CN108238814A - 一种蒙脱土自组装沉积在固体表面的方法 - Google Patents

一种蒙脱土自组装沉积在固体表面的方法 Download PDF

Info

Publication number
CN108238814A
CN108238814A CN201611203357.5A CN201611203357A CN108238814A CN 108238814 A CN108238814 A CN 108238814A CN 201611203357 A CN201611203357 A CN 201611203357A CN 108238814 A CN108238814 A CN 108238814A
Authority
CN
China
Prior art keywords
montmorillonite
solids
deposited
solid
self assembly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201611203357.5A
Other languages
English (en)
Inventor
刘振东
李公让
张敬辉
武学芹
孙浩玉
卜凡康
明玉广
张守文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sinopec Oilfield Service Corp
Sinopec Shengli Petroleum Engineering Corp
Drilling Technology Research Institute of Sinopec Shengli Petroleum Engineering Corp
Original Assignee
Sinopec Oilfield Service Corp
Sinopec Shengli Petroleum Engineering Corp
Drilling Technology Research Institute of Sinopec Shengli Petroleum Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sinopec Oilfield Service Corp, Sinopec Shengli Petroleum Engineering Corp, Drilling Technology Research Institute of Sinopec Shengli Petroleum Engineering Corp filed Critical Sinopec Oilfield Service Corp
Priority to CN201611203357.5A priority Critical patent/CN108238814A/zh
Publication of CN108238814A publication Critical patent/CN108238814A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/42Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating of an organic material and at least one non-metal coating
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/02Well-drilling compositions
    • C09K8/03Specific additives for general use in well-drilling compositions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Structural Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Laminated Bodies (AREA)

Abstract

本发明提供一种蒙脱土自组装沉积在固体表面的方法,该方法利用自组装技术使蒙脱土在固体表面吸附沉积,并利用交联技术改变沉积膜性能,加强沉积膜在固体表面的沉积效果。本发明技术方案是:室温下,将固体薄片依次分别浸入聚合物溶液、蒙脱土悬浊液和戊二醛溶液中,进行交替吸附,每次浸渍吸附时间5min~10min,间隔中用去离子水清洗片状固体上未发生吸附的多余溶液,并用氮气吹干,交替侵渍20~200个循环后,即可在固体薄片表面得到蒙脱土沉积层。本发明具有以下优势:(1)本发明采用蒙脱土自组装沉积成膜,并通过交联作用,进一步加强了沉积层与固体的亲和性;(2)本发明可用于石油钻井井壁固化技术中,提高井壁强度。

Description

一种蒙脱土自组装沉积在固体表面的方法
技术领域
本发明涉及石油钻井井壁加固技术领域中的一种蒙脱土自组装沉积在固体表面的方法。
背景技术
在过去的二十年里,各个国家的研究者们经过深入的探索,发现了多种超薄膜的制备方法。特别是在层层自组装这一领域,有着长足的进步,这是由于层层自组装这一方法在具有特殊功能性质的超薄膜的创新设计以及应用上具有非常好的效果。经过多年的发展,层层自组装技术已经变得逐渐成熟起来。
自组装膜技术的发展主要经历了三个阶段,即Langmuir-Blodgett(LB)膜技术、化学吸附自组装技术和静电吸附自组装技术。LB膜是使用特殊的装置,将分散在溶液中的不溶物,按照一定的排列方式,转移到固体支持物上,从而组成单分子层或多分子层膜。化学吸附自组装技术,主要是吸附质分子与固体表面的原子、分子等,发生电子转移、交换或公有,从而在吸附质和固体表面之间形成吸附化学键,这种吸附通常只有单分子层。静电吸附自组装,是通过对两种或多种带相反电荷的聚电解质进行交替吸附,从而在固体表面交替沉积形成多层膜的技术。
具有独特材料学性质的无机纳米片层材料也可以与层层组装技术相结合,Ferguson等报道了利用正价的聚电解质与硅酸盐纳米片组装成多层膜。厚度为200nm的多层膜结构规整,X射线衍射信号明显。Podsiadlo等使用聚乙烯醇(PVA) 和蒙脱土(MTM)制备了超强的聚合物纳米复合膜材料。纳米片层紧密堆积并有着清晰的平面取向。通过机械性能测试,作者得出单纯的PVA/MTM复合膜的最终拉伸强度和杨氏模量分别是纯PVA聚合物膜的4倍和10倍,而通过戊二醛交联后,多层膜的各项机械性能参数更是大幅度提高。有别于机械性能,Hammond及其合作者研究了加入无机纳米片层材料后,多层膜的离子传输性质。如利用层层组装技术制备出仿生矿化材料,就可用于石油钻井多个方面,用途广泛,如钻井井壁加固等。现有的研究者提出了控制碳酸钙晶体生长过程中晶态结构、形状和组装的方法。申请号为200710042997.7的专利提出了一种纳米层状碳酸钙仿生复合材料料,它是由低分子量有机物参与氯化钙和碳酸钠反应过程,导向方解石形成纳米薄层状结构,进而使层状结构定向组装纳米薄层的多层结构。这些研究对生物矿化材料的仿生合成起着重要的推动作用,但仍未能生长成具有天然碳酸钙结构的仿生材料,或者方法和材料性能还有待进一步提高。
发明内容
本发明的目的是针对现有技术存在的不足,提供一种蒙脱土自组装沉积在固体表面的方法,该方法利用自组装技术使蒙脱土在固体表面吸附沉积,并利用交联技术改变沉积膜性能,加强沉积膜在固体表面的沉积效果。
为了达到本发明的目的,本发明技术方案是这样实现的:
室温下,将固体薄片依次分别浸入聚合物溶液、蒙脱土悬浊液和戊二醛溶液中,进行交替吸附,每次浸渍吸附时间5min~10min,间隔中用去离子水清洗片状固体上未发生吸附的多余溶液,并用氮气吹干,交替侵渍20~200个循环后,即可在固体薄片表面得到蒙脱土沉积层。
所述聚合物为聚丙烯酸(PAA)、聚乙烯醇(PVA)、聚乙烯磺酸钠(PVS)中的一种或几种的组合。
所述聚合物溶液的质量百分比为0.1~0.5%wt;所述蒙脱土悬浊液的质量百分比0.5~1%wt。
所述固体薄片可为硅片、金属片、陶瓷片、岩石片、玻璃片、滤纸片中的一种或几种的组合。
本发明与现有技术相比具有以下优势:
(1)本发明采用蒙脱土自组装沉积成膜,并通过交联作用,进一步加强了沉积层与固体的亲和性;
(2)本发明可用于石油钻井井壁固化技术中,提高井壁强度。
具体实施方式
实施例1:
室温下,将岩石片依次分别交替浸入PVA(聚乙烯醇)溶液(0.5%wt)、蒙脱土悬浊液(1%wt)和GA(戊二醛)溶液中,进行交替吸附,每次浸渍吸附时间5min,间隔中用去离子水清洗片状固体上未发生吸附的多余溶液,并用氮气吹干,交替侵渍200个循环时后,即可在固体薄片表面得到蒙脱土沉积层。
实施例2:
室温下,将硅片依次分别交替浸入聚乙烯磺酸钠(PVS)溶液(0.3%wt)、蒙脱土悬浊液(0.8%wt)和GA(戊二醛)溶液中,进行交替吸附,每次浸渍吸附时间10min,间隔中用去离子水清洗片状固体上未发生吸附的多余溶液,并用氮气吹干,交替侵渍20个循环时后,即可在固体薄片表面得到蒙脱土沉积层。
实施例3:
室温下,将玻璃片依次分别交替浸入PAA(聚丙烯酸)溶液(0.1%wt)、蒙脱土悬浊液(0.5%wt)和GA(戊二醛)溶液中,进行交替吸附,每次浸渍吸附时间10min,间隔中用去离子水清洗片状固体上未发生吸附的多余溶液,并用氮气吹干,交替侵渍100个循环时后,即可在固体薄片表面得到蒙脱土沉积层。

Claims (4)

1.一种蒙脱土自组装沉积在固体表面的方法,其特征在于:室温下,将固体薄片依次分别浸入聚合物溶液、蒙脱土悬浊液和戊二醛溶液中,进行交替吸附,每次浸渍吸附时间5min~10min,间隔中用去离子水清洗片状固体上未发生吸附的多余溶液,并用氮气吹干,交替侵渍20~200个循环后,即可在固体薄片表面得到蒙脱土沉积层。
2.根据权利要求1所述的蒙脱土自组装沉积在固体表面的方法,其特征在于:所述聚合物为聚丙烯酸、聚乙烯醇、聚乙烯磺酸钠中的一种或几种的组合。
3.根据权利要求1或2所述的蒙脱土自组装沉积在固体表面的方法,其特征在于:所述聚合物溶液的质量百分比为0.1~0.5%wt;所述蒙脱土悬浊液的质量百分比0.5~1%wt。
4.根据权利要求1所述的蒙脱土自组装沉积在固体表面的方法,其特征在于:制备用固体薄片包括硅片、金属片、陶瓷片、岩石片、玻璃片、滤纸片中的一种或几种的组合。
CN201611203357.5A 2016-12-23 2016-12-23 一种蒙脱土自组装沉积在固体表面的方法 Pending CN108238814A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611203357.5A CN108238814A (zh) 2016-12-23 2016-12-23 一种蒙脱土自组装沉积在固体表面的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611203357.5A CN108238814A (zh) 2016-12-23 2016-12-23 一种蒙脱土自组装沉积在固体表面的方法

Publications (1)

Publication Number Publication Date
CN108238814A true CN108238814A (zh) 2018-07-03

Family

ID=62703263

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611203357.5A Pending CN108238814A (zh) 2016-12-23 2016-12-23 一种蒙脱土自组装沉积在固体表面的方法

Country Status (1)

Country Link
CN (1) CN108238814A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109777381A (zh) * 2017-11-13 2019-05-21 中石化石油工程技术服务有限公司 一种蒙脱土自组装沉积在固体表面的方法
CN113969145A (zh) * 2020-07-22 2022-01-25 中石化石油工程技术服务有限公司 一种沉积复合膜及其制备方法和用途

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102926200A (zh) * 2012-09-25 2013-02-13 台州学院 一种阻燃棉纤维及其制备方法
CN105732091A (zh) * 2014-12-12 2016-07-06 中石化胜利石油工程有限公司钻井工艺研究院 一种碳酸钙在固体表面层层沉积的方法
CN105731817A (zh) * 2014-12-12 2016-07-06 中石化胜利石油工程有限公司钻井工艺研究院 一种蒙脱土在固体表面上层层组装的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102926200A (zh) * 2012-09-25 2013-02-13 台州学院 一种阻燃棉纤维及其制备方法
CN105732091A (zh) * 2014-12-12 2016-07-06 中石化胜利石油工程有限公司钻井工艺研究院 一种碳酸钙在固体表面层层沉积的方法
CN105731817A (zh) * 2014-12-12 2016-07-06 中石化胜利石油工程有限公司钻井工艺研究院 一种蒙脱土在固体表面上层层组装的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PAUL PODSIADLO: "Can Nature’s Design be Improved Upon? High Strength, Transparent Nacre-Like Nanocomposites with Double Network of Sacrificial Cross Links", 《J.PHYS. CHEM.B》 *
PAUL PODSIADLO: "Ultrastrong and Stiff Layered Polymer Nanocomposites", 《SCIENCE》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109777381A (zh) * 2017-11-13 2019-05-21 中石化石油工程技术服务有限公司 一种蒙脱土自组装沉积在固体表面的方法
CN113969145A (zh) * 2020-07-22 2022-01-25 中石化石油工程技术服务有限公司 一种沉积复合膜及其制备方法和用途

Similar Documents

Publication Publication Date Title
Liu et al. Graphene oxide (GO) as functional material in tailoring polyamide thin film composite (PA-TFC) reverse osmosis (RO) membranes
Li et al. Thermally reduced nanoporous graphene oxide membrane for desalination
Smith et al. Synthesis, properties, and applications of graphene oxide/reduced graphene oxide and their nanocomposites
Karahan et al. MXene materials for designing advanced separation membranes
Kadhom et al. Metal-organic frameworks (MOFs) in water filtration membranes for desalination and other applications
Li et al. An MXene-based membrane for molecular separation
Lyu et al. Separation and purification using GO and r-GO membranes
US11465398B2 (en) Layer-by-layer assembly of graphene oxide membranes via electrostatic interaction and eludication of water and solute transport mechanisms
Sun et al. Recent developments in graphene‐based membranes: structure, mass‐transport mechanism and potential applications
Ritt et al. Monte Carlo simulations of framework defects in layered two-dimensional nanomaterial desalination membranes: implications for permeability and selectivity
Wei et al. Multilayered graphene oxide membranes for water treatment: A review
Ji et al. Superfast water transport zwitterionic polymeric nanofluidic membrane reinforced by metal–organic frameworks
Liu et al. Mixed-dimensional membranes: chemistry and structure–property relationships
Zheng et al. Synthetic two‐dimensional materials: a new paradigm of membranes for ultimate separation
Huang et al. MXene‐based membranes for separation applications
Safaei et al. Progress and prospects of two-dimensional materials for membrane-based water desalination
Ying et al. Two-dimensional materials for novel liquid separation membranes
Rezakazemi et al. Sustainable MXenes-based membranes for highly energy-efficient separations
Zhu et al. Membranes prepared from graphene-based nanomaterials for sustainable applications: a review
AU2017379366B2 (en) Reverse osmosis membrane and method of use
CN105732091B (zh) 一种碳酸钙在固体表面层层沉积的方法
Yang et al. Recent advances in graphene oxide membranes for nanofiltration
CN105731817A (zh) 一种蒙脱土在固体表面上层层组装的方法
Rastgar et al. Highly-efficient forward osmosis membrane tailored by magnetically responsive graphene oxide/Fe3O4 nanohybrid
Guan et al. Precisely controlling nanochannels of graphene oxide membranes through lignin‐based cation decoration for dehydration of biofuels

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20180703

WD01 Invention patent application deemed withdrawn after publication