ni或Pd的氧化物中的一种或多种;
或第一催化剂为无定型氧化铁,所述第二催化剂为负载有第三活性组分的无定型氧化铝,所述第三活性组分选自元素周期表第VIB、VIIB或VIII族金属的氧化物中的一种或多种。
所述煤为低阶煤;所述油品为潲水油、地沟油、酸败油、废润滑油、废机油、重油、渣油、洗油、蒽油、煤焦油、石油、或本工艺制得的生物油中的一种或多种。
所述生物质煤油浆的配制步骤中,还包括对所述生物质粉末和所述煤粉进行筛选的操作,并将超过限定粒度的所述固料送回所述压缩或所述粉碎环节中再次进行操作;所述限定粒度为80μm~100μm。
本发明中第一催化剂(负载有第一活性组分的生物质炭)和第二催化剂(负载有第二活性组分的生物质炭)的制备方法如下:
第一催化剂的制备:
(1)选取生物质炭为第一生物质炭载体;
(2)将第一活性组分负载于所述第一生物质炭载体上,制得第一催化剂。
以金属元素质量计,所述第一活性组分占所述第一生物质炭载体质量的10%~50%。
将所述第一活性组分负载于所述第一生物质炭载体的具体过程为:将所述所述第一活性组分的水溶液和第一生物质炭载体混合配制成悬浮液,加入沉淀剂将第一活性组分沉淀于第一生物质炭载体上,经洗涤、干燥制得所述第一催化剂;其中,所述沉淀剂为氨水或碱金属的碳酸盐、碳酸氢盐、氢氧化物中至少一种的水溶液,沉淀过程温度控制为30℃~90℃,pH值为7~9。
第二催化剂的制备:
(1)生物质炭经酸化或碱化处理后,制得第二生物质炭载体;
(2)将第二活性组分和所述第二生物质炭载体混合研磨,制得第二催化剂。
以金属元素质量计,所述第二活性组分占所述第二生物质炭载体质量的1%~5%。
所述将第二活性组分和所述第二生物质炭载体的混合研磨步骤为:将所述第二活性组分和所述第二生物质炭载体经振动研磨和/或平面研磨和/或球磨得到粒径为5μm~500μm的第二催化剂。
所述酸化处理的酸性介质中H+的物质的量浓度为0.5mol/L~5mol/L;所述生物质炭与所述酸性介质体积比为1:5~1:15,酸化温度为30~80℃,酸化时间为1h~10h;所述碱化处理的碱性介质中OH-的物质的量浓度为0.5mol/L~5mol/L;所述生物质炭与所述碱性介质体积比为1:5~1:15,碱化温度为30℃~80℃,碱化时间为1h~10h。
本发明的上述技术方案具有如下优点:
1、本发明创造性的首次实现了煤、生物质及油的混炼液化。本发明通过对生物质、煤进行脱水、粉碎、压缩、再粉碎、初次成浆、研磨制浆这一工艺流程,并通过对粉碎的粒径和压缩条件的优选,成功制得了生物质和煤含量达到60-70wt%,而粘度仅为550-1000mPa·s(50℃)的生物质煤油浆。
压缩处理能够使得煤与生物质材料内部的孔隙结构坍塌、闭合,发生塑性流变和塑性变形,从而大大提高了煤与生物质原料的密度,使其能够良好的分散于溶剂油中;同时,孔隙结构的坍塌和闭合避免了煤与生物质对溶剂油的吸附,使得溶剂油能够充分发挥其作为分散剂的作用;我们发现,压缩温度对于塑性流变和塑性变形的程度有很大影响,温度越高得到的密度越大,然而温度过高则会导致物料发生分解或带来其他问题,所以采用30~60℃作为压缩时的温度。压缩后的再次粉碎操作,增加了原料的可接触面积,使得原料与催化剂以及溶剂油可更好的接触,能够加强氢的传递,大大减少原料因处于孔隙状结构内而无法与氢和催化剂接触从而反应的情况。
本发明提供的“粉碎+压缩+再次粉碎”能够适用于所有内部具有孔隙结构的煤材料和生物质材料,尤其是对褐煤等低阶煤原料,以及秸秆、稻壳等多孔疏松的生物质原料;制得的高浓度生物质煤油浆的成浆性好,流动性高,可直接用泵平稳输送,不仅能够有效提高输送系统运行平稳性、液化装置利用效率和液化效率,满足后续处理工艺的进料要求,还实现了劣质煤与生物质的清洁高效利用;煤与生物质的紧密相邻使得生物质热解所产生的氢可作为煤热解加氢的部分氢源,减少了对氢的消耗。通过本发明提供的共同液化工艺使得现有技术中不能作为煤与生物质液化溶剂的高黏废油,例如废机油、地沟油、酸败油等,也能够得到利用。
本发明工艺使得煤与生物质依次发生初级裂化、加氢反应和深度裂化、加氢反应,从而实现由煤与生物质向燃料油和化工原料的转变,煤与生物质转化率可达90~99%,燃料油的收率可达60~80%,且残渣量不足3%。
2、本发明进一步配合对固料进行筛选的过程,能够保证用于配制生物质油煤浆的固体颗粒粒径均一,使所得生物质煤油浆稳定性更好,不易在运输过程中发生沉降,避免了对运输管道的堵塞和对液化设备的损坏。
通过先将固料与第一催化剂及硫化剂混合,能够更好地利用生物质粉体的表面能使第一催化剂附着在固体生物质粉体的表面,这样第一催化剂便可及时地为煤与生物质液化产物提供氢转移,从而确保整个工艺过程中不会产生焦炭缩聚,达到降低残渣量的目的。
本发明通过在临氢及以经硫化处理后的无定型氧化铁为第一催化剂、经硫化处理后的负载第VIB、VIIB或VIII族金属氧化物的无定型氧化铝为第二催化剂的条件下,或者以负载有氧化铁、羟基氧化铁或氢氧化铁中的一种或多种的生物质炭为第一催化剂,以负载有Mo、W、Fe、Co、Ni或Pd的氧化物中的一种或多种的生物质炭为第二催化剂的条件下,使得煤与生物质的液化产物依次发生初级裂化、加氢反应和深度裂化、加氢反应,提高了燃油收率,并降低残渣量。贵金属硫化后有较好的加氢性能,能够进一步避免生焦;无定型氧化铝具有酸性,能够使得裂解更加充分。
3、本发明通过采用至少两个浆态床反应器,先将反应原料依次送入上述反应器中以发生加氢反应,同时再向这些反应器内注入冷氢,如此在两个反应器内可以依靠气体、液体、固体各物料的不同比重并配合反应后轻质油品的产量所引起的比重差变化,实现各相态流速的差异性控制,使得煤与生物质原料在反应器内由下至上发生液化、裂化、加氢反应,在此过程中即便比重较大的煤、生物质和催化剂固体颗粒随着气体和轻质油品上升,但在上部的冷氢作用下又回返至底部再次参与反应,根据反应器上、中、下部的物料密度适当调整进入反应器的生物质煤油浆中的氢气含量及冷氢注入量,从而实现未转化的煤与生物质在反应器内部的循环以及催化剂的平衡排出,由此可确保液化、裂化、加氢等反应的充分进行,从而有利于提高煤与生物质转化率和燃料油收率。
4、本发明提供的利用煤与生物质生产燃料油和化工原料的工艺,通过将高压氢气分三次注入至生物质煤油浆中,即在对生物质煤油浆升温前后各注入一次高压氢气,然后在所述一级加氢产物与所述第二催化剂的混合物进入第二浆态床反应器前再注入一次高压氢气,第一次高压氢气的注入可增大换热器内生物质煤油浆的扰动,从而避免煤、生物质和催化剂的沉积。分三次注入高压氢气,可以实现气体速度对各种液体、固体、催化剂的速度供给,并依靠混合物的相态、密度差异实现反应器内上升、停留的差异,同时可以根据反应器内各层间的密度差,通过反应器外壁的氢气注入口补充调整气量,保证液化、裂化、加氢反应的充分进行。
具体实施方式
下面将对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。此外,下面所描述的本发明不同实施方式中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。
下述各实施例和对比例中所述煤与生物质的转化率、生物油收率以及残渣含量的计算公式如下:
煤与生物质的转化率=(二级加氢产物质量-加氢催化剂的质量-溶剂油的质量)/(煤与生物质的质量和)
生物油收率=生物油的质量/(煤与生物质的质量和)
残渣含量=残渣质量/(煤与生物质的质量和)。
实施例1
本实施例所述的第一催化剂和第二催化剂制备方法包括如下步骤:
第一催化剂的制备:
(1)选取生物质炭为第一生物质炭载体;
(2)将第一活性组分负载于所述第一生物质炭载体上,制得第一催化剂。
其中,所述第一活性组分为氧化铁,以金属元素质量计,所述第一活性组分占所述第一生物质炭载体质量的50%;
步骤(2)中负载的具体步骤为:将所述第一活性组分的水溶液与所述第一生物质炭载体混合配制成悬浮液,加入沉淀剂使第一活性组分沉淀于第一生物质炭载体上,再进行洗涤、干燥,即得所述第一催化剂;其中,所述沉淀剂为氨水或碱金属的碳酸盐、碳酸氢盐、氢氧化物中至少一种的水溶液,沉淀过程温度控制为90℃,pH值为9。
第二催化剂的制备:
(1)采用H+浓度为5mol/L的酸性介质,于80℃下以15:1的体积比对生物质炭进行酸化处理10h,即得到生物质炭载体;作为本实施例的一种替代方式,也可以采用OH-浓度为0.5mol/L的碱性介质,于30℃下以5:1的体积比对生物质炭进行酸化处理10h。
(2)将Mo与W的氧化物和所述生物质炭载体共同进行振动研磨,即实现活性组分在生物质炭载体上的负载,得到粒径为200μm~300μm的第二催化剂。以金属元素质量计,所述第二活性组分占所述生物质炭载体质量的5%。
实施例2
一种利用煤与生物质生产燃料油和化工原料的工艺,包括如下步骤:
煤原料的预处理:
(1)取褐煤,将其烘干脱水,粉碎至中位粒径为50μm,然后送入压块机进行挤压成型,成型压力为15MPa,得到褐煤压缩料。
(2)将褐煤压缩料送入球磨机,进行粉碎,得到中位粒径为45μm的褐煤粉碎料,待用。
生物质煤油浆的配制和液化反应:
将上述褐煤粉碎料进行除灰后与负载有羟基氧化铁的生物质炭以及硫化剂混合得到混合物,将所述混合物加入至动物油和酸败油的混合油中,从而形成所述生物质煤油浆,向所述生物质煤油浆中通入氢气以发生反应,并控制反应压力为25MPa、反应温度为270℃,反应45min,得到一级加氢产物。
将负载有氧化钼的生物质炭、硫化剂以及动物油和酸败油混合制得催化剂浆液,然后加入至上述一级加氢产物中,并通入氢气以发生二级加氢反应,控制反应压力为25MPa、反应温度为380℃,反应70min,得到二级加氢产物。
再将所述二级加氢产物进行分离,即可分别得到燃料油和化工原料。
实施例3
一种利用煤与生物质生产燃料油和化工原料的工艺,包括如下步骤:
生物质原料的预处理:
(1)取芦苇,将其烘干脱水至含水量为1wt%,然后送入气流粉碎机进行粉碎处理,得到芦苇一次粉碎料,粒径D50为150μm。
(2)将芦苇一次粉碎料送入压块机或压条机进行挤压成型,成型压力为4MPa,得到芦苇压缩料。
(3)将芦苇压缩料送入气流粉碎机,进行二次粉碎,得到芦苇二次粉碎料,粒径D50为35μm,待用。
煤原料的预处理:
(1)取神东长焰煤,将其烘干脱水,然后送入球磨机进行粉碎处理,得到神东长焰煤一次粉碎料,粒径D50为100μm。
(2)将神东长焰煤一次粉碎料送入压块机或压条机进行挤压成型,成型压力为5MPa,得到神东长焰煤压缩料。
(3)将神东长焰煤压缩料送入球磨机,进行二次粉碎,得到神东长焰煤二次粉碎料,粒径D50为50μm,待用。
生物质煤油浆的配制和液化反应:
芦苇和煤的二次粉碎料经除灰后与无定型氧化铁以及硫化剂混合得到混合物,将所述混合物加入至废机油中,形成生物质煤油浆。向上述生物质煤油浆中注入13MPa、180℃的高压中温氢气,再将生物质煤油浆换热升温至200℃,而后再向其中注入13MPa、510℃的高压高温氢气,并控制两次注入的氢气与生物质煤油浆的质量比达到600:1以形成一级反应原料。
将第一级反应原料送入第一浆态床反应器中,并向第一浆态床反应器中注入通入27MPa、50℃的高压冷氢,控制反应器内的总气速为0.05m/s、反应压力为15MPa、反应温度为350℃,反应时间50min,进行一级加氢反应,得到一级加氢产物。
将负载有W氧化物和Ni氧化物的无定型氧化铝、硫化剂与动物油以及废机油混合制得催化剂浆液,然后将其加入上述一级加氢产物中并通入氢气以发生二级加氢反应,控制反应压力为15MPa、反应温度为480℃,反应时间30min,得到二级加氢产物。
将二级加氢产物进行气、液、固三相分离,再对得到的生物油进行蒸馏,<200℃的馏分油用于制备化工原料,其余用作燃料油。
实施例4
一种利用煤与生物质生产燃料油和化工原料的工艺,包括如下步骤:
生物质原料的预处理:
(1)将海草烘干脱水至含水量为1.5wt%,然后送入气流粉碎机进行粉碎处理,得到海草一次粉碎料,粒径D50为100μm。
(2)将海草一次粉碎料送入压块机或压条机进行挤压成型,成型压力为2MPa,得到海草压缩料。
(3)将海草压缩料送入气流粉碎机,进行二次粉碎,得到海草二次粉碎料,粒径D50为50μm,待用。
煤原料的预处理:
(1)取神东长焰煤,将其烘干脱水,然后送入球磨机进行粉碎处理,得到神东长焰煤一次粉碎料,粒径D50为50μm。
(2)将神东长焰煤一次粉碎料送入压块机或压条机进行挤压成型,成型压力为15MPa,得到神东长焰煤压缩料。
(3)将神东长焰煤压缩料送入球磨机,进行二次粉碎,得到神东长焰煤二次粉碎料,粒径D50为45μm,待用。
生物质煤油浆的配制和液化反应:
将海草和煤的二次粉碎料与负载有羟基氧化铁(第一催化剂)的生物质炭、硫化剂以及洗油共同混合形成生物质煤油浆。其中,硫化剂与第一催化剂的质量比为0.4:1;第一催化剂的粒度为5-100μm,添加量为生物质煤油浆质量的10%;在所述生物质煤油浆中,所述海草的含量为20wt%,所述煤的含量为45wt%。
向上述生物质煤油浆中注入27MPa、350℃的高压中温氢气,而后将生物质煤油浆换热升温至350℃,再向生物质煤油浆中注入27MPa、360℃的高压高温氢气,并控制两次注入的氢气与生物质煤油浆的体积比达到1000:1以形成一级反应原料。
将一级反应原料送至第一浆态床反应器中,并通入13MPa、135℃的高压冷氢,控制反应器中的总气速为0.08m/s,反应压力为20MPa、反应温度为290℃进行一级加氢反应,反应时间40min,得到一级加氢产物。
将负载有氧化镍的生物质炭(第二催化剂)、硫化剂与洗油混合制得催化剂浆液,向一级加氢产物中加入催化剂浆液并通入氢气以发生二级加氢反应,控制反应压力为25MPa、反应温度为430℃,反应时间为90min,得到二级加氢产物,在所述催化剂浆液中第二催化剂与洗油的质量比为1:10,第二催化剂的粒度为400~500μm,添加量为一级加氢产物质量的0.5wt%,硫化剂与第二催化剂的质量比为0.4:1。
对二级加氢产物进行分离,分别得到燃料油和化工原料。
实施例5
一种利用煤与生物质生产燃料油和化工原料的工艺,包括如下步骤:
生物质原料的预处理:
(1)取稻草,将其烘干脱水至含水量为0.5wt%,,然后送入气流粉碎机进行粉碎处理,得到稻草一次粉碎料,粒径D50为300μm。
(2)将稻草一次粉碎料送入压块机或压条机进行挤压成型,成型压力为5MPa,得到稻草压缩料。
(3)将稻草压缩料送入气流粉碎机,进行二次粉碎,得到稻草二次粉碎料,粒径D50为30μm,待用。
煤原料的预处理:
(1)取褐煤,将其烘干脱水,然后送入球磨机进行粉碎处理,得到褐煤一次粉碎料,粒径D50为50μm。
(2)将褐煤一次粉碎料送入压块机进行挤压成型,成型压力为15MPa,得到褐煤压缩料。
(3)将褐煤压缩料送入球磨机,进行二次粉碎,得到褐煤二次粉碎料,粒径D50为45μm,待用。
将上述稻草与褐煤的二次粉碎料进行筛选,将粒径>80μm的稻草和褐煤分离出来,然后投入压缩环节或第二次粉碎环节中随后续进料一起再次处理,以获得更加均一的粒径,从而获得更加稳定的生物质煤油浆。
生物质煤油浆的配制和液化反应:
稻草与褐煤经过筛选的二次粉碎料经除灰后与负载有氧化铁的生物质炭(第一催化剂)以及硫化剂混合得到混合物,将所述混合物加入废润滑油以得到生物质煤油浆。在所述生物质煤浆液中,硫化剂与第一催化剂的质量比为1:1,第一催化剂的粒度为400~500μm,添加量为生物质煤油浆质量的2%,稻草的含量为30wt%,煤的含量为30wt%。
向上述生物质煤油浆中注入20MPa、250℃的高压中温氢气后将生物质煤油浆换热升温至300℃,而后再向生物质煤油浆中注入20MPa、450℃的高压高温氢气,并控制两次注入的氢气与生物质煤油浆的体积比达到800:1以形成一级反应原料。
将第一级反应原料送入第一浆态床反应器,并向反应器内注入17MPa、100℃的高压冷氢,控制第一浆态床反应器内的总气速为0.02m/s,反应压力为20MPa、反应温度为320℃,进行一级加氢反应30min,得到一级加氢产物。
将负载有氧化镍和氧化铁的生物质炭(第二催化剂)、硫化剂与废润滑油混合制得催化剂浆液,将所得催化剂浆液加入至上述一级加氢产物中,然后升温至430℃,再送入第二浆态床反应器内,通入13MPa、480℃的高压高温氢气以发生二级加氢反应,同时向第二浆态床反应器内注入13MPa、135℃高压冷氢,控制第二浆态床反应器内的总气速为0.1m/s,并控制反应压力为17MPa,反应温度为450℃,反应时间40min,得到二级加氢产物。两次注入氢气与一级加氢产物的体积比为1000:1;控制第二催化剂在第二浆态床反应器内的存量为第二浆态床反应器内液相质量的5~20wt%。
所述催化剂浆液中第二催化剂与废润滑油的质量比为2:10,第二催化剂的粒度为100~200μm,添加量为一级加氢产物质量的1wt%,硫化剂与第二催化剂的质量比为1:1。
在压力为7MPa、温度为460℃的条件下对二级加氢产物进行加氢重整,然后对重整产物进行气、液、固三相分离,再对得到的生物油进行蒸馏,<200℃的馏分油用于制备化工原料,其余用作燃料油。
实施例6
一种利用煤与生物质生产燃料油和化工原料的工艺,包括如下步骤:
生物质原料的预处理:
(1)取大豆油油渣,将其烘干脱水,然后送入超微粉碎机进行粉碎处理,得到大豆油油渣一次粉碎料,粒径D50为200μm。
(2)将大豆油油渣一次粉碎料送入压块机或压条机进行挤压成型,成型压力为4MPa,得到大豆油油渣压缩料。
(3)将大豆油油渣压缩料送入超微粉碎机,进行二次粉碎,得到大豆油油渣二次粉碎料,粒径D50为40μm,待用。
煤原料的预处理:
(1)取神东长焰煤,将其烘干脱水,然后送入球磨机进行粉碎处理,得到神东长焰煤一次粉碎料,粒径D50为70μm。
(2)将神东长焰煤一次粉碎料送入压块机或压条机进行挤压成型,成型压力为12MPa,得到神东长焰煤压缩料。
(3)将神东长焰煤压缩料送入球磨机,进行二次粉碎,得到神东长焰煤二次粉碎料,粒径D50为30μm,待用。
当然,作为本实施例的一种替代方式,也可以将上述大豆油油渣压缩料和神东长焰煤压缩料分别与部分废润滑油混合后共同送入球磨机进行第二次粉碎。
生物质煤油浆的配制和液化反应:
本实施例中所用的第一催化剂和第二催化剂是根据实施例1提供的方法制备得到的。
将神东长焰煤和大豆油油渣的二次粉碎料与第一催化剂以及硫化剂共同加入废润滑油中,其中,硫化剂与第一催化剂的质量比为0.7:1,第一催化剂的粒度为5~200μm,添加量为生物质煤油浆质量的10%,所述生物质煤油浆中,大豆油油渣的含量为30wt%,煤的含量为40wt%。
向上述生物质煤油浆中注入18MPa、300℃的高压中温氢气,然后将生物质煤油浆换热升温至250℃,再向生物质煤油浆中注入18MPa、400℃的高压高温氢气,并控制两次注入的氢气与生物质煤油浆的体积比达到900:1以形成一级反应原料。
将一级反应原料送入第一浆态床反应器,并通入17MPa、100℃的高压冷氢以发生一级加氢反应,控制第一浆态床反应器内的总气速为0.02m/s,反应器内第一催化剂的存量为液相质量的20~30wt%;反应压力为20MPa、反应温度为300℃,反应60min,得到一级加氢产物。
将第二催化剂、硫化剂与废润滑油混合制得催化剂浆液,其中,硫化剂与第二催化剂的质量比为0.01:1,第二催化剂与废润滑油的质量比为2:10,第二催化剂的粒度为100~200μm。将上述催化剂浆液加入至一级加氢产物中,使得第二催化剂的添加量为以及加氢产物质量的1%,得到二级反应原料,将所述二级反应原料升温至430℃后送入第二浆态床反应器,并通入13MPa、480℃的高压高温氢气以发生二级加氢反应,同时从反应器侧壁上由3~5个注入口注入13MPa、135℃的高压冷氢,控制第二浆态床反应器内的总气速为0.1m/s,氢气与一级加氢产物的体积比为1000:1;反应压力为17MPa、反应温度为450℃,反应60min,得到二级加氢产物,控制第二浆态床反应器内第二催化剂的存量为液相质量的20~30wt%。
将上述二级加氢产物在压力为23MPa、温度为250℃的条件下加氢重整,然后进行气、液、固三相分离,再对得到的生物油进行蒸馏,<200℃的馏分油用于制备化工原料,其余用作燃料油。
对比例1
本对比例提供的利用煤与生物质生产燃料油和化工原料的工艺,与实施例4基本一致,其区别仅在于控制第一浆态床反应器中反应压力为10MPa、反应温度为400℃。
对比例2
本对比例提供的利用煤与生物质生产燃料油和化工原料的工艺,与实施例4基本一致,其区别仅在于控制第二浆态床反应器中反应压力为30MPa、反应温度为200℃。
实验例
对采用本发明的实施例和对比例的工艺制备的产物的分布进行对比,如下表1所示。
表1各实施例和对比例的产物分布对比
Figure BDA0001524967450000231
从表1可以看出,相对于对比例1-2,采用本发明实施例提供的方法得到的生物质转化率和生物油的收率均较高,而残渣量则明显减少,几乎没有生焦生成,从而得知本发明的方法可以明显提高生物质转化率和轻质油的收率,降低残渣量。此外,多级液化使得加氢反应更加充分,轻质油的品质更高。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (17)

1.一种利用煤与生物质生产燃料油和化工原料的工艺,其特征在于,包括如下步骤:
生物质煤油浆的配制:
收集生物质并控制含水率低于2wt%,然后粉碎至中位粒径为100~300μm;
将粉碎后的生物质进行压缩成型,压缩压力为2~5MPa,压缩温度为30~60℃;
将压缩成型后的生物质再次粉碎处理,粉碎至中位粒径为30~50μm,得生物质粉末;
收集煤并控制含水率低于2wt%,然后粉碎至中位粒径为50~100μm,压缩温度为30~60℃;
对粉碎后的煤进行压缩成型,压缩压力为5~15MPa;
对压缩成型后的煤再次粉碎处理,粉碎至中位粒径为30~50μm,得煤粉;
将所述生物质粉末、所述煤粉、第一催化剂、硫化剂与溶剂油混合、研磨制浆得到生物质煤油浆,所述生物质粉末和所述煤粉共占所述生物质煤油浆的60~70wt%;所述生物质的浓度为20~30wt%,煤粉的浓度为30~45wt%;所述溶剂油为潲水油、地沟油、酸败油、废润滑油、渣油、洗油、蒽油、煤焦油、石油、或本工艺制得的生物油中的一种或多种;
催化剂浆液的配制:将第二催化剂、硫化剂与溶剂油混合制得催化剂浆液,待用;
一级加氢反应:向所述生物质煤油浆中通入氢气以发生一级加氢反应,并控制反应压力为15~25MPa、反应温度为270~350℃,得到一级加氢产物;
二级加氢反应:向所述一级加氢产物中加入所述催化剂浆液并通入氢气以发生二级加氢反应,控制反应压力为15~25MPa、反应温度为380~480℃,得到二级加氢产物;
产物的分离:将所述二级加氢产物进行气、液、固三相分离,再对得到的生物油进行蒸馏,<200℃的馏分油用于制备化工原料,其余用作燃料油;
在生物质煤油浆的配制步骤中,进行所述混合时,为先将所述生物质粉末和所述煤粉进行除灰并与所述第一催化剂以及所述硫化剂进行预混合后,再将所得预混料与所述溶剂油混合,或者,为直接将所述生物质粉末、所述煤粉、所述催化剂与所述溶剂油混合。
2.根据权利要求1所述的煤与生物质生产燃料油和化工原料的工艺,其特征在于,采用烘干脱水控制含水率,所述烘干脱水温度均为50~70℃,烘干脱水时间为3~5h。
3.根据权利要求1所述的煤与生物质生产燃料油和化工原料的工艺,其特征在于,生物质煤油浆的配制步骤中控制所述生物质粉末的堆密度为300~500kg/m3,控制所述煤粉的堆密度为1000~1200kg/m3
4.根据权利要求1所述的煤与生物质生产燃料油和化工原料的工艺,其特征在于,所述研磨制浆的时间为2~8min。
5.根据权利要求1所述的煤与生物质生产燃料油和化工原料的工艺,其特征在于,所述生物质煤油浆配制的步骤中:
所述第一催化剂的粒度为5~500μm;
所述硫化剂与所述第一催化剂的质量比为(0.4~1):1;
所述第一催化剂的添加量为所述生物质煤油浆质量的0.1~10wt%。
6.根据权利要求5所述的煤与生物质生产燃料油和化工原料的工艺,其特征在于,所述第一催化剂的添加量为所述生物质煤油浆质量的2wt%。
7.根据权利要求1-6任一项所述的煤与生物质生产燃料油和化工原料的工艺,其特征在于,所述一级加氢反应步骤中通入氢气的具体方法为:
向所述生物质煤油浆中注入高压氢气,并控制所述高压氢气与所述生物质煤油浆的体积比为(600~1000):1,从而形成一级反应原料;将所述一级反应原料送入第一浆态床反应器内以发生一级加氢反应,同时向所述第一浆态床反应器内注入高压冷氢,控制所述第一浆态床反应器内的总气速为0.02~0.2m/s;
所述高压氢气和高压冷氢的压力均为15~25MPa,所述高压冷氢的温度为50~135℃。
8.根据权利要求7所述的煤与生物质生产燃料油和化工原料的工艺,其特征在于,控制所述第一浆态床反应器内的总气速为0.05~0.08m/s。
9.根据权利要求8所述的煤与生物质生产燃料油和化工原料的工艺,其特征在于,将所述高压氢气分两次注入至所述生物质煤油浆中,具体为:
向所述生物质煤油浆中第一次注入高压中温氢气后将所述生物质煤油浆换热升温至200~350℃,而后再向所述生物质煤油浆中第二次注入高压高温氢气;
所述高压中温氢气的温度为180~350℃,所述高压高温氢气的温度为360~510℃。
10.根据权利要求9所述的煤与生物质生产燃料油和化工原料的工艺,其特征在于,所述二级加氢反应步骤中:
在所述催化剂浆液中所述第二催化剂与所述溶剂油的质量比为(1~2):10;
所述第二催化剂的添加量为所述一级加氢产物质量的0.5~2wt%;
所述硫化剂与所述第二催化剂的质量比为(0.01~1):1;
所述第二催化剂的粒度为5~500μm。
11.根据权利要求10所述的煤与生物质生产燃料油和化工原料的工艺,其特征在于,所述二级加氢反应步骤中通入氢气的方法为:
将所述一级加氢产物与所述催化剂浆液的混合物升温至380~480℃,而后将所述混合物送入至第二浆态床反应器内并通入高压高温氢气以发生二级加氢反应,同时向所述第二浆态床反应器内注入高压冷氢,并控制所述第二浆态床反应器内的总气速为0.06~0.1m/s,且氢气与所述一级加氢产物的体积比为(1000~1500):1;
所述高压高温氢气和高压冷氢的压力均为13~27MPa,所述高压高温氢气的温度为430~480℃,所述高压冷氢的温度为50~135℃。
12.根据权利要求11所述的煤与生物质生产燃料油和化工原料的工艺,其特征在于,将所述一级加氢产物与所述催化剂浆液的混合物升温至430℃。
13.根据权利要求12所述的煤与生物质生产燃料油和化工原料的工艺,其特征在于,所述第一催化剂在所述第一浆态床反应器内的存量控制在所述第一浆态床反应器内液相质量的5~30wt%,所述第二催化剂在所述第二浆态床反应器内的存量控制在所述第二浆态床反应器内液相质量的5~30wt%。
14.根据权利要求13所述的煤与生物质生产燃料油和化工原料的工艺,其特征在于,所述一级加氢反应的时间为30~60min,所述二级加氢反应的时间为30~90min。
15.根据权利要求14所述的煤与生物质生产燃料油和化工原料的工艺,其特征在于,还包括在压力为7~23MPa、温度为250~460℃的条件下对所述二级加氢产物进行加氢重整的步骤。
16.根据权利要求15所述的煤与生物质生产燃料油和化工原料的工艺,其特征在于,所述第一催化剂为负载有第一活性组分的生物质炭,所述第一活性组分为氧化铁、羟基氧化铁或氢氧化铁中的一种或多种;所述第二催化剂为负载有第二活性组分的生物质炭,所述第二活性组分为Mo、W、Fe、Co、Ni或Pd的氧化物中的一种或多种;
或第一催化剂为无定型氧化铁,所述第二催化剂为负载有第三活性组分的无定型氧化铝,所述第三活性组分选自元素周期表第VIB、VIIB或VIII族金属的氧化物中的一种或多种。
17.根据权利要求16所述的煤与生物质生产燃料油和化工原料的工艺,其特征在于,所述煤为低阶煤。
CN201711431424.3A 2017-12-26 2017-12-26 一种利用煤与生物质生产燃料油和化工原料的工艺 Active CN108251149B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711431424.3A CN108251149B (zh) 2017-12-26 2017-12-26 一种利用煤与生物质生产燃料油和化工原料的工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711431424.3A CN108251149B (zh) 2017-12-26 2017-12-26 一种利用煤与生物质生产燃料油和化工原料的工艺

Publications (2)

Publication Number Publication Date
CN108251149A CN108251149A (zh) 2018-07-06
CN108251149B true CN108251149B (zh) 2020-03-17

Family

ID=62723955

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711431424.3A Active CN108251149B (zh) 2017-12-26 2017-12-26 一种利用煤与生物质生产燃料油和化工原料的工艺

Country Status (1)

Country Link
CN (1) CN108251149B (zh)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL2348091T3 (pl) * 2010-01-12 2013-04-30 Ifp Energies Now Sposób bezpośredniego hydroupłynniania biomasy obejmujący dwa etapy hydrokonwersji na złożu wrzącym
CN101856619B (zh) * 2010-06-10 2012-07-04 中国矿业大学(北京) 高分散负载型铁基煤与生物质共液化催化剂及其制备方法
AU2016254571B2 (en) * 2015-04-27 2018-09-20 Shell Internationale Research Maatschappij B.V. Conversion of biomass or residual waste material to biofuels
CN104927948B (zh) * 2015-06-16 2017-03-08 神华集团有限责任公司 一种水煤浆的制备方法

Also Published As

Publication number Publication date
CN108251149A (zh) 2018-07-06

Similar Documents

Publication Publication Date Title
CN108285808B (zh) 一种煤与生物质的多级液化工艺
CN109536195B (zh) 一种生物质和煤的转化工艺
CN108192652B (zh) 一种煤与生物质的共同液化工艺
CN108219819B (zh) 一种煤与生物质的一锅法液化工艺
CN108277036B (zh) 一种生物质的多级液化工艺
CN108219817B (zh) 一种生物质的多级液化工艺
CN108277038B (zh) 一种煤与生物质的共同水解加氢工艺
CN108277037B (zh) 一种煤与生物质液化生产轻质油的方法
CN108251150B (zh) 一种生物质的一锅法液化工艺
CN108085042B (zh) 一种生物质的一锅法液化工艺
CN108085048B (zh) 一种生物质的一锅法液化工艺
CN108179019B (zh) 一种煤与生物质的多级液化工艺
CN108251149B (zh) 一种利用煤与生物质生产燃料油和化工原料的工艺
CN110408420B (zh) 一种有机质转化工艺
CN108315041B (zh) 一种煤与生物质直接液化的方法
CN108219820B (zh) 一种利用煤与生物质生产燃料油和化工原料的工艺
CN108264919B (zh) 一种利用生物质生产燃料油和化工原料的工艺
CN108264916B (zh) 一种生物质的一锅法液化工艺
CN108264918B (zh) 一种生物质的水解加氢工艺
CN108219818B (zh) 一种生物质的一锅法液化工艺
CN108264917B (zh) 一种生物质的水解加氢工艺
US10975312B2 (en) Process for one-pot liquefaction of biomass or coal and biomass
CN108315040B (zh) 一种利用生物质生产燃料油和化工原料的工艺
CN109536197B (zh) 一种生物质液化工艺
WO2019205682A1 (zh) 一种有机质转化工艺

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP03 Change of name, title or address

Address after: 100080 9th floor, Dahang Jiye building, No.1 building, 33 Renmin North Road, Haidian District, Beijing

Patentee after: Beijing Haixin Energy Technology Co.,Ltd.

Address before: 100044 Beijing Haidian District Xizhimen North Street a 43 Jinyun building A block 9.

Patentee before: BEIJING SANJU ENVIRONMENTAL PROTECTION & NEW MATERIALS Co.,Ltd.

CP03 Change of name, title or address