CN108219206A - 一种纳米纤维素掺杂的传感材料的制备方法 - Google Patents

一种纳米纤维素掺杂的传感材料的制备方法 Download PDF

Info

Publication number
CN108219206A
CN108219206A CN201711494704.9A CN201711494704A CN108219206A CN 108219206 A CN108219206 A CN 108219206A CN 201711494704 A CN201711494704 A CN 201711494704A CN 108219206 A CN108219206 A CN 108219206A
Authority
CN
China
Prior art keywords
nano
cellulose
sensing material
preparation
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711494704.9A
Other languages
English (en)
Inventor
不公告发明人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou Nell Mstar Technology Ltd
Original Assignee
Suzhou Nell Mstar Technology Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou Nell Mstar Technology Ltd filed Critical Suzhou Nell Mstar Technology Ltd
Priority to CN201711494704.9A priority Critical patent/CN108219206A/zh
Publication of CN108219206A publication Critical patent/CN108219206A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells

Abstract

本发明公开了一种纳米纤维素掺杂的传感材料的制备方法,本发明将纳米纤维素与Fe1.833(OH)0.5O2.5结合,有助于改善Fe1.833(OH)0.5O2.5的表面形态,获得高比表面积,进而调控其表面活性空位,提高响应率;该方法制备工艺避免了繁琐的多元材料合成步骤,只要通过简单的离心洗涤、过滤等常规操作,工艺简单,绿色环保。

Description

一种纳米纤维素掺杂的传感材料的制备方法
技术领域
本发明涉及传感器制造领域,具体涉及一种纳米纤维素掺杂的传感材料的制备方法。
背景技术
亚硝酸盐广泛存在于人类环境中,是自然界中最普遍的含氮化合物,绿色植物的氮源,食品工业中常作为食物添加剂和防腐剂。饮用水中亚硝酸盐的污染可以导致很多疾病如高铁血红蛋白症、蓝婴综合症还有胃癌等,这些疾病都是由亚硝酸盐和胺类物质反应所生成的亚硝胺造成的。由于亚硝酸盐对环境和人类健康的有害影响,因此对于亚硝酸盐灵敏的检测已经引起了高度的重视。
迄今为止,基于氧化铈(NiO),氧化钴(Co3O4),氧化亚铜(Cu2O),氧化锌(ZnO),二氧化锰(MnO2)和钴酸镍(NiCo2O4)等过渡金属氧化物为修饰电极的敏感材料已经在传感器领域进行了一定的研究。
碳纳米结构(包括富勒烯、碳纳米管和石墨烯等)在电化学检测方面已经拥有大量的应用。因为这些材料拥有高电导率、宽电位窗、在大多数电解质中拥有良好的化学稳定性以及表面易再生的优点。在碳材料中,石墨烯(Graphene),作为新型的二维纳米材料,为寻求理想的纳米结构提供了重要的渠道。石墨烯和其他组分的协同作用可以赋予材料新的特性使得材料针对不同需求具有不同的潜在的应用,例如金属-金属氧化物纳米粒子、聚合物以及生物分子等二元催化体系。
多孔中空球结构与其它纳米结构相比,在相同体积下具有更大的比表面积和更多的扩散通道,从而拥有更高的敏感性和快速响应能力。另外,从分子筛和多孔膜的研究经验表明,当孔的直径处于某一范围时,可以对亚硝酸盐分子起到动力学筛分的作用,运动直径大的分子通过率要比小分子通过率要低。
发明内容
本发明提供一种纳米纤维素掺杂的传感材料的制备方法,本发明将纳米纤维素与Fe1.833(OH)0.5O2.5结合,有助于改善Fe1.833(OH)0.5O2.5的表面形态,获得高比表面积,进而调控其表面活性空位,提高响应率;该方法制备工艺避免了繁琐的多元材料合成步骤,只要通过简单的离心洗涤、过滤等常规操作,工艺简单,绿色环保。
为了实现上述目的,本发明提供了一种纳米纤维素掺杂的传感材料的制备方法,该方法包括如下步骤:
(1)制备纳米纤维素悬混液
将纳米纤维素加入去离子水中,再加入分散剂,分散剂是二甲基亚砜(DMSO)、二甲基甲酰胺(DMF)、二甲基乙酰胺(DMAC)中的一种;
分散的方法为磁力搅拌器进行搅拌,搅拌时间为50-80min,得到的悬混液中纳米纤维素的质量分数3-6%;
(2)加入PDDA到所述悬浮液中搅拌均匀,继续加入FeCl2·4H2O搅拌均匀,所述纳米纤维素和PDDA的比为1:5-1:7 mg/μl;所述纳米纤维素和FeCl2·4H2O的质量比为1:2-2:1;
将得到的混合物与NH3·H2O混合后立即进行水热反应,其中,所述纳米纤维素和NH3·H2O的比为1:2 -1:3 mg/μl;反应温度为180- 200℃;
洗涤、干燥后即得到所述的传感材料。
优选的,纳米纤维素的直径和长度为50nm,所述分散剂与纳米纤维素的质量比为1:(5-7)。
具体实施方式
实施例一
将纳米纤维素加入去离子水中,再加入分散剂,分散剂是二甲基亚砜(DMSO);纳米纤维素的直径和长度为50nm,所述分散剂与纳米纤维素的质量比为1:5。
分散的方法为磁力搅拌器进行搅拌,搅拌时间为50min,得到的悬混液中纳米纤维素的质量分数3%。加入PDDA到所述悬浮液中搅拌均匀,继续加入FeCl2·4H2O搅拌均匀,所述纳米纤维素和PDDA的比为1:5 mg/μl;所述纳米纤维素和FeCl2·4H2O的质量比为1:2。
将得到的混合物与NH3·H2O混合后立即进行水热反应,其中,所述纳米纤维素和NH3·H2O的比为1:2 mg/μl;反应温度为180℃;洗涤、干燥后即得到所述的传感材料。
实施例二
将纳米纤维素加入去离子水中,再加入分散剂,分散剂是二甲基乙酰胺(DMAC);纳米纤维素的直径和长度为50nm,所述分散剂与纳米纤维素的质量比为1:7。
分散的方法为磁力搅拌器进行搅拌,搅拌时间为80min,得到的悬混液中纳米纤维素的质量分数6%。加入PDDA到所述悬浮液中搅拌均匀,继续加入FeCl2·4H2O搅拌均匀,所述纳米纤维素和PDDA的比为1:7 mg/μl;所述纳米纤维素和FeCl2·4H2O的质量比为2:1。
将得到的混合物与NH3·H2O混合后立即进行水热反应,其中,所述纳米纤维素和NH3·H2O的比为1:3 mg/μl;反应温度为200℃;洗涤、干燥后即得到所述的传感材料。
最后应说明的是:以上所述仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (2)

1.一种纳米纤维素掺杂的传感材料的制备方法,该方法包括如下步骤:
(1)制备纳米纤维素悬混液
将纳米纤维素加入去离子水中,再加入分散剂,分散剂是二甲基亚砜(DMSO)、二甲基甲酰胺(DMF)、二甲基乙酰胺(DMAC)中的一种;
分散的方法为磁力搅拌器进行搅拌,搅拌时间为50-80min,得到的悬混液中纳米纤维素的质量分数3-6%;
(2)加入PDDA到所述悬浮液中搅拌均匀,继续加入FeCl2·4H2O搅拌均匀,所述纳米纤维素和PDDA的比为1:5-1:7 mg/μl;所述纳米纤维素和FeCl2·4H2O的质量比为1:2-2:1;
将得到的混合物与NH3·H2O混合后立即进行水热反应,其中,所述纳米纤维素和NH3·H2O的比为1:2 -1:3 mg/μl;反应温度为180- 200℃;
洗涤、干燥后即得到所述的传感材料。
2.如权利要求1所述的方法,其特征在于,纳米纤维素的直径和长度为50nm,所述分散剂与纳米纤维素的质量比为1:(5-7)。
CN201711494704.9A 2017-12-31 2017-12-31 一种纳米纤维素掺杂的传感材料的制备方法 Pending CN108219206A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711494704.9A CN108219206A (zh) 2017-12-31 2017-12-31 一种纳米纤维素掺杂的传感材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711494704.9A CN108219206A (zh) 2017-12-31 2017-12-31 一种纳米纤维素掺杂的传感材料的制备方法

Publications (1)

Publication Number Publication Date
CN108219206A true CN108219206A (zh) 2018-06-29

Family

ID=62642139

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711494704.9A Pending CN108219206A (zh) 2017-12-31 2017-12-31 一种纳米纤维素掺杂的传感材料的制备方法

Country Status (1)

Country Link
CN (1) CN108219206A (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106496642A (zh) * 2016-11-10 2017-03-15 南京林业大学 乙酰化纳米纤维素基磁性吸油气凝胶的制备方法
CN106496639A (zh) * 2016-09-18 2017-03-15 南京林业大学 一种纳米纤维素‑聚吡咯‑聚乙烯醇复合导电水凝胶及其制备方法和应用
CN106587173A (zh) * 2016-12-08 2017-04-26 上海纳米技术及应用国家工程研究中心有限公司 一种用于甲醛选择性吸附的微孔中空氧化镍气敏传感材料和器件及制备和应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106496639A (zh) * 2016-09-18 2017-03-15 南京林业大学 一种纳米纤维素‑聚吡咯‑聚乙烯醇复合导电水凝胶及其制备方法和应用
CN106496642A (zh) * 2016-11-10 2017-03-15 南京林业大学 乙酰化纳米纤维素基磁性吸油气凝胶的制备方法
CN106587173A (zh) * 2016-12-08 2017-04-26 上海纳米技术及应用国家工程研究中心有限公司 一种用于甲醛选择性吸附的微孔中空氧化镍气敏传感材料和器件及制备和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
刘茂祥: "以廉价铁氧化合物为催化核心的三维石墨烯基亚硝酸盐电化学传感材料研究", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》 *

Similar Documents

Publication Publication Date Title
Zandipak et al. Synthesis of NiFe2O4 nanoparticles for removal of anionic dyes from aqueous solution
Upadhyay et al. Antibacterial and hemolysis activity of polypyrrole nanotubes decorated with silver nanoparticles by an in-situ reduction process
Salam et al. Preparation and characterization of magnetic multi-walled carbon nanotubes/ferrite nanocomposite and its application for the removal of aniline from aqueous solution
Zheng et al. Preparation of flower-like NiMnO3 as oxidase mimetics for colorimetric detection of hydroquinone
Ji et al. ZnO/Ag nanoparticles incorporated multifunctional parallel side by side nanofibers for air filtration with enhanced removing organic contaminants and antibacterial properties
Kesavan et al. Influence of crystalline, structural, and electrochemical properties of iron vanadate nanostructures on flutamide detection
CN108760851B (zh) 一种CuS/GO/MWCNTs复合纳米粒子修饰电极用于过氧化氢的电化学检测的应用
Akharame et al. Polymeric nanocomposites (PNCs) for wastewater remediation: an overview
Alagumalai et al. One-pot engineering of novel cashew like cobalt tungstate; dynamic electrocatalyst for the selective detection of promethazine hydrochloride
Ambaye et al. Screen-printed electrode system based on carbon black/copper-organic framework hybrid nanocomposites for the electrochemical detection of nitrite
Vrabelj et al. Recent progress in non-enzymatic electroanalytical detection of pesticides based on the use of functional nanomaterials as electrode modifiers
Zou et al. Construction of a highly sensitive signal electrochemical sensor based on self-assembled cobalt oxide-hydroxylated single-walled carbon nanotubes composite for detection of dopamine in bovine serum samples
Lu et al. Multivariate nanocomposites for electrochemical sensing in the application of food
Hosseinzadeh et al. Hollow molecularly imprinted microspheres made by w/o/w double Pickering emulsion polymerization stabilized by graphene oxide quantum dots targeted for determination of l-cysteine concentration
CN108219206A (zh) 一种纳米纤维素掺杂的传感材料的制备方法
KR20170020121A (ko) 나노입자가 분산된 에멀전 용액으로부터 기능화된 촉매를 포함하는 다공성 금속산화물 복합체 나노섬유 및 이를 이용한 가스 센서 및 그 제조 방법
Devi et al. 3D-nanocubes of N-doped carbon quantum dots adorned manganese oxide: A functional electrocatalyst for the sensitive detection of sulfadiazine
Wang et al. Detection of Cu2+ metals by luminescent sensor based on sulfonated poly (arylene ether nitrile)/metal-organic frameworks
Adekunle et al. Determination of humic acid (HA) and sodium alginate in water using Fe2O3 and CuO nanoparticle-modified glassy carbon electrode
Vinothkumar et al. Construction of Sr@ Mn 3 O 4/GO nanocomposite: a synergistic electrocatalyst for nitrofurantoin detection in biological and environmental samples
Tian et al. ZIF-8/ZIF-67 solid electrolyte ozone sensor at room temperature
Nasr-Esfahani et al. Noble metals and nonnoble metal oxides based electrochemical sensors
Olifant et al. Application of candle soot CNPs-TiO2-PVP composite in the detection of volatile organic compounds with aldehyde, amine and ketone functional groups by resistance and impedance responses
CN101503187A (zh) 表面化学基团修饰的碳纳米管化合物及其应用
Sasikumar et al. Facile synthesis of Mn2O3 for highly active catalytic oxidation and reduction of organic substances and electrochemical determination of L-methionine

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20180629

RJ01 Rejection of invention patent application after publication