一种投影显示系统
技术领域
本发明涉及投影显示领域,特别是涉及一种投影显示系统。
背景技术
现有技术中,投影设备采用单LCD(Liquid Crystal Display,液晶显示器)系统进行图像处理,或者采用3LCD系统进行图像处理。
当采用单LCD系统进行图像处理时,红、绿、蓝三色光轮流被LCD处理,得到红绿蓝三个图像,在人眼处根据视觉暂留合成出所需要显示的彩色图像,该技术方案下,图像的显示质量很低,例如会出现闪烁、亮度低等问题。
当采用3LCD系统进行图像处理时,同一时间,每个LCD只处理一种颜色光,然后合光后出射得到彩色图像,相当于三个LCD进行了并联。该技术方案虽然解决了图像闪烁和亮度低的问题,但是图像的对比度与单LCD系统的对比度几乎没有分别,耗费了高成本却没有带来令人满意的显示效果,不适合应用在高端的市场上。
如图1所示,为现有技术中的投影显示系统的光路结构示意图,白光W经波长分光器件分成黄光Y和蓝光B,其中黄光Y进一步被分成红光R和绿光G,蓝光B、绿光G和红光R分别入射到LCD1、LCD2和LCD3上,经LCD调制处理后形成蓝绿红各自三色图像光,然后经X-Cube合光后经过投影镜头在屏幕上形成图像。在该技术方案中,总有一个颜色的光(如图中的红光R)的光程较其他两束光的光程长,途经的透镜更多,导致该光的光损失大、成像质量差。此外,该技术方案中,X-Cube采用四个三棱柱拼接,每个三棱柱与其他三棱柱接触的表面都需要镀膜,镀膜困难,并且每个拼接棱柱之间有缝隙,进一步造成光损失。综上种种因素影响,导致3LCD的投影显示系统的显示效果不佳。
因此,一种更高显示效果投影显示系统亟待开发。
发明内容
针对上述现有技术的投影显示系统对比度低的缺陷,本发明提供一种能够提供更高对比度的投影显示系统,包括:
发光装置,用于依时序出射不同颜色的第一光和第二光;分光装置,用于将所述第一光分成沿第一光路出射的第一波长范围光和沿第二光路出射的第二波长范围光,还用于引导所述第二光的至少部分光沿第一光路出射;第一光调制器,位于所述第一光路上,用于调制沿第一光路出射的光,第二光调制器,位于所述第二光路上,用于调制沿第二光路出射的光,经所述第一光调制器调制后出射的光与经所述第二光调制器调制后出射的光合光得到沿第三光路出射的第三光;第三光调制器,位于所述发光装置与所述分光装置之间的光路上,用于对所述发光装置出射的第一光和第二光进行调制;或者第三光调制器位于所述第三光路上,用于对所述第三光进行调制。
在一种实施方式中,所述第一光为黄光,所述第二光为蓝光,所述第一波长范围光为红光或绿光。
在一种实施方式中,所述分光装置还用于将所述第二光分成沿第一光路出射的第三波长范围光和沿第二光路出射的第四波长范围光。
在一种实施方式中,所述第一光为黄光,所述第二光为青光,所述第一波长范围光为红光,所述第二波长范围光为绿光,所述第三波长范围光为蓝光,所述第四波长范围光为绿光;或者所述第一光为黄光,所述第二光为品红光,所述第一波长范围光为红光,所述第二波长范围光为绿光,所述第三波长范围光为红光,所述第四波长范围光为蓝光。
在一种实施方式中,所述分光装置还用于将所述第二光分成分别沿所述第一光路和所述第二光路出射的两束相同颜色的光。
在一种实施方式中,所述分光装置包括颜色选择偏振器和偏振分光器,所述颜色选择偏振器用于将所述第一光转换为第一偏振态的所述第一波长范围光和第二偏振态的所述第二波长范围光的合光,所述偏振分光器用于将该合光分成沿第一光路出射的第一波长范围光和沿第二光路出射的第二波长范围光。
在一种实施方式中,还包括控制装置,用于控制所述发光装置的开启与关闭,使得当所述光调制器处于上升沿或下降沿期间,发光装置处于关闭状态。
在一种实施方式中,所述第一光路与所述第二光路的光程相等。
在一种实施方式中,所述第一光调制器和所述第二光调制器为透射式液晶光阀、反射式液晶光阀和数字微镜装置中的一种,所述第三光调制器为透射式液晶光阀、反射式液晶光阀和数字微镜装置中的一种。
在一种实施方式中,所述第一光调制器和所述第二光调制器为数字微镜装置,且所述第一光调制器和所述第二光调制器位于所述第三光调制器的出射光光路上;或者所述第三光调制器为数字微镜装置,且所述第三光调制器位于所述第一光调制器和所述第二光调制器的出射光光路上。
与现有技术相比,本发明将发光装置发出的不同颜色的第一光和第二光的时序光通过分光装置分成沿第一光路和第二光路的出射光,通过第一光调制器调制沿第一光路的光,通过第二光调制器调制沿第二光路的光,然后将第一光调制器和第二光调制器的出射光合成第三光,同时将第三光调制器设置于于所述发光装置与所述分光装置之间的光路上,对所述发光装置出射的光进行调制,或者将第三光调制器设置于所述第三光路上,用于对第三光进行调制。由此,实现了如下有益效果:在仅使用三个光调制器的情况下,既使得各颜色的光都经过两个光调制器调制,以增加了投影显示系统的对比度范围,又使得各颜色的光的光程相等,以改善了成像效果、减少了光损失,还简化了合光光路、降低设计复杂度。
附图说明
图1为现有技术中的投影显示系统的光路结构示意图。
图2为本发明投影显示系统的一实施例的结构示意图。
图3为图2实施例中的发光装置的出射光的时序图。
图4为图2实施例中的发光装置的结构示意图。
图5为图4所示的发光装置的波长转换装置的结构示意图。
图6为光调制器的开断与发光装置的开关的时序关系图。
图7为本发明投影显示系统的另一实施例的结构示意图。
图8为本发明投影显示系统的另一实施例的结构示意图。
图9为本发明投影显示系统的另一实施例的结构示意图。
图10为本发明投影显示系统的另一实施例的结构示意图。
图11为本发明投影显示系统的另一实施例的结构示意图。
图12为本发明投影显示系统的另一实施例的结构示意图。
图13为本发明投影显示系统的另一实施例的结构示意图。
具体实施方式
针对现有技术的投影显示系统中,三个光调制器“并联”而带来的对比度不高、一种色光损失过大等问题,本发明将三个光调制器的关系进行了改变。本发明的主要发明构思,就是将两个光调制器进行“并联”,然后将这一对“并联”的光调制器再与另外一个光调制器进行“串联”。通过该技术方案,在不增加成本的情况下,提高了投影显示系统的显示效果,是一种经济实用的技术方案。
所谓“光调制器的并联”即为将一束光分成两束光,使两束光分别经过两个光调制器调制后再合光;所谓“光调制器的串联”即为使一束光先后经过两个光调制器。
在本发明的投影显示系统中,任何色光都至少经过两个光调制器的调制然后出射,假若前一光调制器的可调节的灰度范围为0~N1,后一光调制器的可调节的灰度范围为0~N2,则将两者“串联”,使得光先经过前一光调制器,再经过后一光调制器,那么整个系统的可调灰度范围变为0~N1×N2,增加了投影显示系统的动态范围,减小了最小亮度单位,大大提高了投影显示系统的显示效果和对比度。
而且,本发明仅将两个光调制器进行“并联”,避免了现有技术中三个光调制器“并联”时的光程不一致而带来的某一光的光损失过大、成像质量差的问题;避免了三路光合光时合光装置设计复杂、有额外光损失的问题。
本发明中,“光路上游”指沿光路方向相对靠近发光源的位置,“光路下游”指沿光路方向相对靠近出射端的位置。
下面结合附图和实施方式对本发明实施例进行详细说明。
在本发明中如涉及“第一”、“第二”、“第三”等的描述仅用于描述目的,以便于描述方便,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”、“第三”的特征可以明示或者隐含地包括至少一个该特征。
请参见图2,图2为本发明投影显示系统的一实施例的结构示意图。投影显示系统10包括发光装置110、分光装置120、第一光调制器131、第二光调制器132、第三光调制器133和合光装置140。
本实施例中,发光装置110出射的第一光和第二光入射到第三光调制器133上,经第三光调制器133调制后,第一光和第二光入射到分光装置120。分光装置120对第一光依波长范围进行分光,将其分成沿第一光路出射的第一波长范围光和沿第二光路出射的第二波长范围光,而且分光装置120还引导第二光的至少部分光沿第一光路出射。第一光调制器131位于第一光路上,第一波长范围光及第二光的至少部分光沿第一光路入射到第一光调制器131并被其调制;第二光调制器132位于第二光路上,第二波长范围光沿第二光路入射到第二光调制器132并被其调制。经第一光调制器131调制后出射的光与经第二光调制器132调制后出射的光在合光装置140处合光,得到沿第三光路出射的第三光。该第三光经投影镜头等设备投射到屏幕上,形成显示图像。下面对各个装置进行一一描述。
<发光装置>
发光装置110用于依时序出射不同颜色的第一光和第二光,在本实施例中,如图3所示,发光装置110依时序周期性的出射第一光黄光和第二光蓝光。发光装置110的结构示意图如图4所示,包括发光单元111和波长转换装置112,发光单元111发出激发光,激发光入射到波长转换装置112,波长转换装置112在驱动装置的驱动下运动,使其不同区域在不同的时间暴露于激发光的照射下,从而产生时序的第一光黄光和第二光蓝光。
发光单元111为一激光光源,具体为一激光二极管阵列光源,由多颗呈阵列排布的激光二极管组成,该光源具有发散角小、电光转换效率高、单色性好等的优点,适于高亮度显示等应用。在本发明的其他实施方式中,发光单元还可以是单颗的激光二极管,还可以是固体激光器光源,还可以是LED光源或LED阵列光源,不影响后续光路系统的技术方案实施。
波长转换装置112的结构示意图如图5所示,波长转换装置112包括两个区域:黄光区域Y和蓝光区域B,用于接收发光单元111发出的光,并分别出射第一光黄光和第二光蓝光。在本实施例中,发光单元111发出的光为蓝光,相应地,黄光区域Y为黄色荧光区域,包含黄色荧光材料(例如但不限于YAG:Ce荧光粉),能够吸收蓝光并将其转换为宽光谱的黄光(光谱范围覆盖红色段和绿色段);蓝光区域B为透射区域,发光单元111发出的蓝光透射过蓝光区域B,形成第二光蓝光。在本发明的一个实施方式中,蓝光区域B包含散射材料,用于改变入射的蓝光的光分布,使其更加均匀,并对蓝光进行消相干(如果蓝光为激光)。
可以理解,在本发明的另一实施方式中,发光单元的出射光也可以为其他光谱的光,如但不限于紫外光;波长转换装置的两个区域也可以都是波长转换区域,对入射光进行波长转换;此外,波长转换装置的两个区域也可以为出射其他颜色光的区域。
在本实施例中,波长转换装置112为色轮,在驱动装置(如马达)的驱动下绕其中轴转动。在本发明的另一实施方式中,波长转换装置还可以为色桶/色筒,包括沿桶/筒面环绕分布的多个区域,色桶/色筒绕其轴线方向旋转,以使该多个区域依时序周期性处于激发光的照射下;或者,波长转换装置还可以为色板,包括沿一直线方向依次排布的多个区域,色板沿该直线方向线性振动,以使该多个区域依时序周期性处于激发光的照射下。
本实施例中的发光装置110为发光单元111与波长转换装置112结合的发光装置,利用波长转换装置112的运动依时序出射第一光和第二光,仅为一种具体的可实施方案,其优势在于,一旦设定了波长转换装置112的各区域所占角度以及波长转换装置112的运动周期,即可控制第一光和第二光的时序,无需复杂的电子控制。可以理解,由于本发明的发光装置的作用在于产生时序的第一光和第二光,在其他实施方式中,发光装置也可以为其他任意能够实现该功能的装置。例如:发光装置可以为包含多个发射不同颜色光的发光源的装置,该多个发光源在控制装置的控制下开启与关闭,从而依时序出射第一光和第二光。
在本发明的另外实施方式中,发光装置还可以在图4所示的发光装置基础上增加补充光源,例如包括发光单元和补充光源,其中发光单元发出的光经过波长转换装置产生不同颜色的时序光,补充光源发出的光与波长转换装置发出的时序光合光,从而得到依时序出射的不同颜色的第一光和第二光。这里,既可以使补充光源发出的光与发光单元发出的光在入射到波长转换装置之前合光,并一同入射到波长转换装置;也可以在波长转换装置出光之后,使补充光源发出的光与波长转换装置发出的光合光。在一个具体实例中,发光单元发出蓝光,波长转换装置包括黄光出光区域和蓝光出光区域,补充光源为红光,从而发光装置发出的光为时序的第一光黄光(或橙光)和第二光品红光,该技术方案可以提高投影显示系统的红光显示效果。
<分光装置>
本实施例中,分光装置120为二向色片,反射第一波长范围光和第二光,并透射第二波长范围光。可以理解,在本发明另一实施方式中,通过将光路调换,也可以设置透射第一波长范围光和第二光并反射第二波长范围光的二向色片。二向色片可以为在透明基板上镀制多层介质膜的器件等。
在分光装置120的出射光方向,即第一光路和第二光路上,还可以如图所示设置反射镜,用于对光路进行引导,还可以进一步增加透镜等光学元件(图未示)。
<光调制器>
本实施例中,在一帧图像期间,第三光调制器133根据该图像的相关数据分别对发光装置110出射的第一光和第二光进行调制。具体地,处理器将该图像中与第一光颜色相关的数据进行处理,生成第一光调制信号并输送给第三光调制器,处理器将该图像中与第二光颜色相关的数据进行处理,生成第二光调制信号并输送给第三光调制器,第三光调制器根据输入的调制信号分别对第一光和第二光进行调制。该过程中,第三光调制器133将入射到其入射面的一均匀分布的光,转换为第三光调制器133的出射面的空间分布不均匀的光(在图像非纯色图像的情况下)。由于发光装置发出的第一光和第二光的颜色不同,因此经第三光调制器133调制,时序出射的第一光和第二光被调制成呈时序先后出射的第一单色图像和第二单色图像。光调制器入射面的均匀光称为“照明光”,光调制器出射面的空间分布不均匀的光称为“图像光”(意为有图案的光)。在本发明一实施方式中,为得到均匀的照明光,发光装置110与第三光调制器133之间还可以包括匀光器件、光束缩小/放大器件等其他光学器件,如散射片、透镜组、反射镜组等,此处不再赘述。
然后,第三光调制器133出射的光被分光装置120分成两束光后分别成像到第一光调制器131和第二光调制器132的入射面。具体地,第三光调制器133出射的第一光黄光经分光装置120分光,形成第一波长范围的红光和第二波长范围的绿光。可以把第三光调制器133出射面的第一单色图像(黄色图像)看作两个图像——红色图像和绿色图像的叠加,则它们分别从第三光调制器133的出射面成像到第一光调制器131入射面和第二光调制器132入射面。第三光调制器133出射的第二光蓝光在出射面形成的第二单色图像(蓝色图像),经分光装置120沿第一光路成像到第一光调制器131入射面。
当第一波长范围光和第二光入射到第一光调制器131时,第一光调制器131根据同一图像中的相关数据分别对第一波长范围光和第二光进行调制;当第二波长范围光入射到第二光调制器132时,第二光调制器132根据同一图像中的相关数据对第二波长范围光进行调制。此处的同一图像,是指在一帧图像期间第一光调制器、第二光调制器和第三光调制器对其入射光的调制所依据的调制指令基于同一个图像数据源,该图像数据源至少包括红绿蓝各颜色分量的图像数据。例如,第一光调制器131根据图像数据源中的红色分量图像数据对第一波长范围光进行调制,第二光调制器132根据同一个图像数据源中的绿色分量图像数据对第二波长范围光进行调制,第三光调制器133根据图像数据源中的红色和绿色分量图像数据对第一光进行调制。
具体地,在一种实施方式中,针对各个像素,第三光调制器133根据图像数据源该像素的红色和绿色中灰度值较大的颜色进行调制。假若一像素仅为单一的红色或绿色,则第三光调制器133直接根据该像素的红色或绿色的灰度值配合第一光调制器132或第二空间光调制器132同步调制,使得该像素最终显示出的亮度与该帧图像数据的灰度值相符。假若一像素为红色和绿色的混合色,则第三光调制器133根据红色和绿色中灰度值较大的一个进行调制,并配合第一光调制器132或第二空间光调制器132同步调制使得该像素的灰度值较大的色显示出的亮度与该帧图像数据的该色的灰度值相符;同时,对于灰度值较小的颜色,通过获得红色和绿色的灰度值比值,相应的调整该颜色对应的第一光调制器或第二光调制器的光通过率(如适当减小光通过率),使得该颜色能够最终显示出与该帧图像数据相符的灰度值。
在本实施例中,第一光调制器131、第二光调制器132和第三光调制器133都是透射式液晶光阀LCD,通过调节LCD中的液晶排列方向来控制每一像素的光透光率。在本实施例中,要求发光装置110提供偏振光,才能被LCD调制。
请参见图6,由于对于每一帧图像调制过程中,LCD的开断均有一个上升沿和一个下降沿,在上升沿或下降沿内,光调制器不对光进行调制,造成光的浪费,并可能导致投影显示系统的对比度降低。在本发明的一个实施方式中,投影显示系统还包括控制装置,用于控制发光装置的开启与关闭,当LCD完全开启之后再开启发光装置,当LCD开始关闭时关闭发光装置,从而使发光装置在LCD的上升沿和下降沿期间处于关闭状态,既节约了能源,又避免了对比度降低。DMD(Digital Micromirro Device,数字微镜装置)等其他类型的光调制器同样存在上升沿和下降沿,可以通过控制装置控制发光装置的开启与关闭,以使当光调制器处于上升沿或下降沿器件,发光装置处于关闭状态。
<合光装置>
经第一光调制器131和第二光调制器132的调制而出射的图像光,入射到合光装置140,重合并合为一束彩色的图像光第三光,经后续的光路投射到屏幕上,从而实现图像显示。本实施例中,合光装置140为两个直角棱镜拼接而成,通过在两直角棱镜临近面镀制波长选择膜,使得来自第一光调制器131的光透射和使得来自第二光调制器132的光反射。该结构相较于三个光调制器“并联”的技术方案(也即采用4个三棱柱拼接的合光装置)大大简化,减少了结合面和交接缝,也减少了镀膜面积,精简了结构。进一步的,合光装置140的两个直角棱镜的临近面之间有空气隙,以利于波长选择膜的功能的实现。
在本发明的另一个实施方式中,合光装置包括偏振分光片,该偏振分光片能够依入射光的偏振态进行分光合光。通过设置使第一光调制器与第二光调制器出射的光的偏振态不同(如一个为S光,一个为P光),可以实现两者出射的图像光的合光。
本实施例中,来自发光装置110的照明光经过第三光调制器133,再分为两束光分别进入第一光调制器131和第二光调制器132,然后再合为一束。该过程中,任何一种颜色的光的光程都相等(不考虑因不同波长的光在介质中的光速不同而带来的光程差问题),也即任何一种颜色的光的成像过程基本相同,不存在因某一颜色光额外增加中继成像器件而带来的问题。而且,任何一种颜色的光都分别经过两个光调制器,如第三光调制器133和第一光调制器131,或者第三光调制器133和第二光调制器132,使得显示图像的对比度范围大大增加,使得该投影显示系统能够实现HDR(High-Dynamic Range,高动态范围)显示。从而,在不增加成本的情况下,大幅提高了图像显示效果。此外,由于本发明中,光路上游的光调制器(如本实施例中的第三光调制器133)出射面的图像光成像到光路下游的光调制器(如本实施例中的第一光调制器131和第二光调制器132)的入射面,因此只有各颜色光光程相等的情况下,才能保证光路下游的光调制器的像素调制单元与其入射面入射的图像光精准对应,才能保证成像质量。具体地,第一光路与第二光路的光程相等,即各颜色光从分光装置的出射位置到再次合光的位置之间的光程相等(合光后的光路为第三光路)。
在本发明的另一实施方式中,第一光为黄光,第二光为蓝光,第一波长范围光为绿光,第二波长范围光为红光,该技术方案中,第一光调制器对绿光和蓝光进行调制,而第二光调制器对红光进行调制。由于红光的热效应相对蓝光和绿光更强,使得调制红光的光调制器产热更多,容易影响该光调制器的使用寿命。本实施方式的设置使得产热少的蓝光和绿光被一个光调制器调制,而产热多的红光被另一个光调制器调制,分摊了热量的产生,使得投影显示系统的使用寿命延长。而且,由于当第一光调制器对蓝光进行调制时,用于调制红光的第二光调制器处于闲置状态,可以使第二光调制器更充分的散热。
以上实施方式中,分光装置只对第一光进行了分光,而未对第二光进行分光,使得第二光调制器存在空闲时间。在本发明的下列实施方式中,分光装置对第二光进行分光,将第二光分成沿第一光路出射的第三波长范围光和沿第二光路出射的第四波长范围光。
在本发明的一个实施方式中,第一光为黄光,第二光为青光,第一波长范围光为红光,第二波长范围光为绿光,其中第二光青光被分光装置分成沿第一光路方向的第三波长范围光蓝光和沿第二光路方向的第四波长范围光绿光。在该技术方案中,第一光调制器对红光和蓝光进行调制,第二光调制器对绿光进行调制,该技术方案大大增加了绿光成分,由于绿光对投影显示系统的白光亮度贡献最大,也就大大增加了投影显示系统的输出亮度。
在本发明的一个实施方式中,第一光为黄光,第二光为品红光,第一波长范围光为红光,第二波长范围光为绿光。第二光品红光被分光装置分成沿第一光路方向的第三波长范围光红光和沿第二光路方向的第四波长范围光蓝光。在该技术方案中,第一光调制器对红光进行调制,第二光调制器对绿光和蓝光进行调制。该技术方案增加了红光成分,克服了现有技术中投影显示系统的红色显示效果差的缺陷(尤其因为黄色荧光中的红光成分少、红色荧光粉发光效率低)。
在本发明的一个实施方式中,分光装置用于将第二光分成分别沿第一光路和第二光路出射的两束相同颜色的光,从而缩短第二光的调制时间,以提高投影显示系统的单位时间输出的光通量,进而提高了投影显示系统的输出光强。在一个具体实施方式中,第一光为黄光,第二光为蓝光,第一波长范围光为红光,第二波长范围光为绿光。其中,第二光蓝光被分光装置分成沿第一光路的第一蓝光和沿第二光路的第二蓝光(可以利用偏振态分成不同偏振态的光,也可以利用分光装置介质的反射和折射作用分成波长性质相同的两束光)。该技术方案中,第一光调制器和第二光调制器都对蓝光进行调制,缩短了蓝光调制时间,从而提高了投影显示系统的单位时间输出的光通量,提高了投影显示系统的光强。
请参见图7,图7为本发明投影显示系统的另一实施例的结构示意图。投影显示系统20包括发光装置210、分光装置220、第一光调制器231、第二光调制器232、第三光调制器233和合光装置240。
本实施例中,发光装置210依时序出射的不同颜色的第一光和第二光入射到分光装置220,分光装置220对第一光依波长范围进行分光,将其分成沿第一光路出射的第一波长范围光和沿第二光路出射的第二波长范围光,而且分光装置220还引导第二光的至少部分光沿第一光路出射。第一光调制器231位于第一光路上,第一波长范围光及第二光的至少部分光沿第一光路入射到第一光调制器231并被其调制;第二光调制器232位于第二光路上,第二波长范围光沿第二光路入射到第二光调制器232并被其调制。经第一光调制器231调制后出射的光与经第二光调制器232调制后出射的光在合光装置240处合光,得到沿第三光路出射的第三光。第三光调制器133位于第三光路上,对合光装置240出射的第三光进行调制,之后,第三光经投影镜头等设备投射到屏幕上,形成显示图像。
本实施例中,来自发光装置210的照明光分为两束光分别进入第一光调制器231和第二光调制器232,然后再合为一束,再经过第三光调制器233。该过程中,与上述实施例一样,任何一种颜色的光的光程都相等(不考虑因不同波长的光在介质中的光速不同而带来的光程差问题),也即任何一种颜色的光的成像过程基本相同,不存在因某一颜色光额外增加中继成像器件而带来的问题。而且,任何一种颜色的光都分别经过两个光调制器,如第一光调制器231和第三光调制器233,或者第二光调制器232和第三光调制器233,使得显示图像的对比度范围大大增加,使得该投影显示系统能够实现HDR显示。从而,在不增加成本的情况下,大幅提高了图像显示效果。此外,由于本发明中,光路上游的光调制器(如本实施例中的第一光调制器231和第二光调制器232)出射面的图像光成像到光路下游的光调制器(如本实施例中的第三光调制器233)的入射面,因此只有各颜色光光程相等的情况下,才能保证光路下游的光调制器的像素调制单元与其入射面入射的图像光精准对应,才能保证成像质量。
与上述图2所示的实施例相比,本案的区别在于,第三光调制器233位于第一光调制器231和第二光调制器232之后而非之前的光路上。该技术方案中,发光装置发出的光分成两路后入射到两个不同的光调制器,经调制后得到强度减弱的图像光,该图像光再入射到第三光调制器进行调制,使得三个光调制器的产热更加均匀,减缓了光调制器因热效应而导致的老化,从而延长了光调制器的使用寿命。相比之下,图2实施例的技术方案中,发光装置发出的光直接地全部地首先入射到第三光调制器,使得第三光调制器的产热量远远大于第一光调制器和第二光调制器,可导致第三光调制器的老化速度更快。
本实施例中,发光装置、分光装置、合光装置、光调制器的结构功能等特性以及各种光(如第一光、第二光、第一波长范围光、第二波长范围光……)的颜色选择可参考上述实施方式中的描述。
请参见图8,图8为本发明投影显示系统的另一实施例的结构示意图。投影显示系统30包括发光装置310、分光装置320、第一光调制器331、第二光调制器332和第三光调制器333。
本实施例中,发光装置310出射的第一光和第二光入射到第三光调制器333上,经第三光调制器333调制后,第一光和第二光入射到分光装置320。分光装置320对第一光依波长范围进行分光,将其分成沿第一光路出射的第一波长范围光和沿第二光路出射的第二波长范围光,而且分光装置320还引导第二光的至少部分光沿第一光路出射。第一光调制器331位于第一光路上,第一波长范围光及第二光的至少部分光沿第一光路入射到第一光调制器331并被其调制;第二光调制器332位于第二光路上,第二波长范围光沿第二光路入射到第二光调制器332并被其调制。经第一光调制器331调制后出射的光与经第二光调制器332调制后出射的光在分光装置320处合光,得到沿第三光路出射的第三光。该第三光经投影镜头等设备投射到屏幕上,形成显示图像。
与上述图2所示的实施例相比,本实施例的区别在于,第一光调制器331和第二光调制器332替换为数字微镜装置DMD,该光调制器通过控制每一个微镜处于ON状态和OFF状态的时间占比来调节该微镜对应像素的灰度值。本实施例中,发光装置310发出的光先经过LCD光调制器调制,然后分成两路分别由两个DMD光调制器调制。相对于LCD光调制器控制光的透射率来控制图像的明暗,DMD光调制器的OFF状态下将光引导至非出射通道,其获得的投影图像的暗部更暗,即DMD光调制器出射的黑色图像相对于LCD光调制器出射的黑色图像“更黑”。因此,本实施例将DMD光调制器作为光路下游的光调制器,有利于获得更小的最低亮度,从而增大了投影显示系统的对比度。
本实施例中,分光装置320为两个TIR(Total Internal Reflection,全内反射)棱镜的组合,同时承担分光和合光的作用。
本实施例中,发光装置、分光装置、合光装置、光调制器的结构功能等特性以及各种光(如第一光、第二光、第一波长范围光、第二波长范围光……)的颜色选择可参考上述实施方式中的描述。
请参见图9,图9为本发明投影显示系统的另一实施例的结构示意图。投影显示系统40包括发光装置410、分光装置420、第一光调制器431、第二光调制器432和第三光调制器433。
与图8所示的实施例相比,本实施例的区别在于,第三光调制器433位于第一光调制器431和第二光调制器432之后而非之前的光路上。该技术方案中,发光装置发出的光分成两路后入射到两个不同的光调制器,经调制后得到强度减弱的图像光,该图像光再入射到第三光调制器进行调制,使得三个光调制器的产热更加均匀,减缓了光调制器因热效应而导致的老化,从而延长了光调制器的使用寿命。
本实施例中,发光装置、分光装置、合光装置、光调制器的结构功能等特性以及各种光(如第一光、第二光、第一波长范围光、第二波长范围光……)的颜色选择可参考上述实施方式中的描述。
请参见图10,图10为本发明投影显示系统的另一实施例的结构示意图。投影显示系统50包括发光装置510、分光装置520、第一光调制器531、第二光调制器532、第三光调制器533和合光装置540。
与图2所示的实施例相比,本实施例的区别在于,第三光调制器533为DMD光调制器。
请参见图11,图11为本发明投影显示系统的另一实施例的结构示意图。投影显示系统60包括发光装置610、分光装置620、第一光调制器631、第二光调制器632、第三光调制器633和合光装置640。
与图10所示的实施例相比,本实施例的区别在于,第三光调制器633位于第一光调制器631和第二光调制器632之后而非之前的光路上。该技术方案中,发光装置发出的光分成两路后入射到两个不同的光调制器,经调制后得到强度减弱的图像光,该图像光再入射到第三光调制器进行调制,使得三个光调制器的产热更加均匀,减缓了光调制器因热效应而导致的老化,从而延长了光调制器的使用寿命。
同时,DMD类型的第三光调制器633位于光路下游,有利于获得更小的最低亮度,从而增大了投影显示系统的对比度。由于DMD的成本相对LCD较高,该技术方案仅使用一个DMD,将其与两个LCD结合使用,提高亮度、对比度的同时,兼顾了成本,具有实际的实用意义。
请参见图12,图12为本发明投影显示系统的另一实施例的结构示意图。投影显示系统70包括发光装置710、分光装置720、第一光调制器731、第二光调制器732、第三光调制器733和合光装置740。与图7所示的实施例相比,本实施例的区别仅在于,将第三光调制器的类型替换为反射式液晶光阀LCOS(Liquid Crystal on Silicon)。LCOS相对于LCD的显示对比度更佳,能使得投影显示系统的对比度更高,而且LCOS和LCD同样为液晶调制器件,匹配性更佳。本技术方案中,同样地,发光装置发出的光分成两路后入射到两个不同的光调制器,经调制后得到强度减弱的图像光,该图像光再入射到第三光调制器进行调制,使得三个光调制器的产热更加均匀,减缓了光调制器因热效应而导致的老化,从而延长了光调制器的使用寿命。
同样地,在上述任一实施方式中,可以将第三光调制器替换为反射式液晶光阀LCOS,并相应改变光路做适应性变化,此处不再赘述。
请参见图13,图13为本发明投影显示系统的另一实施例的结构示意图。投影显示系统80包括发光装置810、分光装置820、第一光调制器831、第二光调制器832和第三光调制器833。
与上述各实施例不同的是,本实施例技术方案中,第一光调制器831和第二光调制器832都是反射式液晶光阀LCOS。
本实施例中,分光装置820包括一个颜色选择偏振器821,入射到颜色选择偏振器821的光为第一偏振态的线偏振光,颜色选择偏振器改变第二波长范围光的偏振态,而不改变第一波长范围光的偏振态。当线偏振态的第一光经过颜色选择偏振器821,被转换为第一偏振态的第一波长范围光和第二偏振态的第二波长范围光的合光,其中第一偏振态与第二偏振态为正交的偏振态。分光装置820还包括偏振分光器,用于将第一偏振态的第一波长范围光引导沿第一光路入射到第一光调制器831并将第二偏振态的第二波长范围光引导沿第二光路入射到第二光调制器832。第一波长范围光和第二波长范围光分别经第一光调制器831和第二光调制器832调制后,偏振态改变,从而在分光装置820的偏振分光器处合光为第三光出射。
本实施例先利用颜色选择偏振器将第一波长范围光和第二波长范围光的偏振态转换为两个不同的偏振态,再利用偏振分光器进行分光/合光,避免了使用波长分光片分光/合光的技术方案中因入射到波长分光片的光角度大而导致的滤光曲线漂移现象,在保证第一波长范围光和第二波长范围光分光精准的前提下,降低了工艺要求。
在上述其他各实施例中,同样可以采用颜色选择偏振器与偏振分光器组合的方式进行分光,以使得第一波长范围光和第二波长范围光的分光更加精准。
在图13的本实施例中,第三光调制器833为透射式液晶光阀LCD,其出射的图像光为单一偏振态的线偏振光,能够直接用于本实施例的分光装置820。在其他实施方式中,第三光调制器还可以替换为反射式液晶光阀LCOS或数字微镜装置DMD,相应改变光路即可。
在图13的本实施例中,第三光调制器设置在第一光调制器和第二光调制器的上游光路。在其他实施方式中,第三光调制器也可以设置在第一光调制器和第二光调制器的光路下游,但需要注意的是,当第三光调制器为液晶光阀时,需要在第三光调制器的入射侧增加一个颜色选择偏振器,以使入射到第三光调制器的光为单一偏振态的光。
本发明的投影显示系统既可以应用于投影机如影院投影机、工程投影机、微型投影机、教育投影机、拼墙投影机、激光电视等,也可以应用于图像照明如图像投影灯、交通工具(车船飞机)灯、探照灯、舞台灯等场景。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。
以上所述仅为本发明的实施方式,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。