CN108223438A - 流量系数0.0088轻介质高能头压缩机模型级及设计方法 - Google Patents

流量系数0.0088轻介质高能头压缩机模型级及设计方法 Download PDF

Info

Publication number
CN108223438A
CN108223438A CN201711482537.6A CN201711482537A CN108223438A CN 108223438 A CN108223438 A CN 108223438A CN 201711482537 A CN201711482537 A CN 201711482537A CN 108223438 A CN108223438 A CN 108223438A
Authority
CN
China
Prior art keywords
impeller
blade
vane diffuser
width
return channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201711482537.6A
Other languages
English (en)
Inventor
孙博
卢傅安
李圣军
刘长胜
孙玉莹
程健
杨树华
伊洪丽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenyang Turbo Machinery Co Ltd
Original Assignee
Shenyang Turbo Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenyang Turbo Machinery Co Ltd filed Critical Shenyang Turbo Machinery Co Ltd
Priority to CN201711482537.6A priority Critical patent/CN108223438A/zh
Publication of CN108223438A publication Critical patent/CN108223438A/zh
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/284Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/30Vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • F04D29/441Fluid-guiding means, e.g. diffusers especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • F04D29/441Fluid-guiding means, e.g. diffusers especially adapted for elastic fluid pumps
    • F04D29/444Bladed diffusers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/17Mechanical parametric or variational design
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation

Abstract

本发明提供流量系数0.0088轻介质高能头压缩机模型级,适用于流量系数0.0088轻介质高能头压缩机模型级产品的模化设计,包括叶轮、叶片扩压器、弯道及回流器,叶轮位于模型级的入口位置,在叶轮的出口设有叶片扩压器,回流器位于模型级的出口位置,叶片扩压器与回流器通过弯道相连通;模型级的机器马赫数Ma2=0.2‑0.65,设计点流量系数Φ1=0.0088,设计点能头系数τ=0.72,设计流量系数工况下的多变效率ηpcl=0.7793,应用的流量范围为设计点的0.75~1.57。还提供该模型级的设计方法。本发明的模型级效率高、能头系数高、轮毂比大,跨距小。

Description

流量系数0.0088轻介质高能头压缩机模型级及设计方法
技术领域
本发明涉及压缩机技术领域,特别涉及一种流量系数0.0088轻介质高能头压缩机模型级及模型级设计方法。
背景技术
轻介质高能头压缩机普遍应用于甲醇(出口压力90公斤以下)和化肥装置(出口压力150-160公斤)中,每年市场上约有20-30多套合成气机组,需求量大,同时其工业产品又是影响民生的关键产品,模型及设计的优劣,影响这装置机组的性能,运行稳定性及能耗。
目前现有轻介质压缩机模型级效率较低。同时现有模型级轮毂比较小,当级数较多时不利于转子的稳定性,进而在产品临界转速、转子稳定性及轴的刚度等方面存在较大的问题,给产品设计带来很大的困难。另外,机组的性能较国外同类产品低。
发明内容
为了解决现有轻介质压缩机模型级存在的上述问题,本发明的目的在于提供一种流量系数0.0088轻介质高能头压缩机模型级及设计方法,使轻介质压缩机产品机组性能和运转稳定性得以显著提高,减少机组的能耗。
为解决上述技术问题,本发明提供了一种流量系数0.0088轻介质高能头压缩机模型级,包括叶轮1、叶片扩压器2、弯道3及回流器4,其中叶轮1位于模型级的入口位置,在叶轮1的出口设有叶片扩压器2,所述回流器4位于模型级的出口位置,叶片扩压器2与回流器4之间通过弯道3相连通;所述模型级的机器马赫数Ma2=0.2-0.65,设计点流量系数Φ1=0.0088,设计点能头系数τ=0.72,各马赫数下设计流量系数工况下的多变效率ηpol=0.7793,能应用的流量范围为设计点的0.75~1.57。
本发明还提供一种流量系数0.0088轻介质高能头压缩机模型级的设计方法,其包括:
步骤10、通过一维热力设计,获得子午流道宽度以及叶轮基本参数,包括叶轮进口安装角β1A、叶轮出口安装角β2A,以及叶轮出口宽度b2;
步骤20、根据叶轮轮毂比ds/D2及给定的叶轮直径确定轮毂直径;
步骤30、通过进口相对速度w1最小的原则计算叶轮进口直径D0
步骤40、根据进出口叶片的Beta角呈线性变化分布而获取叶片初步造型;
步骤50、将所得到的叶轮的流道三维模型进行网格划分,将生成的网格导入CFD分析软件中,采用Spalart-Allmaras湍流模型对该叶轮进行3D粘性流场分析;分析的进口边界条件为总温、总压;分析的出口边界条件为质量流量出口;
步骤60、通过对截取的叶轮流场由轮盘至轮盖方向不同截面的流速矢量图、截取的叶轮子午方向的流速矢量图及截取的叶轮压力面和吸力面的叶片的相对速度图对叶轮流场进行分析,若所得的叶轮流场满足第一设计条件,则认为设计完成;若流场不满足第一设计条件,则针对流场存在的问题进行相应的几何修正,并重复步骤50进行CFD分析,直至所得的叶轮流场满足设计条件;
步骤70、首先对叶片扩压器进行初始设计,根据步骤60中CFD计算所得到的叶轮的出口气流角β2确定叶片扩压器进口安装角α3A,设定叶片扩压器出口安装角α4A,确定叶片扩压器进口宽度b3和出口宽度b4等于叶轮出口宽度b2,并对叶片扩压器进行初步造型,将所得到的模型级流道三维模型进行网格划分,然后导入CFD分析软件,利用步骤60中所得到的叶轮的出口流场情况为初始条件,采用Spalart-Allmaras湍流模型对叶轮和扩压器造型进行3D连续粘性流场分析,对所得到的CFD分析的流场结果进行分析,得到叶片扩压器流道中间在轮盘至轮盖的不同高度截面上的流动速度矢量分布图、得到叶片扩压器子午流道的速度矢量分布图及叶片扩压器出口气流角分布图,并分析是否满足第二设计条件,若不满足,则对叶片扩压器几何参数进行修正,重新进行CFD分析计算;
步骤80、根据叶片扩压器出口气流角,对弯道及回流器叶片进行初始设计,确定回流器进口安装角α5A、出口安装角α6A,回流器进口宽度b5、出口宽度b6、回流器进口位置直径D5及出口位置直径D6,并对回流器进行初步造型,导入CFD分析软件,采用Spalart-Allmaras湍流模型对叶轮、扩压器、弯道及回流器进行3D连续粘性流场分析,根据流场分析结果进行回流器叶片型线的修正,并导入CFD分析软件进行反复迭代,若所得的弯道(3)、回流器(4)流场满足第三设计条件,则设计完成。
本发明提供的流量系数0.0088轻介质高能头压缩机模型级,效率高、能头系数高、轮毂比大,跨距小的特点,采用本发明的模型级可以使得轻介质压缩机具有较高的运行效率和能头系数,同时整机转子具有更短的轴承跨距和较高的运行稳定性。
附图说明
图1为本发明实施例提供的流量系数0.0088轻介质高能头压缩机模型级的示意图;
图2为本发明实施例提供的流量系数0.0088轻介质高能头压缩机模型级叶轮进出口角示意图;
图3为本发明实施例提供的流量系数0.0088轻介质高能头压缩机模型级叶片扩压器进出口角示意图;
图4为本发明实施例提供的流量系数0.0088轻介质高能头压缩机模型级回流器进出口角示意图;
图5为本发明实施例提供的叶轮10%叶高截面相对速度分布图;
图6为本发明实施例提供的叶轮50%叶高截面相对速度分布图;
图7为本发明实施例提供的叶轮90%叶高截面相对速度分布图;
图8为本发明实施例提供的子午流道相对速度分布图;
图9为本发明实施例提供的叶轮叶片吸力面和压力面的相对速度分布判断依据图;
图10为本发明实施例提供的叶片扩压器10%叶高截面相对速度分布图;
图11为本发明实施例提供的叶片扩压器50%叶高截面相对速度分布图;
图12为本发明实施例提供的叶片扩压器90%叶高截面相对速度分布图;
图13为本发明实施例提供的回流器10%叶高截面相对速度分布图;
图14为本发明实施例提供的回流器50%叶高截面相对速度分布图;
图15为本发明实施例提供的回流器90%叶高截面相对速度分布图;
图16为本发明实施例提供的不同马赫数下压比性能曲线示意图;
图17为本发明实施例提供的不同马赫数下多变效率性能曲线示意图;
图18为本发明实施例提供的不同马赫数下能头系数性能曲线示意图。
图19为本发明实施例提供的沿轴向相对位置的叶轮出口气流角分布图。
图20为本发明实施例提供的叶片扩压器出口气流角沿叶高方向的分布图。
具体实施方式
参见图1,本发明实施例提供的一种流量系数0.0088轻介质高能头压缩机模型级,适用于轻介质压缩机产品的模化设计,包括叶轮1、叶片扩压器2、弯道3及回流器4,其中叶轮1位于模型级的入口位置,在叶轮1的出口设有叶片扩压器2,回流器4位于模型级的出口位置,叶片扩压器2与回流器4之间通过弯道3相连通。该模型级能够使用的机器马赫数Ma2=0.2-0.65,设计点流量系数Φ1=0.0088,设计点能头系数τ=0.72,各马赫数下设计流量系数工况下的多变效率ηpcl=0.7793,能应用的流量范围为设计点的0.75~1.57。具体性能曲线如图16~18所示。
该流量系数0.0088轻介质高能头压缩机模型级的轮毂比ds/D2很大,ds/D2=0.39。比一般的模型级轮毂比ds/D2=0.34提高约16%,这可以极大的提高使用该模型级的转子的稳定性。
叶轮1为闭式的三元叶轮,三元叶轮的基本参数如下:叶轮出口直径D2=500mm,叶片数Z=19,叶轮相对出口宽度b2为叶轮出口宽度。该叶轮1叶片进口安装角β1A为22°,叶轮1出口叶片角β2A为31.3°,所述β1A、β2A定义如图2所示。叶轮1的轮盖侧和轴盘侧的子午流道均为样条曲线。叶轮1压力面和吸力面的叶片的相对速度呈橄榄型分布。压力面和吸力面的叶片的相对速度差别最大的位置位于60%~80%叶片长度处。例如,相对速度差别最大的位置大约位于65%叶片长度处,这种载荷分布使得该模型级具有很高的效率及较宽的工况范围。在设计点马赫数及流量系数工况条件下,该叶轮的流动具有如下特点:1、该叶轮在10%、50%、90%叶高截面上,叶轮流道中间的流动没有任何流动分离,如图5~图7所示。2、非定常三维粘性流动CFD分析结果表明,该叶轮的子午流道上也没有任何的流动分离,如图8所示。3、该叶轮的多变效率很高,叶轮出口处的多变效率可达96.2%。
叶片扩压器2的基本参数如下:叶片扩压器的轮盖和轴盘侧的子午型线均由一段直线构成;叶片扩压器2入口相对位置出口相对位置叶片数Z=13;叶片扩压器2进口安装角α3=26°,出口安装角α4=29°,所述α3及α4定义如图3所示;轴盘侧的子午型线垂直于轴向。叶片扩压器2进口宽度和叶轮1出口宽度的比b3/b2为1,该设计保证了叶轮1出口气流可以顺畅的进入叶片扩压器2;同时叶片扩压器2出口宽度和叶片扩压器2进口宽度的比b4/b3为1。该设计可以很好的匹配叶轮出口处的流场,抑制扩压器盖盘侧的流动分离,减小叶片扩压器2内的流动损失。如图10~图12所示,该叶片扩压器上没有流动分离。该扩压器出口的多变效率很高,叶轮出口处的多变效率可达93.6%。
在一实施例中,弯道3的进出口宽度比b5/b4为1.12。该模型级的非定常三维粘性流动CFD分析结果表明,在设计点马赫数及流量系数工况条件下,弯道3内部没有流动分离。如图8所示。
在一实施例中,回流器4叶片采用全高香蕉翼型叶片,叶片数为Z=24,叶片入口相对位置D5/D2=1.4,入口安装角为α5A=21.5°,叶片出口相对位置D6/D2=0.7,出口安装角为α6A=95.6°,回流器进、出口安装角定义如图4所示;该设计可以很好的匹配弯道出口的流场,并且将回流器出口气流轴向夹角控制到小于1°。同时,回流器叶片在设计流量系数下没有任何的流动分离。如图13~图15所示。回流器4轮盖侧子午型线为一竖直直线段,与弯道轮盖侧圆弧相切;轴盘侧子午型线为一斜线段,与弯道轴盘侧圆弧相切;回流器出口段盖盘侧和轴盘侧分别由两条圆弧及与圆弧相切的直线段组成。
本发明实施例还提供流量系数0.0088轻介质高能头压缩机模型级的整级设计方法,具体包括:
步骤10、通过一维热力设计,获得叶轮进口安装角β1A、叶轮出口安装角β2A,以及叶轮出口宽度b2;
β1A=tan-1c1/u1+i,其中:
c1——叶轮进口绝对速度
u1——叶轮进口圆周速度
i——冲角
其中:
qvin——进口体积流量
D2——叶轮外径
Kv2——叶轮出口比容比
——流量系数叶轮出口径向流量系数
u2——圆周速度
τ2——叶片出口阻塞系数
其中:
——流量系数
——周速系数
步骤20、根据叶轮轮毂比ds/D2(例如,ds/D2=0.39)及给定的叶轮直径(例如,给定D2=500mm)确定轮毂直径。其中ds为轮毂直径、D2为叶轮外径。
步骤30、通过进口相对速度w1最小的原则,通过以下公式获得叶轮进口直径D0
其中:
d——轮毂直径
D2——叶轮外径
Kv2——叶轮出口比容比
——流量系数叶轮出口径向流量系数
Kc——速度系数
τ2——叶片出口阻塞系数
Kv0——叶轮进口比容比
KD——直径比
其中:
——流量系数
——周速系数
步骤40、根据进出口叶片的Beta角呈线性变化分布而获取叶片初步造型,例如图19。
步骤50、将所得到的叶轮的流道三维模型进行网格划分,网格划分过程中,减小壁面的Yplus小于1,同时网格的长宽比小于2000,延展比小于3,网格的正交性大于15°。将生成的网格导入CFD分析软件中,采用Spalart-Allmaras湍流模型对该叶轮进行3D粘性流场分析;分析的进口边界条件为总温、总压;分析的出口边界条件为质量流量出口。
步骤60、对CFD分析所得的叶轮内部流场结果进行分析,即:通过对截取的叶轮流场由轮盘至轮盖方向不同截面的流速矢量图、截取的叶轮子午方向的流速矢量图及截取的叶轮压力面和吸力面的叶片的相对速度图对叶轮流场进行分析,若所得的叶轮流场满足第一设计条件,则认为设计完成。若流场不满足第一设计条件,则针对流场存在的问题进行相应的几何修正,并重复步骤50进行CFD分析,直至所得的叶轮流场满足设计条件。满足第一设计条件为:叶轮1在轮盘至轮盖的高度方向10%、50%、90%截面上,流道中间的流动没有任何流动分离。如图5~图7所示;II叶轮1的子午流道上也没有任何的流动分离。如图8所示;III压力面和吸力面的叶片的相对速度近似呈橄榄型分布。相对速度差别最大的位置位于60%~80%叶片长度处。如图9所示。
步骤70、首先对叶片扩压器进行初始设计,根据步骤60中CFD计算所得到的叶轮的出口气流角β2确定叶片扩压器进口安装角α3A,设定叶片扩压器出口安装角α4A为30°(经过大量的试验,设定角度为30°,能大大减小扩压器出口气流对回流器入口的冲击),确定叶片扩压器进口宽度b3和出口宽度b4等于叶轮出口宽度b2(经过大量的试验,经过如此设置可以保证流动顺畅,),并对叶片扩压器进行初步造型,将所得到的模型级流道三维模型进行网格划分(网格划分过程中,减小壁面的Yplus小于1,同时网格的长宽比小于2000,延展比小于3,网格的正交性大于15°),然后导入CFD分析软件,利用步骤60中所得到的叶轮的出口流场情况为初始条件,采用Spalart-Allmaras湍流模型对叶轮和扩压器造型进行3D连续粘性流场分析,从而得到叶片扩压器流道中间在轮盘至轮盖的不同高度截面上的流动速度矢量分布图、得到叶片扩压器子午流道的速度矢量分布图及叶片扩压器出口气流角分布图;对得到的叶片扩压器流道中间在轮盘至轮盖的不同高度截面上的流动速度矢量分布图、叶片扩压器子午流道的速度矢量分布图及叶片扩压器出口气流角分布图进行分析,若以上三个方面同时满足以下三个设计条件,则认为设计完成,若不满足,则对叶片扩压器几何参数进行修正,重新进行CFD分析计算。满足设计条件为:(1)叶片扩压器2在轮盘至轮盖的高度方向10%、50%、90%截面上,流道中间的流动没有任何流动分离。如图10~图12所示;(2)叶片扩压器2的子午流道上也没有任何的流动分离。如图8所示;(3)叶片扩压器出口气流角度在25°到40°之间,如图20所示。这样确保扩压器的扩压作用,同时减小了扩压器出口气流对回流器的冲击。这样使得设计者可以直接获取扩压器流道内部的流动情况,并且有针对性的对叶片扩压器的几何参数进行修正,快速高效的对叶片扩压器进行设计。同时,采用非定常计算分析方法,分析得到叶轮与叶片扩压器之间非定常的相互作用力,为减小扩压器和叶轮因其相互作用力而被破坏的风险,确定了叶片扩压器的入口直径D3和叶轮直径D2的比值为115%。
步骤80、根据叶片扩压器出口气流角,对弯道及回流器叶片进行初始设计,确定回流器进口安装角α5A为21.5°、出口安装角α6A为95.6°,回流器进口宽度b5、出口宽度b6,以及回流器进口位置D5、出口位置D6。并对回流器进行初步造型,导入CFD分析软件,采用Spalart-Allmaras湍流模型对叶轮、扩压器、弯道及回流器进行3D连续粘性流场分析,根据流场分析结果进行回流器叶片型线的修正,并导入CFD分析软件进行反复迭代,若所得的弯道3、回流器4流场满足第三设计条件,则认为设计完成。满足第三设计条件为:I回流器4在轮盘至轮盖的高度方向10%、50%、90%截面上,流道中间的流动没有任何流动分离。如图13~图15所示;II弯道3、回流器4的子午流道上也没有任何的流动分离。如图8所示。
最后所应说明的是,以上具体实施方式仅用以说明本发明的技术方案而非限制,尽管参照实例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围,其均应涵盖在本发明的权利要求范围当中。

Claims (10)

1.一种流量系数0.0088轻介质高能头压缩机模型级,其特征在于:包括叶轮(1)、叶片扩压器(2)、弯道(3)及回流器(4),其中叶轮(1)位于模型级的入口位置,在叶轮(1)的出口设有叶片扩压器(2),所述回流器(4)位于模型级的出口位置,叶片扩压器(2)与回流器(4)之间通过弯道(3)相连通;所述模型级的机器马赫数Mu2=0.2-0.65,设计点流量系数Φ1=0.0088,设计点能头系数τ=0.72,各马赫数下设计流量系数工况下的多变效率ηpol=0.7793,能应用的流量范围为设计点的0.75~1.57。
2.根据权利要求1所述的流量系数0.0088轻介质高能头压缩机模型级,其特征在于:所述的流量系数0.0088轻介质高能头压缩机模型级的叶轮轮毂比ds/D2=0.39,所述ds为轮毂直径、D2为叶轮外径。
3.根据权利要求1所述的流量系数0.0088轻介质高能头压缩机模型级,其特征在于:所述叶轮(1)为闭式的三元叶轮,三元叶轮的基本参数如下:
叶轮(1)出口直径D2=500mm,叶片数Z=19,叶轮相对出口宽度b2为叶轮出口宽度,该叶轮叶片进口安装角β1A为22°,叶轮出口叶片角β2A为31.3°。
4.根据权利要求1所述的流量系数0.0088轻介质高能头压缩机模型级,其特征在于:所述叶轮(1)的轮盖侧和轴盘侧的子午流道分别为样条曲线。
5.根据权利要求1所述的流量系数0.0088轻介质高能头压缩机模型级,其特征在于:所述叶片扩压器(2)的叶片的基本参数如下:
叶片扩压器(2)入口相对位置出口相对位置叶片数Z=13,为叶轮出口宽度,该叶片进口安装角α3A为26°,该叶片出口安装角α4A为29°,所述D2为叶轮直径,D3为叶片扩压器进口位置的直径,D4为叶片扩压器出口位置的直径。
6.根据权利要求1所述的流量系数0.0088轻介质高能头压缩机模型级,其特征在于:所述叶片扩压器(2)进口宽度和叶轮(1)出口宽度的比b3/b2为1,同时叶片扩压器(2)出口宽度和叶片扩压器(2)进口宽度的比b4/b3为1,所述b2为叶轮出口宽度,b3为叶片扩压器进口宽度,b4为叶片扩压器出口宽度。
7.根据权利要求1所述的流量系数0.0088轻介质高能头压缩机模型级,其特征在于:所述弯道(3)的进出口宽度比b5/b4为1.12,所述b5为弯道出口宽度。
8.根据权利要求1所述的流量系数0.0088轻介质高能头压缩机模型级,其特征在于:所述回流器(4)叶片采用全高翼型香蕉叶片,叶片数为Z=24,叶片入口相对位置D5/D2=1.4,入口安装角为21.5°,叶片出口相对位置D6/D2=0.7,出口安装角为95.6°,所述D4为回流器叶片出口位置的直径,D5为回流器叶片入口位置的直径,所述D6为回流器叶片出口位置的直径。
9.一种设计权利要求1-8任一项所述的流量系数0.0088轻介质高能头压缩机模型级设计方法,其特征在于,包括:
步骤10、通过一维热力设计,获得子午流道宽度以及叶轮基本参数,包括叶轮进口安装角β1A、叶轮出口安装角β2A,以及叶轮出口宽度b2;
步骤20、根据叶轮轮毂比ds/D2及给定的叶轮直径确定轮毂直径;
步骤30、通过进口相对速度w1最小的原则计算叶轮进口直径D0
步骤40、根据进出口叶片的Beta角呈线性变化分布而获取叶片初步造型;
步骤50、将所得到的叶轮的流道三维模型进行网格划分,将生成的网格导入CFD分析软件中,采用Spalart-Allmaras湍流模型对该叶轮进行3D粘性流场分析;分析的进口边界条件为总温、总压;分析的出口边界条件为质量流量出口;
步骤60、通过对截取的叶轮流场由轮盘至轮盖方向不同截面的流速矢量图、截取的叶轮子午方向的流速矢量图及截取的叶轮压力面和吸力面的叶片的相对速度图对叶轮流场进行分析,若所得的叶轮流场满足第一设计条件,则认为设计完成;若流场不满足第一设计条件,则针对流场存在的问题进行相应的几何修正,并重复步骤50进行CFD分析,直至所得的叶轮流场满足设计条件;
步骤70、首先对叶片扩压器进行初始设计,根据步骤60中CFD计算所得到的叶轮的出口气流角β2确定叶片扩压器进口安装角α3A,设定叶片扩压器出口安装角α4A,确定叶片扩压器进口宽度b3和出口宽度b4等于叶轮出口宽度b2,并对叶片扩压器进行初步造型,将所得到的模型级流道三维模型进行网格划分,然后导入CFD分析软件,利用步骤60中所得到的叶轮的出口流场情况为初始条件,采用Spalart-Allmaras湍流模型对叶轮和扩压器造型进行3D连续粘性流场分析,对所得到的CFD分析的流场结果进行分析,得到叶片扩压器流道中间在轮盘至轮盖的不同高度截面上的流动速度矢量分布图、得到叶片扩压器子午流道的速度矢量分布图及叶片扩压器出口气流角分布图,并分析是否满足第二设计条件,若不满足,则对叶片扩压器几何参数进行修正,重新进行CFD分析计算;
步骤80、根据叶片扩压器出口气流角,对弯道及回流器叶片进行初始设计,确定回流器进口安装角α5A、出口安装角α6A,回流器进口宽度b5、出口宽度b6、回流器进口位置直径D5及出口位置直径D6,并对回流器进行初步造型,导入CFD分析软件,采用Spalart-Allmaras湍流模型对叶轮、扩压器、弯道及回流器进行3D连续粘性流场分析,根据流场分析结果进行回流器叶片型线的修正,并导入CFD分析软件进行反复迭代,若所得的弯道(3)、回流器(4)流场满足第三设计条件,则设计完成。
10.根据权利要求11所述的方法,其特征在于,所述第二设计条件包括叶片扩压器(2)在轮盘至轮盖的高度方向10%、50%、90%截面上流道中间的流动没有任何流动分离;叶片扩压器(2)的子午流道上没有任何的流动分离;叶片扩压器(2)出口气流角度在25°到40°之间。
CN201711482537.6A 2017-12-29 2017-12-29 流量系数0.0088轻介质高能头压缩机模型级及设计方法 Withdrawn CN108223438A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711482537.6A CN108223438A (zh) 2017-12-29 2017-12-29 流量系数0.0088轻介质高能头压缩机模型级及设计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711482537.6A CN108223438A (zh) 2017-12-29 2017-12-29 流量系数0.0088轻介质高能头压缩机模型级及设计方法

Publications (1)

Publication Number Publication Date
CN108223438A true CN108223438A (zh) 2018-06-29

Family

ID=62647188

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711482537.6A Withdrawn CN108223438A (zh) 2017-12-29 2017-12-29 流量系数0.0088轻介质高能头压缩机模型级及设计方法

Country Status (1)

Country Link
CN (1) CN108223438A (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004246675A (ja) * 2003-02-14 2004-09-02 Ishikawajima Harima Heavy Ind Co Ltd 流体機械の解析システム
CN201090462Y (zh) * 2007-08-15 2008-07-23 沈阳鼓风机(集团)有限公司 一种闭式高能头模型级
CN203500056U (zh) * 2013-10-16 2014-03-26 中国石油集团工程设计有限责任公司 一种闭式大流量高能头模型级
CN104533836A (zh) * 2014-12-26 2015-04-22 沈阳鼓风机集团安装检修配件有限公司 离心压缩机级间加气结构及其设计方法
CN105114327A (zh) * 2015-09-15 2015-12-02 珠海格力电器股份有限公司 多级压缩机及具有其的制冷系统
CN106382253A (zh) * 2016-11-28 2017-02-08 沈阳透平机械股份有限公司 流量系数0.02管线压缩机模型级及叶轮设计方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004246675A (ja) * 2003-02-14 2004-09-02 Ishikawajima Harima Heavy Ind Co Ltd 流体機械の解析システム
CN201090462Y (zh) * 2007-08-15 2008-07-23 沈阳鼓风机(集团)有限公司 一种闭式高能头模型级
CN203500056U (zh) * 2013-10-16 2014-03-26 中国石油集团工程设计有限责任公司 一种闭式大流量高能头模型级
CN104533836A (zh) * 2014-12-26 2015-04-22 沈阳鼓风机集团安装检修配件有限公司 离心压缩机级间加气结构及其设计方法
CN105114327A (zh) * 2015-09-15 2015-12-02 珠海格力电器股份有限公司 多级压缩机及具有其的制冷系统
CN106382253A (zh) * 2016-11-28 2017-02-08 沈阳透平机械股份有限公司 流量系数0.02管线压缩机模型级及叶轮设计方法

Similar Documents

Publication Publication Date Title
CN106499666A (zh) 流量系数0.0242管线压缩机模型级及叶轮设计方法
CN106382253B (zh) 流量系数0.02管线压缩机模型级及叶轮设计方法
CN106640757B (zh) 一种多翼离心风机及其分组设计方法
CN106762815A (zh) 流量系数0.0424管线压缩机模型级及叶轮设计方法
CN106762811A (zh) 流量系数0.0495管线压缩机模型级及叶轮设计方法
CN103195757A (zh) 一种结合附面层抽吸的对转压气机气动设计方法
CN107917099A (zh) 一种离心泵叶轮水力变型设计方法
CN101363450B (zh) 一种多翼式离心风机的叶轮结构
CN106704256A (zh) 流量系数0.0322管线压缩机模型级及叶轮设计方法
CN108561331A (zh) 流量系数0.0264轻介质高能头压缩机模型级及设计方法
CN108223431A (zh) 流量系数0.04轻介质高能头压缩机模型级及设计方法
CN107906050A (zh) 流量系数0.014轻介质高能头压缩机模型级及设计方法
CN107906047A (zh) 流量系数0.0472轻介质高能头压缩机模型级及设计方法
CN109635496B (zh) 设计导叶的方法、装置及导叶
CN108180164A (zh) 流量系数0.0086单轴co2压缩机末段模型级及叶轮设计方法
CN108194412A (zh) 流量系数0.0056单轴co2压缩机末段模型级及叶轮设计方法
CN108223438A (zh) 流量系数0.0088轻介质高能头压缩机模型级及设计方法
CN108229004A (zh) 流量系数0.0248轻介质高能头压缩机模型级及设计方法
CN108150450A (zh) 流量系数0.0186轻介质高能头压缩机模型级及设计方法
CN108223436A (zh) 流量系数0.0169轻介质高能头压缩机模型级及设计方法
CN108223432A (zh) 流量系数0.0097轻介质高能头压缩机模型级及设计方法
CN108194414A (zh) 流量系数0.0328轻介质高能头压缩机模型级及设计方法
CN108194413A (zh) 流量系数0.0205轻介质高能头压缩机模型级及设计方法
CN108180167A (zh) 流量系数0.0366轻介质高能头压缩机模型级及设计方法
CN108223433A (zh) 流量系数0.0083轻介质高能头压缩机模型级及设计方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication

Application publication date: 20180629

WW01 Invention patent application withdrawn after publication