CN108240203A - 一种有机土自组装形成层状结构薄膜的方法 - Google Patents
一种有机土自组装形成层状结构薄膜的方法 Download PDFInfo
- Publication number
- CN108240203A CN108240203A CN201611203342.9A CN201611203342A CN108240203A CN 108240203 A CN108240203 A CN 108240203A CN 201611203342 A CN201611203342 A CN 201611203342A CN 108240203 A CN108240203 A CN 108240203A
- Authority
- CN
- China
- Prior art keywords
- organoclay
- layer structure
- polymer solution
- self
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/02—Subsoil filtering
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Geology (AREA)
- Mining & Mineral Resources (AREA)
- Physics & Mathematics (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Laminated Bodies (AREA)
Abstract
本发明提供一种有机土自组装形成层状结构薄膜的方法。其方案是室温下,将固体薄片依次分别浸入聚合物溶液A、有机土悬浊液和聚合物溶液B中,进行交替吸附,每次浸渍吸附时间5min~10min,间隔中用去离子水清洗片状固体上未发生吸附的多余溶液,并吹干,交替侵渍20~200个循环时后,即可在固体薄片表面得到有机土层状结构的薄膜层;所述聚合物溶液A为支链聚乙烯亚胺、直链聚乙烯亚胺、多环芳烃、盐酸苯丙醇胺溶液中的一种或几种的组合;所述聚合物溶液B为聚乙烯醇,聚氧化乙烯溶液中的一种或几种的组合。该方法利用自组装技术使有机土在固体表面吸附沉积,形成层状结构的复合薄膜,该薄膜致密、韧性好,与固体亲和性较好,该薄膜可应用到石油井壁加固技术领域。
Description
技术领域
本发明涉及石油井壁加固技术领域中的一种有机土在固体表面上自组装形成层状薄膜的方法。
背景技术
在过去的二十年里,各个国家的研究者们经过深入的探索,发现了多种超薄膜的制备方法。特别是在层层自组装这一领域,有着长足的进步,这是由于层层自组装这一方法在具有特殊功能性质的超薄膜的创新设计以及应用上具有非常好的效果。经过多年的发展,层层自组装技术已经变得逐渐成熟起来。
自组装膜技术的发展主要经历了三个阶段,即Langmuir-Blodgett(LB)膜技术、化学吸附自组装技术和静电吸附自组装技术。LB膜是使用特殊的装置,将分散在溶液中的不溶物,按照一定的排列方式,转移到固体支持物上,从而组成单分子层或多分子层膜。化学吸附自组装技术,主要是吸附质分子与固体表面的原子、分子等,发生电子转移、交换或公有,从而在吸附质和固体表面之间形成吸附化学键,这种吸附通常只有单分子层。静电吸附自组装,是通过对两种或多种带相反电荷的聚电解质进行交替吸附,从而在固体表面交替沉积形成多层膜的技术。
具有独特材料学性质的无机纳米片层材料也可以与层层组装技术相结合,Ferguson等报道了利用正价的聚电解质与硅酸盐纳米片组装成多层膜。厚度为200nm的多层膜结构规整,X射线衍射信号明显。Podsiadlo等使用聚乙烯醇(PVA) 和蒙脱土(MTM)制备了超强的聚合物纳米复合膜材料。纳米片层紧密堆积并有着清晰的平面取向。通过机械性能测试,作者得出单纯的PVA/MTM复合膜的最终拉伸强度和杨氏模量分别是纯PVA聚合物膜的4倍和10倍,而通过戊二醛交联后,多层膜的各项机械性能参数更是大幅度提高。有别于机械性能,Hammond及其合作者研究了加入无机纳米片层材料后,多层膜的离子传输性质。如利用层层组装技术制备出仿生矿化材料,就可用于石油钻井多个方面,用途广泛,如钻井井壁加固等。现有的研究者提出了控制碳酸钙晶体生长过程中晶态结构、形状和组装的方法。申请号为200710042997.7的专利提出了一种纳米层状碳酸钙仿生复合材料料,它是由低分子量有机物参与氯化钙和碳酸钠反应过程,导向方解石形成纳米薄层状结构,进而使层状结构定向组装纳米薄层的多层结构。这些研究对生物矿化材料的仿生合成起着重要的推动作用,但仍未能生长成具有天然碳酸钙结构的仿生材料,或者方法和材料性能还有待进一步提高。
发明内容
本发明的目的是针对现有技术存在的问题,提供一种薄膜致密、韧性、与固体亲和性好,可应用到石油井壁加固的有机土自组装形成层状结构薄膜的方法。
为了达到本发明的目的,本发明技术方案是这样实现的:
一种有机土自组装形成层状结构薄膜的方法是:室温下,将固体薄片依次分别浸入聚合物溶液A、有机土悬浊液和聚合物溶液B中,进行交替吸附,每次浸渍吸附时间5min~10min,间隔中用去离子水清洗片状固体上未发生吸附的多余溶液,并吹干,交替侵渍20~200个循环时后,即可在固体薄片表面得到有机土层状结构的薄膜层;所述聚合物溶液A为BPEI(支链聚乙烯亚胺)、LBPEI(直链聚乙烯亚胺)、PAH(多环芳烃)、PPA(盐酸苯丙醇胺)溶液中的一种或几种的组合。所述聚合物溶液B为PVA(聚乙烯醇),PEO(聚氧化乙烯)溶液中的一种或几种的组合。
所述有机土悬浊液质量百分比范围为0.1%~1%wt,pH值范围为5.8~10.2。聚合物溶液的质量百分比为0.1~0.5%wt;聚合物溶液B的质量百分比为0.1~0.5%wt。
所述吹干是用氮气吹干。
所述固体薄片可为硅片、金属片、陶瓷片、岩石片、玻璃片、滤纸片中的一种或几种的组合。
该方法利用自组装技术使有机土在固体表面吸附沉积,形成层状结构的复合薄膜,该薄膜致密、韧性好,与固体亲和性较好,该薄膜可应用到石油井壁加固技术领域。
具体实施方式
实施例1:
室温下,将固体薄片依次分别交替浸入BPEI溶液(0.1%wt)、有机土悬浊液(0.1%wt,pH=5.8)和PVA(0.1%wt)溶液中,进行交替吸附,每次浸渍吸附时间5min,间隔中用去离子水清洗片状固体上未发生吸附的多余溶液,并用氮气吹干,此为一个循环周期,交替侵渍200个循环周期后,即可在固体薄片表面得到有机土层状结构的复合薄膜。
实施例2:
室温下,将固体薄片依次分别交替浸入LPEI溶液(0.5%wt)、有机土悬浊液(0.5%wt,pH=8.5)和PVA溶液(0.5%wt)中,进行交替吸附,每次浸渍吸附时间5min,间隔中用去离子水清洗片状固体上未发生吸附的多余溶液,并用氮气吹干,此为一个循环周期,交替侵渍100个循环周期后,即可在固体薄片表面得到有机土层状结构的复合薄膜。
实施例3:
室温下,将固体薄片依次分别交替浸入LPEI溶液(0.5%wt)、有机土悬浊液(0.5%wt,pH=10.2)和PEO溶液(0.5%wt)中,进行交替吸附,每次浸渍吸附时间10min,间隔中用去离子水清洗片状固体上未发生吸附的多余溶液,并用氮气吹干,此为一个循环周期,交替侵渍20个循环周期后,即可在固体薄片表面得到有机土层状结构的复合薄膜。
实施例4:
室温下,将固体薄片依次分别交替浸入PAH溶液(0.2%wt)、有机土悬浊液(0.5%wt,pH=9)和PEO溶液(0.2%wt)中,进行交替吸附,每次浸渍吸附时间10min,间隔中用去离子水清洗片状固体上未发生吸附的多余溶液,并用氮气吹干,此为一个循环周期,交替侵渍50个循环周期后,即可在固体薄片表面得到有机土层状结构的复合薄膜。
Claims (4)
1.一种有机土自组装形成层状结构薄膜的方法,其特征在于:室温下,将固体薄片依次分别浸入聚合物溶液A、有机土悬浊液和聚合物溶液B中,进行交替吸附,每次浸渍吸附时间5min~10min,间隔中用去离子水清洗片状固体上未发生吸附的多余溶液,并吹干,交替侵渍20~200个循环时后,即可在固体薄片表面得到有机土层状结构的薄膜层;所述聚合物溶液A为支链聚乙烯亚胺、直链聚乙烯亚胺、多环芳烃、盐酸苯丙醇胺溶液中的一种或几种的组合;所述聚合物溶液B为聚乙烯醇,聚氧化乙烯溶液中的一种或几种的组合。
2.根据权利要求1所述的一种有机土自组装形成层状结构薄膜的方法,其特征在于:所述有机土悬浊液质量百分比范围为0.1%~1%wt,pH值范围为5.8~10.2;聚合物溶液的质量百分比为0.1%~0.5%wt;聚合物溶液B的质量百分比为0.1%~0.5%wt。
3.根据权利要求1或2所述的一种有机土自组装形成层状结构薄膜的方法,其特征在于:所述吹干是用氮气吹干。
4.根据权利要求1所述的一种有机土自组装形成层状结构薄膜的方法,其特征在于:制备用固体薄片包括硅片、金属片、陶瓷片、岩石片、玻璃片、滤纸片中的一种或几种的组合。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611203342.9A CN108240203A (zh) | 2016-12-23 | 2016-12-23 | 一种有机土自组装形成层状结构薄膜的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611203342.9A CN108240203A (zh) | 2016-12-23 | 2016-12-23 | 一种有机土自组装形成层状结构薄膜的方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN108240203A true CN108240203A (zh) | 2018-07-03 |
Family
ID=62703259
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201611203342.9A Pending CN108240203A (zh) | 2016-12-23 | 2016-12-23 | 一种有机土自组装形成层状结构薄膜的方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108240203A (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GR1010733B (el) * | 2023-07-18 | 2024-07-25 | Ιδρυμα Τεχνολογιας Και Ερευνας/Ινστιτουτο Επιστημων Χημικης Μηχανικης, | Μεθοδος παραγωγης καινοτομων πολυστρωτων πολυμερικων νανοσυνθετων φιλμ ενισχυμενων απο υψηλα ευθυγραμμισμενες νιφαδες δισδιαστατων υλικων |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101033300A (zh) * | 2006-11-07 | 2007-09-12 | 郑直 | 一种制备交联聚合物薄膜的化学方法 |
CN103897674A (zh) * | 2012-12-28 | 2014-07-02 | 中国石油化工股份有限公司 | 一种井眼清洁液及制备方法 |
CN104177517A (zh) * | 2014-02-24 | 2014-12-03 | 蒋官澄 | 一种用于井壁稳定的仿生聚合物及其制备方法和钻井液 |
US20160049475A1 (en) * | 2013-01-11 | 2016-02-18 | International Business Machines Corporation | Graphene layer transfer |
CN105731817A (zh) * | 2014-12-12 | 2016-07-06 | 中石化胜利石油工程有限公司钻井工艺研究院 | 一种蒙脱土在固体表面上层层组装的方法 |
CN104405371B (zh) * | 2014-09-26 | 2017-04-05 | 中国石油大学(华东) | 一种增加井壁稳定性并降低滤失的方法 |
-
2016
- 2016-12-23 CN CN201611203342.9A patent/CN108240203A/zh active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101033300A (zh) * | 2006-11-07 | 2007-09-12 | 郑直 | 一种制备交联聚合物薄膜的化学方法 |
CN103897674A (zh) * | 2012-12-28 | 2014-07-02 | 中国石油化工股份有限公司 | 一种井眼清洁液及制备方法 |
US20160049475A1 (en) * | 2013-01-11 | 2016-02-18 | International Business Machines Corporation | Graphene layer transfer |
CN104177517A (zh) * | 2014-02-24 | 2014-12-03 | 蒋官澄 | 一种用于井壁稳定的仿生聚合物及其制备方法和钻井液 |
CN104405371B (zh) * | 2014-09-26 | 2017-04-05 | 中国石油大学(华东) | 一种增加井壁稳定性并降低滤失的方法 |
CN105731817A (zh) * | 2014-12-12 | 2016-07-06 | 中石化胜利石油工程有限公司钻井工艺研究院 | 一种蒙脱土在固体表面上层层组装的方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GR1010733B (el) * | 2023-07-18 | 2024-07-25 | Ιδρυμα Τεχνολογιας Και Ερευνας/Ινστιτουτο Επιστημων Χημικης Μηχανικης, | Μεθοδος παραγωγης καινοτομων πολυστρωτων πολυμερικων νανοσυνθετων φιλμ ενισχυμενων απο υψηλα ευθυγραμμισμενες νιφαδες δισδιαστατων υλικων |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20230114871A1 (en) | Layer-by-layer assembly of graphene oxide membranes via electrostatic interaction and eludication of water and solute transport mechanisms | |
Zhao et al. | High flux nanofiltration membranes prepared with a graphene oxide homo-structure | |
Li et al. | Forward osmosis membranes modified with laminar MoS2 nanosheet to improve desalination performance and antifouling properties | |
Xu et al. | Multifunctional thin-film nanocomposite membranes comprising covalent organic nanosheets with high crystallinity for efficient reverse osmosis desalination | |
Ji et al. | Superfast water transport zwitterionic polymeric nanofluidic membrane reinforced by metal–organic frameworks | |
Liu et al. | Mixed-dimensional membranes: chemistry and structure–property relationships | |
Zhou et al. | Strategic design of clay‐based multifunctional materials: from natural minerals to nanostructured membranes | |
Zhu et al. | The rapid emergence of two-dimensional nanomaterials for high-performance separation membranes | |
Jia et al. | Polyvinyl alcohol-assisted high-flux thin film nanocomposite membranes incorporated with halloysite nanotubes for nanofiltration | |
Huang et al. | Graphene oxide nanosheet: an emerging star material for novel separation membranes | |
Song et al. | Fabrication of carbon nanotubes incorporated double-skinned thin film nanocomposite membranes for enhanced separation performance and antifouling capability in forward osmosis process | |
Meng et al. | Fouling and crystallisation behaviour of superhydrophobic nano-composite PVDF membranes in direct contact membrane distillation | |
Goh et al. | Carbon nanotubes for desalination: Performance evaluation and current hurdles | |
Huang et al. | Two-dimensional Montmorillonite membranes with efficient water filtration | |
Rehman et al. | Recent Development in Laminar transition metal dichalcogenides‐based membranes towards water desalination: a review | |
Kadhom et al. | Thin film nanocomposite membranes filled with bentonite nanoparticles for brackish water desalination: A novel water uptake concept | |
Zhu et al. | Membranes prepared from graphene-based nanomaterials for sustainable applications: a review | |
CN105731817A (zh) | 一种蒙脱土在固体表面上层层组装的方法 | |
Cui et al. | Facile synthesis of degradable CA/CS imprinted membrane by hydrolysis polymerization for effective separation and recovery of Li+ | |
CN105732091B (zh) | 一种碳酸钙在固体表面层层沉积的方法 | |
Du et al. | Recent developments in graphene‐based polymer composite membranes: Preparation, mass transfer mechanism, and applications | |
CN110087759A (zh) | 反渗透膜及使用方法 | |
Huang et al. | Vapor transport in graphene oxide laminates and their application in pervaporation | |
Tan et al. | Tuning the charge and hydrophobicity of graphene oxide membranes by functionalization with ionic liquids at epoxide sites | |
Chen et al. | Nanofiltration membrane embedded with hydroxyapatite nanowires as interlayer towards enhanced separation performance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20180703 |
|
RJ01 | Rejection of invention patent application after publication |