CN108239264A - 利用含水杨醛基的铝配合物催化丙交酯聚合的方法 - Google Patents

利用含水杨醛基的铝配合物催化丙交酯聚合的方法 Download PDF

Info

Publication number
CN108239264A
CN108239264A CN201711314941.2A CN201711314941A CN108239264A CN 108239264 A CN108239264 A CN 108239264A CN 201711314941 A CN201711314941 A CN 201711314941A CN 108239264 A CN108239264 A CN 108239264A
Authority
CN
China
Prior art keywords
reaction
catalyst
ligand
lactide
aluminum complex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711314941.2A
Other languages
English (en)
Other versions
CN108239264B (zh
Inventor
姚伟
高爱红
张永芳
王洪宾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Jinan
Original Assignee
University of Jinan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Jinan filed Critical University of Jinan
Priority to CN201711314941.2A priority Critical patent/CN108239264B/zh
Publication of CN108239264A publication Critical patent/CN108239264A/zh
Application granted granted Critical
Publication of CN108239264B publication Critical patent/CN108239264B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/82Preparation processes characterised by the catalyst used
    • C08G63/823Preparation processes characterised by the catalyst used for the preparation of polylactones or polylactides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/06Aluminium compounds
    • C07F5/069Aluminium compounds without C-aluminium linkages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/06Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids
    • C08G63/08Lactones or lactides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

本发明公开了一种利用含水杨醛基的铝配合物催化丙交酯聚合的方法,包括以下步骤:将催化剂、有机溶剂、苄醇助催化剂和丙交酯混合,在无水无氧和惰性气体保护下进行开环聚合反应,反应后将反应物进行处理得聚丙交酯;所述催化剂为含水杨醛基的铝配合物。本发明以自行研发的含水杨醛基的铝配合物作为催化剂进行丙交酯开环聚合反应,催化剂制备方法简单,成本低,结构变化多样,金属中心铝与配体的二价N,N,O,O配位,催化活性高、立体选择性高、反应速率快,是一种十分理想的催化剂。本发明含水杨醛基的铝配合物催化丙内酯开环聚合反应时,反应得到的聚合物是苄氧基封端的聚合物,分子量分布窄,分子量可控、产率高,能够满足市场的需要。

Description

利用含水杨醛基的铝配合物催化丙交酯聚合的方法
技术领域
本发明涉及一种催化丙交酯聚合的方法,具体涉及一种利用含水杨醛基的铝配合物催化丙交酯聚合的方法。
背景技术
以石油为原料的传统塑料从上世纪40年代开始在工业中有非常大的影响,这些传统塑料有无可比拟的优点,但有两个致命的缺点:不可再生性和不可降解性。在石油作为不可再生资源面临枯竭的情况下,依赖石油原料的高分子塑料材料的快速发展受到很大制约,而且高分子聚合塑料材料难以降解,大量的高分子聚合塑料材料废弃物长期积存在现实生活中对人类生存环境造成的污染也逐渐加重。寻找代替石油的可再生资源,开发环境友好型、可生物降解型的新材料成为未来高分子聚合塑料材料发展的趋势。
聚酯为生物可降解型的绿色环保型的高分子材料,其作为石油产品的替代物越来越受到人们的关注。在自然生活环境中,废弃的聚内酯材料能被土壤中的微生物彻底的分解成水和二氧化碳,环保并且可再生。因为聚酯无毒、无刺激性,且具有良好的生物相容性,因此被广泛应用于医学和环保领域,例如手术缝合线、包装、药物控制释放和组织工程支架等。聚内酯优良的生物相容性、生物降解性以及可持续发展利用的性能,使其已经成为21世纪最具有发展前景的高分子材料。
便捷的合成聚酯的方法是环内酯的开环聚合法,这种合成方法的优点是:聚合的可控性、较窄的分子量分布。目前常用的催化剂多是配体和金属形成的配合物,催化剂中的金属包括镁、钙、锗、锡、铝、锌、铁、钛、锆、镧系等。在金属配合物催化剂中,配体和金属的选择催化剂的选择对于开环聚合反应的快慢、所得产品的性能都十分关键,在同一金属的情况下,往往配体的替换和选择会表现出意料之外的催化效果,在同一配体的情况下,金属的替换也会产生不同的催化效果,因此研究新的、性能好的催化剂十分必要。
发明内容
本发明提供了一种利用含水杨醛基的铝配合物催化丙交酯聚合的方法,该方法操作简单,以自行研发的含水杨醛基的铝配合物为催化剂,反应可控性好,催化剂的立体选择性高,得到的聚丙交酯分子量可控、产率高。
本发明是在国家自然基金委青年项目(No 21104026)的资助下完成的,本发明技术方案如下:
本发明提供了一种结构特殊的含水杨醛基的铝配合物催化剂,该催化剂的结构式如下式(Ⅰ)所示:
本发明含水杨醛基的铝配合物为配合物,通过对配体结构的选择和与金属铝的配位具有优异的性能,本发明配体结构特殊,配体中取代基的选择对于该铝配合物作为环内酯开环聚合反应催化剂的催化性能有较大影响。其中,R为氢、C1-C4的烷烃或卤素,所述卤素为氟、氯、溴或碘。进一步的,R为叔丁基时立体选择性最佳。
本发明含水杨醛基的铝配合物是由配体和三甲基铝反应得到,其制备方法包括以下步骤:将配体A加入有机溶剂中,在-10~0 oC下加入三甲基铝,加完后使反应温度自然升至室温,然后将温度升至30~110oC进行反应,反应后真空抽干溶剂、洗涤、过滤,得式Ⅰ所述的含水杨醛基的铝配合物。
配体A与三甲基铝反应的方程式如下,其中配体A的结构式如下式所示,R为氢、C1-C4的烷烃或卤素,所述卤素为氟、氯、溴、碘;R优选为叔丁基;
上述制备方法中,配体A的制备方法包括以下步骤:将对甲苯磺酸溶解到二甲苯中,先慢慢加入对甲苯磺酸等摩尔量的乙二胺,再加入对甲苯磺酸等摩尔量的邻苯二甲酸酐,然后加热进行回流反应,反应结束后冷却至室温,过滤,得对甲苯磺酸和邻苯二甲酸酐保护的乙二胺;将对甲苯磺酸和邻苯二甲酸酐保护的乙二胺溶解到二氯甲烷中,缓慢滴加饱和碳酸氢钠水溶液进行反应,以脱去对甲苯磺酸,反应结束后分液,将所得有机相用无水硫酸镁干燥,然后旋干溶剂,得单边邻苯二甲酸酐保护的乙二胺;
将单边邻苯二甲酸酐保护的乙二胺和等摩尔量的水杨醛或其衍生物溶解在甲醇中,加热进行回流反应,反应结束后冷却、过滤,所得固体用冷甲醇洗涤、干燥,得配体A;所述水杨醛衍生物的结构式如下式B所示,其中R为氢、C1-C4的烷烃或卤素,优选为叔丁基或溴;
上述制备方法中,配体A和三甲基铝发生加成反应,三甲基铝的烷基加成到化合物A中的C=O双键上,C=O双键变成C-O单键。通过核磁表征发现在δ= 1.5-2.0 附近有一组CH3的特征峰,此特征峰就是N(O)(Ph)CCH 3中CH3的特征峰。
上述制备方法中,配体A与三甲基铝的摩尔比1:1~1.3,优选1:1~1.05。
上述制备方法中,所述有机溶剂为干燥的己烷、甲苯和环己烷中的一种或两种,优选为干燥的己烷或甲苯。
上述制备方法中,有机溶剂用量为反应原料(配体A和三甲基铝)总质量的5~40倍。
上述制备方法中,反应在气体保护下进行,所述气体为惰性气体或氮气。
上述制备方法中,反应自然升到室温以后再升至30~110oC进行反应,例如30oC、40oC、50oC、60oC、70oC、80oC、90oC、100oC、110oC,优选40~60oC。在30~110oC(优选40~60oC)进行反应的时间为1~12小时,优选为3~6小时。反应后,用正己烷对沉淀进行洗涤。
本发明所述的含水杨醛基的铝配合物是制备式Ⅱ所述的化合物的中间产物,含水杨醛基的铝配合物对水比较敏感,在配体A与三甲基铝反应后的反应液中加入水充分搅拌能使铝配合物水解,经分液、收集有机相、有机相回收溶剂处理,所得剩余物经重结晶即为式Ⅱ所述的化合物。因此,制备铝配合物要在无水及质子溶剂的情况下进行。此外,以式Ⅱ所述的化合物为原料,将配体A替换为式Ⅱ所述的化合物,按照上述含水杨醛基的铝配合物的制备方法也能再得到式Ⅰ含水杨醛基的铝配合物。
以式Ⅱ所述的化合物制备含水杨醛基的铝配合物时,有机溶剂为干燥的己烷、甲苯和环己烷中的一种或两种,优选为己烷或甲苯。有机溶剂用量为反应原料(式Ⅱ所述的化合物和三甲基铝)总质量的5~40倍。反应结束以后用干燥己烷进行重结晶,得到纯度高的式Ⅰ含水杨醛基的铝配合物。
本发明含水杨醛基的铝配合物为配合物,配体的N、N、O、O与铝进行配位,配合物的结构和经典的环内酯催化剂(salenAl)的结构非常类似,催化效果好,具有较高的立体选择性,是一种很好的环内酯开环聚合反应的催化剂。
本发明含水杨醛基的铝配合物作为环内酯开环聚合反应的催化剂时,可以催化多种环内酯的开环聚合,得到一系列的聚内酯。所述环内酯可以为ε-己内酯、丙交酯和乙交酯中的一种或两种,丙交酯又可以是左旋丙交酯、内消旋丙交酯、外消旋丙交酯。本发明含水杨醛基的铝配合物作为催化剂进行环内酯开环聚合反应时,反应得到的聚合物分子质量分布窄、分子量可控、产率高,特别是在催化外消旋丙交酯聚合的时候,得到熔点高的全同立构聚丙交酯,表现出较高的立体选择性,立体选择性最高可达P m = 0.83。
本发明含水杨醛基的铝配合物用作环内酯开环聚合反应的催化剂时,当R为叔丁基时立体选择性最高,R为溴时活性最高。
本发明具体提供了一种利用该含水杨醛基的铝配合物催化丙交酯聚合的方法,包括以下步骤:将含水杨醛基的铝配合物催化剂、有机溶剂、苄醇助催化剂和丙交酯混合,在无水无氧和惰性气体保护下进行开环聚合反应,反应后将反应物进行处理得聚丙交酯。所述丙交酯可以是左旋丙交酯、内消旋丙交酯、外消旋丙交酯。
上述开环聚合反应中,丙交酯与含水杨醛基的铝配合物催化剂的摩尔比为50~1500:1,例如50:1、100:1、150:1、200:1、300:1、400:1、500:1、600:1、800:1、1000:1、1200:1、1500:1。
上述开环聚合反应中,反应所用有机溶剂为甲苯或四氢呋喃,优选甲苯。
上述开环聚合反应中,醇助催化剂为苄醇。苄醇助催化剂与含水杨醛基的铝配合物催化剂的摩尔比为1~3:1。
上述开环聚合反应中,聚合反应温度为20~110℃,例如20℃、30℃、40℃、50℃、60℃、70℃、80℃、90℃、100℃、110℃。随着聚合反应温度的升高,催化剂的立体选择性有降低的趋势,催化活性有升高的趋势,当反应温度在80℃时,对外消旋丙交酯进行催化时的立体选择性可达P m = 0.64,当反应温度在20℃时,对外消旋丙交酯进行催化时的立体选择性可达P m = 0.83。
上述开环聚合反应中,聚合反应时间为1-1440分钟,例如1分钟、10分钟、30分钟、40分钟、60分钟、120分钟、240分钟、600分钟、900分钟、1200分钟、1440分钟等。
上述开环聚合反应中,反应后加入冷甲醇或乙醇纯化聚内酯,得纯化后的聚内酯。所得聚丙交酯的分子量可控性高,可以在1-17.5万范围内调整。
本发明以自行研发的含水杨醛基的铝配合物作为催化剂进行丙交酯开环聚合反应,含水杨醛基的铝配合物催化剂制备方法简单,成本低,产品收率高,催化剂结构变化多样,金属中心铝与配体的二价N,N,O,O配位,催化活性高、立体选择性高、反应速率快,是一种十分理想的催化剂。本发明含水杨醛基的铝配合物催化丙内酯开环聚合反应时,反应得到的聚合物是苄氧基封端的聚合物,分子量分布窄,分子量可控、产率高,特别是在催化外消旋丙交酯聚合时能够得到熔点高的全同立构聚丙交酯,表现出较高的立体选择性,立体选择性最高可达0.83。
具体实施方式
下面通过具体实施例进一步说明本发明,但本发明并不限于此,具体保护范围见权利要求。
下述实施例中,全同立构聚丙交酯的立体选择性采用核磁共振同核去耦氢谱进行测试。
制备单边保护的乙二胺(a)
将0.50 g对甲苯磺酸溶解到二甲苯中,先慢慢加入对甲苯磺酸等摩尔量的乙二胺,再加入对甲苯磺酸等摩尔量的邻苯二甲酸酐,加热回流反应8h,反应结束以后冷却到室温,过滤,洗涤,干燥得到对甲苯磺酸和邻苯二甲酸酐保护的乙二胺。将对甲苯磺酸和邻苯二甲酸酐保护的乙二胺溶解到二氯甲烷中,室温慢慢滴加过量的碳酸氢钠饱和水溶液进行反应,以脱去对甲苯磺酸,反应结束后分液,用无水硫酸镁干燥,旋干溶剂,得到单边邻苯二甲酸酐保护的乙二胺0.48 g,产率87.3%。
制备含水杨醛基的配体(A)
含水杨醛基的配体是由单边保护的乙二胺和水杨醛或其衍生物通过缩合反应得到的,下面对合成不同的配体A进行举例。
实施例1
所合成配体结构式如上式(A),其中R为氢,反应过程为:将单边保护的乙二胺(a)0.20g和等摩尔量的水杨醛加入10 mL甲醇中,加热回流反应12小时,反应结束以后冷却过滤并用冷的甲醇洗涤,过滤,收集并干燥称重,得0.27 g固体,产率87.1%。
对所得产品进行表征,结果如下:
1H NMR (400 MHz, CDCl3) δ 12.85 (s, 1H, OH), 8.26 (s, 1H, ArHC=N), 7.80(d, J = 5.4 Hz, 2H, Ar–H), 7.68 (d, J = 5.4Hz, 2H, Ar–H), 7.24–7.16 (m, 1H,Ar–H), 7.11 (m, 1H, Ar–H), 6.97 (d, J = 8.3 Hz, 1H, Ar–H), 6.75 (td, J = 7.5,1.0 Hz, 1H, Ar–H), 4.20 (m, 2H, NCH 2), 4.10 (m, 2H, NCH 2). HRESI-MS: m/zcacld. C17H14N2O3 [M-H]-; 293.0927, found: 293.0931.
从以上表征结果可以看出,所得产品即为上式(A)中R为氢的配体。
实施例2
所合成配体结构式如上式(A),其中R为甲基,反应过程为:将单边保护的乙二胺(a)0.25 g和等摩尔量的3,5-二甲基水杨醛加入20 mL甲醇中,加热回流反应12小时,反应结束以后冷却过滤并用冷的甲醇洗涤,过滤,收集并干燥称重,得0.38 g固体,产率90.5%。
对所得产品进行表征,结果如下:
1H NMR (400 MHz, CDCl3) δ 12.61 (s, 1H, OH), 8.20 (s, 1H, ArHC=N), 7.73(d, J = 5.5 Hz, 2H, Ar–H), 7.66 (d, J = 5.4 Hz, 2H, Ar–H), 6.96 (s, 1H, Ar–H), 6.75 (s, 1H, Ar–H), 4.31– 4.28(m, 2H, NCH 2), 4.20–4.15 (m, 2H, NCH 2), 2.17(s, 3H, CH 3), 2.15 (s, 3H, CH 3)。HRESI-MS: m/z cacld. C19H18N2O3 [M-H]-;321.1238, found: 321.1236.
从以上表征结果可以看出,所得产品即为上式(A)中R为甲基的配体。
实施例3
所合成配体结构式如上式(A),其中R为溴,反应过程为:将单边保护的乙二胺(a)0.22g和等摩尔量的3,5-二溴水杨醛加入15 mL甲醇中,加热回流反应12小时,反应结束以后冷却过滤并用冷的甲醇洗涤,过滤,收集并干燥称重,得0.46 g固体,产率88.5%。
对所得产品进行表征,结果如下:
1H NMR (400 MHz, CDCl3) δ 13.90 (s, 1H, OH), 8.19 (s, 1H, ArHC=N), 7.82–7.74(m, 2H, Ar–H), 7.67–7.60 (m, 2H, Ar–H), 7.54 (s, 1H, Ar–H), 7.15 (s, 1H,Ar–H), 4.30–4.27 (m, 2H, NCH 2), 4.25–4.20 (m, 2H, NCH 2)。HRESI-MS: m/z cacld.C17H12Br2N2O3 [M-H]-; 448.9136, found: 448.9138.
从以上表征结果可以看出,所得产品即为上式(A)中R为溴的配体。
实施例4
所合成配体结构式如上式(A),其中R为叔丁基,反应过程为:将单边保护的乙二胺(a)0.30 g和等摩尔量的3,5-二叔丁基水杨醛加入20 mL甲醇中,加热回流反应12小时,反应结束以后冷却过滤并用冷的甲醇洗涤,过滤,收集并干燥称重,得0.53 g固体,产率82.8%。
对所得产品进行表征,结果如下:
1H NMR (400 MHz, CDCl3) δ13.27 (s, 1H, OH), 8.23 (s, 1H, ArHC=N), 7.70–7.68 (m, 2H, Ar–H) ), 7.64–7.59 (m, 2H, Ar–H), 7.30 (s, 1H, Ar–H)), 6.95 (s,2H, Ar–H)), 4.34–4.29 (m, 2H, NCH 2), 4.13–4.10 (m, 2H, NCH 2), 1.37 (s, 9H,CH3), 1.26(s, 9H, CH3)。HRESI-MS: m/z cacld. C25H30N2O3 [M-H]-; 405.2175, found:405.2173.
从以上表征结果可以看出,所得产品即为上式(A)中R为叔丁基的配体。
以配体A为原料制备铝配合物(I)
式(I)所示铝配合物由配体A和三甲基铝通过烷基消除和烷基加成反应生成,反应式如下。
实施例5
所用配体结构式如上式(A),其中R为氢,反应过程为:在氮气气氛下,将配体A 0.21 g溶于8 mL干燥甲苯中,在-10℃下加入配体A 1.0倍摩尔量的三甲基铝,待反应温度自然升到室温后,加热到100℃反应1小时,反应结束以后真空抽干溶剂,加入干燥的正己烷过滤并用干燥的正己烷洗涤,过滤,收集并干燥称重,得0.22 g固体,产率88.0%。
所得产物核磁信息如下,从核磁信息可以看出,R为氢的化合物(I)合成成功。
1H NMR (400 MHz, CDCl3) δ 8.22 (s, 1H, ArHC=N), 7.61 (d, J = 6.7 Hz,1H, Ar–H), 7.53 (d, J = 6.7 Hz, 1H, Ar–H), 7.41 (t, J = 7.1 Hz, 1H, Ar–H),7.33 (d, J = 6.3 Hz, 1H, Ar–H), 7.08 (d, J = 7.1 Hz, 1H, Ar–H), 6.76–6.62 (m,3H, Ar–H), 4.25–4.20 (m, 2H, NCH 2), 4.13–4.08 (m, 2H, NCH 2), 1.65 (s, 3H,CH 3),–0.50(s, 3H, AlCH3). Anal. Calcd for C19H19AlN2O3: C 65.14, H 5.47, N 8.00.Found: C 65.16, H 5.49, N 8.05.
实施例6
所用配体结构式如上式(A),其中R为甲基,反应过程为:在氮气氛下,将配体A 0.41 g溶于12 mL干燥环己烷中,在0℃下加入配体A 1.05倍摩尔量的三甲基铝,待反应温度自然升到室温后,加热反应温度到60℃反应4小时, 反应结束以后真空抽干溶剂,加入干燥的正己烷过滤并用干燥的正己烷洗涤,过滤,收集并干燥称重,得到0.39 g固体,产率81.2%。
所得产物核磁信息如下,从核磁信息可以看出,R为甲基的化合物(I)合成成功。
1H NMR (400 MHz, CDCl3) δ 8.17 (s, 1H, ArHC=N), 7.68 (s, 1H, Ar–H),7.61–7.57 (m, 2H, Ar–H), 7.13 (s, 1H, Ar–H), 6.30 (s, 1H, Ar–H), 4.32 (m, 2H,NCH2), 4.13 (m, 2H, NCH2), 2.14–2.10 (m, 2H, CH2CH 2), 2.10 (s, 3H, ArCH 3),2.08 (s, 3H, ArCH 3), 1.67 (s, 3H, CCH 3), –0.50 (s, 3H, AlCH 3). Anal. Calcd forC21H23AlN2O3: C 66.66, H 6.13, N 7.40. Found: C 66.61, H 6.18, N 7.45.
实施例7
所用配体结构式如上式(A),其中R为溴,反应过程为:在氮气氛下,将配体A 0.24 g溶于10 mL干燥甲苯中,在-5℃下加入配体A 1.1倍摩尔量的三甲基铝,待反应温度自然升到室温后,加热到50℃反应5小时, 反应结束以后真空抽干溶剂,加入干燥的正己烷过滤并用干燥的正己烷洗涤,过滤,收集并干燥称重,得到0.24 g固体,产率88.9%。
所得产品的核磁信息如下所示,由此可以看出R为溴的化合物(I)合成成功。
1H NMR (400 MHz, CDCl3) δ 8.21 (s, 1H, ArHC=N), 7.84 (d, J = 6.7 Hz,1H, Ar–H), 7.66 (s, 2H, Ar–H), 7.64–7.55 (m, 2H, Ar–H), 7.40–7.33 (m, 1H, Ar–H), 4.27 (m, 2H, NCH 2), 4.10–4.06 (m, 2H, NCH 2), 1.67 (s, 1H, CCH 3), –0.50 (s,3H, AlCH 3). Anal. Calcd for C19H17AlBr2N2O3: C 44.91, H 3.37, N 5.51. Found: C44.93, H 3.41, N 5.55.
实施例8
所用配体结构式如上式(A),其中R为叔丁基,反应过程为:在氮气氛下,将配体A 0.23g溶于10 mL干燥正己烷中,在-10℃下加入配体A 1.0倍摩尔量的三甲基铝,待反应温度自然升到室温后,加热到40℃反应12小时,过滤并用干燥的正己烷洗滤饼,收集并干燥称重,得0.24 g固体, 产率92.3%.
所得产物的核磁信息如下所示,由此可以看出R为叔丁基的化合物(I)合成成功。
1H NMR (400 MHz, CDCl3) δ 8.17 (s, 1H, ArHC=N), 7.80 (d, J = 6.7 Hz,1H, Ar–H), 7.67 (s, 2H, Ar–H), 7.60–7.53 (m, 2H, Ar–H), 7.41–7.32 (m, 1H, Ar–H), 4.33–4.29 (m, 2H, NCH 2), 3.93–3.86 (m, 2H, NCH 2), 1.66 (s, 3H, CCH 3), 1.31(s, 9H, CH3), 1.24(s, 9H, CH3), –0.52 (s, 3H, AlCH 3). Anal. Calcd forC27H35AlN2O3: C 70.11, H 7.63, N 6.06. Found: C 70.12, H 7.65, N 6.12.
以配体Ⅱ为原料制备铝配合物(I)
实施例9
R为氢的配体Ⅱ合成:在氮气气氛下,将配体A (R为氢)0.30 g溶于10 mL干燥甲苯中,在-10℃下加入配体A 1.0倍摩尔量的三甲基铝,待反应温度自然升到室温后,加热到60℃反应4小时,反应结束以后,加入55微升水停止反应,分液收集有机相,无水硫酸钠干燥,旋干溶剂,得粗产品,将粗产品经甲醇重结晶,得纯产品0.27 g, 产率84.4 %。
对所得产品进行表征,结果如下:
1H NMR (400 MHz, CDCl3) δ12.85 (s, 1H, OH), 8.31 (s, 1H, CH=N), 7.61 (d,J = 7.5 Hz, 1H, Ar–H), 7.55–7.47 (m, 4H, Ar–H), 7.15 (d, J = 7.4 Hz, 1H, Ar–H), 6.88 (d, J = 8.2 Hz, 1H, Ar–H), 6.65 (t, J = 7.4 Hz, 1H, Ar–H), 4.41–4.32(m, 2H, NCH 2), 4.16–4.10 (m, 2H, NCH), 1.61 (s, 3H, CH3).
HRESI-MS: m/z cacld. C18H18N2O3 [M-H]-; 309.1238, found: 309.1236.
从以上表征结果可以看出,所得产品即为上式(Ⅱ)中R为氢的配体。
所用配体结构式如上式(II),其中R为氢,反应过程为:在氮气气氛下,将配体II0.30 g溶于10 mL干燥环己烷中,在-10℃下加入配体II 1.2倍摩尔量的三甲基铝,待反应温度自然升到室温后,加热到40℃反应6小时,反应结束以后过滤并用干燥的正己烷洗涤,过滤,收集并干燥称重,得0.29 g固体,产率85.3%。产物结构式如式Ⅰ所示, R为氢。
实施例10
R为甲基的配体Ⅱ合成:在氮气氛下,将配体A(R为甲基) 0.40 g溶于10 mL干燥环己烷中,在0℃下加入配体A 1.05倍摩尔量的三甲基铝,待反应温度自然升到室温后,加热反应温度到40℃反应6小时,反应后加入67微升水停止反应,分液收集有机相,无水硫酸钠干燥,旋干溶剂,得粗产品,将粗产品经甲醇重结晶,得纯产品0.36 g, 产率85.7%。
对所得产品进行表征,结果如下:
1H NMR (400 MHz, CDCl3) δ13.01 (s, 1H,OH), 8.27 (s, 1H, CH=N), 7.64 (d, J= 7.4 Hz, 1H, Ar–H), 7.55–7.44 (m, 3H, Ar–H), 6.98–6.88 (m, 1H, Ar–H), 6.81–6.72 (m, 1H, Ar–H), 4.38–4.31 (m, 2H, NCH2), 4.18–4.09 (m, 2H, NCH2), 2.21(s, 6H, ArCH3), 1.61 (s, 3H, CH3). HRESI-MS: m/z cacld. C20H22N2O3 [M-H]-;337.1553, found: 337.1556.
从以上表征结果可以看出,所得产品即为上式(Ⅱ)中R为甲基的配体。
所用配体结构式如上式(II),其中R为甲基,反应过程为:在氮气氛下,将配体II0.25 g溶于10 mL干燥甲苯中,在0℃下加入配体II 1.1倍摩尔量的三甲基铝,待反应温度自然升到室温后,加热反应温度到110℃反应1小时, 反应结束以后真空抽干溶剂,加入干燥的正己烷过滤并用干燥的正己烷洗涤,过滤,收集并干燥称重,得到0.20 g固体,产率71.4%。产物结构式如式Ⅰ所示, R为甲基。
实施例11
R为溴的配体Ⅱ合成:在氮气氛下,将配体A (R为溴)0.30 g溶于10 mL干燥甲苯中,在-5℃下加入配体A 1.1倍摩尔量的三甲基铝,待反应温度自然升到室温后,加热到110℃反应1小时, 反应结束以后加入36微升水停止反应,分液收集有机相,无水硫酸钠干燥,旋干溶剂,得粗产品,将粗产品经乙醇重结晶,得纯产品0.26 g, 产率83.9%。
对所得产品进行表征,结果如下:
1H NMR (400 MHz, CDCl3) δ12.56 (s, 1H,OH), 8.27 (s, 1H, CH=N), 7.63–7.58(m, 2H, Ar–H), 7.41–7.30 (m, 2H, Ar–H), 7.16 (d, J = 7.2 Hz, 1H, Ar–H), 7.12(d, J = 7.2 Hz, 1H, Ar–H), 4.45–4.32 (m, 2H, NCH 2), 4.23–4.14 (m, 2H, NCH 2),1.60 (s, 3H, CH3).
HRESI-MS: m/z cacld. C18H16Br2N2O3 [M-H]-; 464.9448, found: 464.9452.
从以上表征结果可以看出,所得产品即为上式(Ⅱ)中R为溴的配体。
所用配体结构式如上式(II),其中R为溴,反应过程为:在氮气氛下,将配体II0.45 g溶于15 mL干燥己烷中,在-5℃下加入配体II 1.0倍摩尔量的三甲基铝,待反应温度自然升到室温后,加热到60℃反应3小时, 反应结束以后过滤并用干燥的正己烷洗涤,过滤,收集并干燥称重,得到0.41 g固体,产率83.7%。产物结构式如式Ⅰ所示, R为溴。
实施例12
R为叔丁基的配体Ⅱ合成:在氮气氛下,将配体A (R为叔丁基)0.20 g溶于8 mL干燥正己烷中,在-5℃下加入配体A 1.3倍摩尔量的三甲基铝,待反应温度自然升到室温后,加热到30℃反应8小时,反应后加入27微升水停止反应,分液收集有机相,无水硫酸钠干燥,旋干溶剂,得粗产品,将粗产品经甲醇重结晶,得纯产品0.17 g, 产率81.0%。
对所得产品进行表征,结果如下:
1H NMR (300 MHz, CDCl3) δ13.02 (s, 1H,OH), 8.24 (s, 1H, CH=N), 7.76–7.65(m, 1H, Ar–H), 7.63–7.52 (m, 3H, Ar–H), 7.50–7.42(m, 1H, Ar–H), 7.40 (d, J =7.2 Hz, 1H, Ar–H), 7.18 (d, J = 7.0 Hz, 1H, Ar–H), 7.08–7.00 (m, 1H, Ar–H),4.35–4.21 (m, 2H, NCH 2), 4.14–4.06 (m, 2H, NCH 2), 1.62(s, 3H, CH3), 1.38 (s,9H, CH3), 1.24 (s, 9H, CH3).
HRESI-MS: m/z cacld. C26H34N2O3 [M-H]-; 421.2492, found: 421.2487.
从以上表征结果可以看出,所得产品即为上式(Ⅱ)中R为叔丁基的配体。
所用配体结构式如上式(II),其中R为叔丁基,反应过程为:在氮气氛下,将配体II0.40 g溶于12 mL干燥甲苯中,在0℃下加入配体II 1.1倍摩尔量的三甲基铝,待反应温度自然升到室温后,加热到60℃反应2小时, 反应结束以后过滤并用干燥的正己烷洗涤,过滤,收集并干燥称重,得到0.40 g固体,产率90.9%。产物结构式如式Ⅰ所示, R为叔丁基。
制备聚丙交酯
实施例13
在无水无氧和惰性气体保护下进行反应,首先在用高纯氮气洗气烘烤后的安瓶中顺序加入100 µmol催化剂(式Ⅰ所示铝配合物, R为氢)、100 µmol苄醇、20 mL甲苯以及10 mmol的外消旋丙交酯,然后20 oC反应21小时后加入少量水终止反应,用乙醇沉淀、洗涤数次,室温下真空干燥,得1.34 g产品,产率93.1%。所得产物为全同立构聚丙交酯,分子量2.8万,全同立构立体选择性P m= 0.77。
实施例14
按照实施例13的方法制备聚丙交酯,不同的是:所用的催化剂为式Ⅰ所示铝配合物, R为甲基。反应22小时以后加入少量水终止反应,用乙醇沉淀、洗涤数次,室温下真空干燥。所得产品的质量为1.36 g,产率为94.4%,分子量为2.9万,全同立构立体选择性P m= 0.81。
实施例15
按照实施例13的方法制备聚丙交酯,不同的是:所用的催化剂为式Ⅰ所示铝配合物, R为溴。反应20小时以后加入少量水终止反应,用乙醇沉淀、洗涤数次,室温下真空干燥。所得产品的质量为1.42 g,产率为98.6%,分子量为2.6万,全同立构立体选择性P m= 0.80。
实施例16
按照实施例13的方法制备聚丙交酯,不同的是:所用的催化剂为式Ⅰ所示铝配合物, R为叔丁基。反应24小时以后加入少量水终止反应,用乙醇沉淀、洗涤数次,室温下真空干燥。所得产品的质量为1.40 g,产率为97.2%,分子量为2.7万,全同立构立体选择性P m= 0.83。
实施例17
在无水无氧和惰性气体保护下进行反应,首先在用高纯氮气洗气烘烤后的安瓶中顺序加入100 µmol催化剂(式Ⅰ所示铝配合物, R为叔丁基)、100 µmol苄醇、10 mL甲苯以及10mmol的外消旋丙交酯,然后分别在40oC、60oC和80oC下反应,反应结束后加入少量水终止反应,用甲醇沉淀、洗涤数次,室温下真空干燥。
其中,在40℃反应21小时,得1.40 g产品,产率97.2%,分子量2.8万,P m = 0.78。
在60℃反应17小时,得1.41 g产品,产率97.9%,分子量2.6万,P m = 0.71。
在80℃反应14小时,得1.41 g产品,产率97.9%,分子量2.7万,P m = 0.64。
实施例18
在无水无氧和惰性气体保护下进行反应,首先在用高纯氮气洗气烘烤后的安瓶中顺序加入200 µmol 催化剂(式Ⅰ所示铝配合物, R为氢)、200 µmol苄醇、20 mL四氢呋喃以及10mmol的左旋丙交酯,然后30oC反应20小时后加入少量水终止反应,用乙醇沉淀、洗涤数次,室温下真空干燥,得1.40 g产品,产率97.2%,分子量1.1万。
实施例19
在无水无氧和惰性气体保护下进行反应,首先在用高纯氮气洗气烘烤后的安瓶中顺序加入10 µmol催化剂(式Ⅰ所示铝配合物, R为甲基)、10 µmol苄醇、10 mL四氢呋喃以及5mmol的内消旋丙交酯,然后置于50oC的油浴中,反应17小时后加入少量水终止反应,用乙醇沉淀、洗涤数次,室温下真空干燥,得0.66 g产品,收率91.7%,分子量11.2万。
实施例20
在无水无氧和惰性气体保护下进行反应,首先在用高纯氮气洗气烘烤后的安瓶中顺序加入10 µmol催化剂(式Ⅰ所示铝配合物, R为溴)、30 µmol 苄醇、20 mL甲苯以及10 mmol的左旋丙交酯,然后90oC反应2小时后加入少量水终止反应,用乙醇沉淀、洗涤数次,室温下真空干燥,得1.40 g产品,收率97.2%,分子量7.8万。
实施例21
在无水无氧和惰性气体保护下进行反应,首先在用高纯氮气洗气烘烤后的安瓶中顺序加入10 µmol催化剂(式Ⅰ所示铝配合物, R为溴)、20 µmol苄醇、20 mL甲苯以及15 mmol的左旋丙交酯,然后置于110oC的油浴中,反应1小时后加入少量水终止反应,用乙醇沉淀、洗涤数次,室温下真空干燥,得2.11 g产品,收率97.7%,分子量17.3万。
对比例1
镍催化剂的制备:所用配体结构式如上式(II),R为溴,反应过程为:将配体0.40 g溶于20 mL无水乙醇中,室温下加入1.0倍配体摩尔量的醋酸镍,加热回流反应12小时,反应结束以后真空浓缩溶剂,加入二氯甲烷析出固体,过滤并用己烷洗涤,干燥得镍催化剂,其结构式如下所示。
按照实施例21的方法制备聚丙交酯,不同的是:所用的催化剂为上述镍催化剂。反应24小时后加入少量水终止反应,用甲醇沉淀、洗涤数次,室温下真空干燥,得0.40 g产品,产率18.5 %,分子量2.0万。该镍催化剂对丙交酯的聚合活性太低,没有价值。
对比例2
铝催化剂的制备:所用配体结构式如下式(LH2),反应过程为:在无水无氧和惰性气体保护下,将配体0.20 g溶于10 mL甲苯中,-5℃下加入加入1.0倍配体摩尔量的三甲基铝,缓慢升至室温后加热到80℃反应12小时,反应结束以后真空浓缩溶剂,加入干燥己烷析出固体,过滤并用己烷洗涤,干燥得铝催化剂,其结构式如下所示LAlMe。
按照实施例17的方法制备聚丙交酯,不同的是:所用的催化剂为该铝催化剂。在无水无氧和惰性气体保护下进行反应,首先在用高纯氮气洗气烘烤后的安瓶中顺序加入100µmol催化剂、100 µmol苄醇、10 mL甲苯以及10 mmol的外消旋丙交酯,然后分别在20oC和80oC下反应,反应结束后加入少量水终止反应,用甲醇沉淀、洗涤数次,室温下真空干燥。
其中,在20℃反应36小时无产品生成,说明该催化剂在较低的温度下无法催化丙交酯的聚合。
在80℃反应24小时得1.15 g产品,产率79.9 %,分子量1.4万,全同立构立体选择性P m = 0.53。与实施例17的铝催化剂相比较而言,立体选择性和活性都比较低。
对比例3
按照实施例13的方法制备聚丙交酯,不同的是:所用的催化剂为专利201410609375.8中实施例10所用的催化剂。反应后所得聚丙交酯为不均匀有规立构聚丙交酯,质量为1.33g,产率为92.4%,分子量为1.7万,不均匀有规立构立体选择性P r 为0.71。
对比例4
在氮气氛下,将配体A (R为叔丁基)0.20 g溶于8 mL干燥正己烷中,在-5℃下加入配体A 1.3倍摩尔量的三异丙基铝,待反应温度自然升到室温后,加热到30℃反应24小时,反应后加入27微升水停止反应,分液收集有机相,无水硫酸钠干燥,旋干溶剂,发现得到化合物没有发生变化(异丙基没有进行C=O加成反应)。三异丙基铝无法进行加成反应。
对比例5
按照实施例13的方法制备聚丙交酯,不同的是:所用的催化剂为式Ⅰ所示铝配合物, R为甲氧基。反应36小时以后所得产品的质量为0.94 g,产率为65.3%,分子量为1.1万,全同立构立体选择性P m= 0.70。
对比例6
将对甲苯磺酸溶解到二甲苯中,先慢慢加入对甲苯磺酸等摩尔量的1,3-丙二胺,再加入对甲苯磺酸等摩尔量的邻苯二甲酸酐,加热回流反应,反应结束以后冷却到室温将固体过滤,洗涤,干燥,得到对甲苯磺酸和邻苯二甲酸酐保护的1,3-丙二胺。将对甲苯磺酸和邻苯二甲酸酐保护的1,3-丙二胺溶解到二氯甲烷中,室温下慢慢滴加过量的碳酸氢钠饱和水溶液进行反应,以脱去对甲苯磺酸,反应结束后分液,用无水硫酸镁干燥,旋干溶剂,得到单边邻苯二甲酸酐保护的1,3-丙二胺。单边邻苯二甲酸酐保护的丙二胺和等摩尔量的3,5-二溴水杨醛在甲醇中加热回流,反应结束以后放到冰箱中冷却,析出固体,过滤,用冷的甲醇洗涤,干燥,得到化合物LD。
铝催化剂的制备:在氮气氛下,将化合物LD 0.20 g溶于10 mL干燥甲苯中,在-10℃下加入1.0倍化合物LD摩尔量的三甲基铝,待反应温度自然升到室温后,加热到110℃反应1小时, 反应结束以后真空抽干溶剂,加入干燥的正己烷洗涤、过滤、干燥,得到0.18 g固体,产率81.8%,该铝化合物经水解以后做质谱表征发现该类配体只能单边发生加成反应得到LDAlMe2(HRESI-MS: m/z cacld. C18H14Br2N2O3 [M-H]-; 462.9294, found: 462.9292)。
按照实施例13的方法制备聚丙交酯,不同的是:所用的催化剂为该铝催化剂。反应后所得产品的质量为0.60 g,产率为41.7%,分子量为1.2万,无立体选择性。

Claims (10)

1.一种利用含水杨醛基的铝配合物催化丙交酯聚合的方法,其特征是包括以下步骤:将催化剂、有机溶剂、苄醇助催化剂和丙交酯混合,在无水无氧和惰性气体保护下进行开环聚合反应,反应后将反应物进行处理得聚丙交酯;所述催化剂为含水杨醛基的铝配合物,其结构式如下式Ⅰ所示,其中,R为氢、C1-C4的烷烃或卤素,优选为叔丁基;
2.根据权利要求1所述的方法,其特征是:催化剂制备方法为:将配体A或配体Ⅱ加入有机溶剂中,在-10~0 oC下加入三甲基铝,加完后使反应温度自然升至室温,然后将温度升至30~110oC进行反应,反应后真空抽干溶剂、洗涤、过滤,得式Ⅰ所述的含水杨醛基的铝配合物;配体A和配体Ⅱ结构式如下,其中,R均为氢、C1-C4的烷烃或卤素,优选均为叔丁基;
3.根据权利要求2所述的方法,其特征是:催化剂制备过程中,配体A或配体Ⅱ与三甲基铝的摩尔比1:1~1.3,优选1:1~1.05。
4.根据权利要求2所述的方法,其特征是:催化剂制备过程中,所述有机溶剂为干燥的己烷、甲苯和环己烷中的一种或两种;有机溶剂用量为反应原料总质量的5~40倍。
5.根据权利要求2所述的方法,其特征是:催化剂制备过程中,升到室温以后再将温度升至30~110oC(优选40~60oC)反应1~12小时,优选反应3~6小时。
6.根据权利要求2所述的方法,其特征是:催化剂制备过程中,反应在惰性气体保护下进行。
7.根据权利要求1-6中任一项所述的方法,其特征是:开环聚合反应时,丙交酯与催化剂的摩尔比为50~1500:1;卞醇助催化剂与催化剂的摩尔比为1~3:1。
8.根据权利要求1-6中任一项所述的方法,其特征是:开环聚合反应时,所述有机溶剂为甲苯或四氢呋喃。
9.根据权利要求1-6中任一项所述的方法,其特征是:开环聚合反应时,反应温度为20~110℃,反应时间为1-1440分钟。
10.根据权利要求1-6中任一项所述的方法,其特征是:所述丙交酯为外消旋丙交酯、左旋丙交酯或内消旋丙交酯。
CN201711314941.2A 2017-12-12 2017-12-12 利用含水杨醛基的铝配合物催化丙交酯聚合的方法 Active CN108239264B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711314941.2A CN108239264B (zh) 2017-12-12 2017-12-12 利用含水杨醛基的铝配合物催化丙交酯聚合的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711314941.2A CN108239264B (zh) 2017-12-12 2017-12-12 利用含水杨醛基的铝配合物催化丙交酯聚合的方法

Publications (2)

Publication Number Publication Date
CN108239264A true CN108239264A (zh) 2018-07-03
CN108239264B CN108239264B (zh) 2020-09-08

Family

ID=62701074

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711314941.2A Active CN108239264B (zh) 2017-12-12 2017-12-12 利用含水杨醛基的铝配合物催化丙交酯聚合的方法

Country Status (1)

Country Link
CN (1) CN108239264B (zh)

Also Published As

Publication number Publication date
CN108239264B (zh) 2020-09-08

Similar Documents

Publication Publication Date Title
CN108239102A (zh) 含水杨醛基的铝配合物及其制备方法和应用
CN108569993A (zh) 含有手性环己二胺基的四齿氮氧对称配体及其制备方法和应用
CN108239263A (zh) 利用含水杨醛基的铝配合物催化己内酯聚合的方法
CN108503801A (zh) 利用含邻苯二胺基的非对称铝配合物催化丙交酯聚合的方法
CN108503661A (zh) 含邻苯二胺基的非对称铝配合物及其制备方法和应用
CN108084218A (zh) 含水杨醛基的手性非对称铝配合物及其制备方法和应用
CN108570066A (zh) 含有手性环己二胺基的铝化合物及其制备方法和应用
CN108239017A (zh) 含水杨醛基的配体及其制备方法和应用
CN108503812A (zh) 利用含邻苯二胺基的非对称铝配合物催化己内酯聚合的方法
CN108239264A (zh) 利用含水杨醛基的铝配合物催化丙交酯聚合的方法
CN108503576A (zh) 含邻苯二胺基的非对称配体及其制备方法和应用
CN108003087B (zh) 含水杨醛基的手性非对称氮氧配体及其制备方法和应用
CN108239261A (zh) 利用含水杨醛基的铝配合物催化乙交酯聚合的方法
CN107955030A (zh) 含有乙酰丙酮衍生物的手性铝配合物及其制备方法和应用
CN108084411A (zh) 利用含有乙酰丙酮衍生物的手性铝配合物催化乙交酯聚合的方法
CN108084410A (zh) 利用含水杨醛基的手性非对称铝配合物催化丙交酯聚合的方法
CN108503802A (zh) 利用含邻苯二胺基的非对称铝配合物催化乙交酯聚合的方法
CN107955147A (zh) 利用含乙酰丙酮衍生物的非对称铝配合物催化丙交酯聚合的方法
CN108003335A (zh) 一种利用含水杨醛基的手性非对称铝配合物催化乙交酯聚合的方法
CN108003336A (zh) 利用含水杨醛基的手性非对称铝配合物催化己内酯聚合的方法
CN108003183A (zh) 一种利用四齿氮氧配位的铝化合物催化己内酯聚合的方法
CN107973815A (zh) 含乙酰丙酮衍生物的非对称铝配合物及其制备方法和应用
CN108047432A (zh) 利用含乙酰丙酮衍生物的非对称铝配合物催化己内酯聚合的方法
CN107936238A (zh) 利用含乙酰丙酮衍生物的非对称铝配合物催化乙交酯聚合的方法
CN107955146B (zh) 利用含有乙酰丙酮衍生物的手性铝配合物催化丙交酯聚合的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant