CN108202878B - 钝头体外形飞行器气动测量引压孔布局设计与优化方法 - Google Patents

钝头体外形飞行器气动测量引压孔布局设计与优化方法 Download PDF

Info

Publication number
CN108202878B
CN108202878B CN201611182413.1A CN201611182413A CN108202878B CN 108202878 B CN108202878 B CN 108202878B CN 201611182413 A CN201611182413 A CN 201611182413A CN 108202878 B CN108202878 B CN 108202878B
Authority
CN
China
Prior art keywords
pressure
measurement
aerodynamic
aircraft
layout
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201611182413.1A
Other languages
English (en)
Other versions
CN108202878A (zh
Inventor
黄震
侯砚泽
左光
郭斌
李宪强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Space Technology Research and Test Center
Original Assignee
Beijing Space Technology Research and Test Center
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Space Technology Research and Test Center filed Critical Beijing Space Technology Research and Test Center
Priority to CN201611182413.1A priority Critical patent/CN108202878B/zh
Publication of CN108202878A publication Critical patent/CN108202878A/zh
Application granted granted Critical
Publication of CN108202878B publication Critical patent/CN108202878B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64FGROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
    • B64F5/00Designing, manufacturing, assembling, cleaning, maintaining or repairing aircraft, not otherwise provided for; Handling, transporting, testing or inspecting aircraft components, not otherwise provided for

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Transportation (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)

Abstract

本发明提供一种钝头体外形飞行器气动测量引压孔布局设计与优化方法,该方法包括以下步骤:进行钝头体外形飞行器气动测量引压孔的布局模式分析与选择;进行钝头体外形飞行器气动测量引压孔的位置优化与确定;进行钝头体外形飞行器气动测量引压孔的数量优化与确定。本发明通过在引压孔布局模式、引压孔冗余配置方面对气动热的考虑,实现了引压孔布局对进/再入气动热的适应,确保了飞行测试可靠性,适用于近地轨道、深空探测进/再入飞行过程中的气动测量任务。

Description

钝头体外形飞行器气动测量引压孔布局设计与优化方法
技术领域
本发明涉及飞行器气动参数辨识技术,具体涉及一种钝头体外形飞行器气动力测量引压孔布局设计与优化方法,属于航天器气动与导航测量设计技术领域。
背景技术
飞行器气动参数测量是验证飞行器气动外形设计的关键工作,国内外航空器和航天器多在飞行试验中进行了气动测量工作,如战斗机试飞验证、航天飞机和返回舱再入返回的气动参数辨识等,都包含气动参数测量工作。
气动参数测量的基本思路是通过器载传感器敏感飞行器所受的力,结合飞行器前端若干引压孔压力测量数据表征的外界流场环境,辨识飞行器动压、攻角和侧滑角等气流角,进而精确解算气动力参数。由此可见,合理布置飞行器前端的引压孔布局以全面精确敏感飞行器所在流场,是气动力高精度测量的关键。
发明内容
本发明的目的是提供一种钝头体外形飞行器气动测量引压孔布局设计与优化方法,满足行星际进/再入和近地轨道再入气动测量需求。
本发明所采取的技术方案如下:
一种钝头体外形飞行器气动测量引压孔布局设计与优化方法,包括以下步骤:进行钝头体外形飞行器气动测量引压孔的布局模式分析与选择;进行所述钝头体外形飞行器气动测量引压孔的位置优化与确定;进行所述钝头体外形飞行器气动测量引压孔的数量优化与确定。
对于上述钝头体外形飞行器气动测量引压孔布局设计与优化方法,在所述引压孔布局模式分析与选择步骤中,若所述钝头体外形再入飞行器迎风面不同区域的压力分布存在多峰现象,则采用圆周布局,在所述飞行器钝头表面沿圆周方向布置多个测点,以全面获取压力分布信息;若所述飞行器外表面流场分布特性均匀变化,迎风面不同区域压力分布单调变化,则根据外表面压力分布梯度,采用十字布局或丁字布局。
对于上述钝头体外形飞行器气动测量引压孔布局设计与优化方法,其中,所述引压孔的位置优化与确定通过以下两种方式完成:(1)通过数值模拟首先确定压力敏感位置,所述引压孔位置选在所述压力敏感位置,而后,经风洞试验确认数值模拟确定的所述引压孔位置,并根据风洞试验的结果优化调整具体布局位置;(2)采用优化算法分析、评估并确认所述引压孔位置。
对于上述钝头体外形飞行器气动测量引压孔布局设计与优化方法,在采用所述优化算法的方式中,利用敏感度矩阵来量化特定位置引压孔对于攻角α、侧滑角β、冲压qc的测量敏感程度,选择敏感程度满足要求的位置布置所述引压孔。
对于上述钝头体外形飞行器气动测量引压孔布局设计与优化方法,在所述引压孔的数量优化与确定步骤中,所述引压孔数量的确定,基于测量的角度,针对攻角、侧滑角、动压测量影响敏感度、气动热导致引压孔堵塞概率对所述引压孔进行冗余配置,并结合气动测量算法进行确认与风洞试验,获得最终引压孔布局。
本发明适用于近地轨道、深空探测进/再入飞行过程中的气动测量任务。
本发明的有益效果是:通过在引压孔布局模式、引压孔冗余配置方面对气动热的考虑,实现了引压孔布局对进/再入气动热的适应,确保了飞行测试可靠性。
附图说明
图1是钝头体外形飞行器气动测量引压孔布局设计与优化流程示意图;
图2是钝头体外形飞行器气动测量引压孔布局模式示意图。
具体实施方式
下面结合附图详细描述本发明的具体实施方式。
图1是钝头体外形飞行器气动测量引压孔布局设计与优化流程示意图。如图1所示,钝头体外形飞行器气动测量引压孔布局设计与优化方法,包括进行钝头体外形飞行器气动测量引压孔布局模式分析与选择、进行引压孔位置优化与确定、进行引压孔数量优化与确定三个步骤,其中第二步和第三步存在迭代设计关系。
各步骤具体设计与优化方法如下:
步骤一、进行钝头体外形飞行器气动测量引压孔的布局模式分析与选择
引压孔布局模式由飞行器再入过程中的流场环境决定。对于钝头体外形再入飞行器,如果飞行器外表面流场分布特性复杂,迎风面不同区域的压力分布存在多峰现象(沿迎风母线压力水平非单调变化),宜采用圆周布局,在飞行器钝头表面布置沿圆周方向布置多个测点,以全面获取压力分布信息,如图2中的a所示;如果飞行器外表面流场分布特性均匀变化,迎风面不同区域压力分布单调变化,可以根据外表面压力分布梯度,采用十字布局或丁字布局,在压力、热流梯度变化大敏感的区域布置较多的引压孔,如图2中的b和图2中的c所示。
步骤二、进行钝头体外形飞行器气动测量引压孔的位置优化与确定
在确定引压孔布局模式后,引压孔位置优化与确定可以通过两种方式完成。
一是通过数值模拟首先确定压力敏感位置,引压孔位置选在压力敏感位置,引压孔位置压力幅值大或压力梯度变化大,而后,经风洞试验确认数值模拟确定的引压孔位置,并可根据风洞试验的结果优化调整具体布局位置。
二是采用优化算法,分析、评估并确认引压孔位置选择,算法基本思路如下。
Figure GDA0003179294960000031
表示飞行器第i个引压孔压力输出与气动状态矢量的函数,第i个引压孔的测量压力值可以表示为
Figure GDA0003179294960000032
其中,
Figure GDA0003179294960000033
是待辨识向量,qc是冲压,p是静压,εi是压力测量误差,θi是压力测压孔处表面法线与速度矢量之间的夹角,其为引压孔位置、攻角α和侧滑角β的函数,计算方式如下:
Figure GDA0003179294960000034
其中,λi是引压孔位置圆锥角,
Figure GDA0003179294960000035
是引压孔位置圆周角。
在t时刻,n个引压孔的测量输出形成,定义下述矢量
Figure GDA0003179294960000036
则压力测量矢量
Figure GDA0003179294960000037
和状态方程矢量
Figure GDA0003179294960000038
的关系可由如下方程给出
Figure GDA0003179294960000039
上式近似为
Figure GDA00031792949600000310
其中,
Figure GDA00031792949600000311
为测量时刻的状态矢量预测值,
Figure GDA00031792949600000312
为增量,即
Figure GDA00031792949600000313
为便于表述,定义n×2维的敏感度矩阵H(由矢量函数
Figure GDA00031792949600000314
微分得到)
Figure GDA0003179294960000041
上式中,敏感度矩阵H即可用来量化特定位置引压孔对于攻角α、侧滑角β、冲压qc的测量敏感程度。选择敏感程度满足要求的位置布置引压孔。理论上,在敏感程度越高的位置布置引压孔,越有利于相应变量的测量与后续数据辨识。因此,可基于该原理完成引压孔位置的优化与确定。
步骤三、进行钝头体外形飞行器气动测量引压孔的数量优化与确定
增加再入飞行器外表面的引压孔数量有利于攻角、侧滑角和动压测量精度的提升,但是配置引压孔数量增加到一定程度后,对气流角和动压测量精度提升的效果有限,存在明显的边际递减效应。因此,引压孔数量的确定,往往基于可靠测量的角度,针对攻角、侧滑角、动压测量影响敏感度、气动热导致引压孔堵塞概率对引压孔进行冗余配置,并结合气动测量算法进行确认与风洞试验,获得最终引压孔布局。
本发明给出了钝头体外形飞行器引压孔布局设计与优化流程,并明确了各设计优化步骤的具体方法。
本发明适用于行星际进/再入和近地轨道再入飞行器的气动测量任务。
本发明中未说明部分属于本领域的公知技术。
以上结合附图对本发明的实施方式作了详细说明,但本发明不局限于所描述的实施方式。对于本领域的技术人员而言,在不脱离本发明的原理和精神的情况下对实施方式进行的变化、修改、替换和变型仍落入本发明的保护范围内。

Claims (2)

1.一种钝头体外形飞行器气动测量引压孔布局设计与优化方法,其特征在于,包括以下步骤:
进行钝头体外形飞行器气动测量引压孔的布局模式分析与选择;
进行所述钝头体外形飞行器气动测量引压孔的位置优化与确定;
进行所述钝头体外形飞行器气动测量引压孔的数量优化与确定;
其中,在所述引压孔的布局模式分析与选择步骤中,若所述钝头体外形飞行器迎风面不同区域的压力分布存在多峰现象,则采用圆周布局,在所述飞行器钝头表面沿圆周方向布置多个测点,以全面获取压力分布信息;若所述飞行器外表面流场分布特性均匀变化,迎风面不同区域压力分布单调变化,则根据外表面压力分布梯度,采用十字布局或丁字布局;
其中,所述引压孔的位置优化与确定通过以下两种方式完成:
(1)通过数值模拟首先确定压力敏感位置,所述引压孔的位置选在所述压力敏感位置,而后,经风洞试验确认数值模拟确定的所述引压孔的位置,并根据风洞试验的结果优化调整具体布局位置;
(2)采用优化算法分析、评估并确认所述引压孔的位置;
其中,在采用所述优化算法的方式中,利用敏感度矩阵来量化特定位置引压孔对于攻角α、侧滑角β、冲压qc的测量敏感程度,选择敏感程度满足要求的位置布置所述引压孔,
通过以下算法获得分析、评估并确认引压孔的位置选择:
Figure FDA0003211171130000011
表示飞行器第i个引压孔压力输出与气动状态矢量的函数,第i个引压孔的测量压力值表示为
Figure FDA0003211171130000012
其中,
Figure FDA0003211171130000013
是待辨识向量,qc是冲压,p是静压,εi是压力测量误差,θi是压力测压孔处表面法线与速度矢量之间的夹角,其为引压孔的位置、攻角α和侧滑角β的函数,计算方式如下:
Figure FDA0003211171130000014
其中,λi是引压孔的位置圆锥角,
Figure FDA0003211171130000015
是引压孔的位置圆周角;
在t时刻,n个引压孔的测量输出形成,定义下述矢量
Figure FDA0003211171130000021
则压力测量矢量
Figure FDA0003211171130000022
和状态方程矢量
Figure FDA0003211171130000023
的关系由如下方程给出
Figure FDA0003211171130000024
上式近似为
Figure FDA0003211171130000025
其中,
Figure FDA0003211171130000026
为测量时刻的状态矢量预测值,
Figure FDA0003211171130000027
为增量,即
Figure FDA0003211171130000028
为便于表述,定义n×2维的敏感度矩阵H,
Figure FDA0003211171130000029
上式中,敏感度矩阵H用来量化特定位置引压孔对于攻角α、侧滑角β、冲压qc的测量敏感程度。
2.根据权利要求1所述的钝头体外形飞行器气动测量引压孔布局设计与优化方法,其特征在于,在所述引压孔的数量优化与确定步骤中,所述引压孔数量的确定,基于测量的角度,针对攻角α、侧滑角β、冲压qc的测量敏感程度、气动热导致引压孔堵塞概率对所述引压孔进行冗余配置,并结合气动测量算法进行确认与风洞试验,获得最终引压孔布局。
CN201611182413.1A 2016-12-20 2016-12-20 钝头体外形飞行器气动测量引压孔布局设计与优化方法 Active CN108202878B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611182413.1A CN108202878B (zh) 2016-12-20 2016-12-20 钝头体外形飞行器气动测量引压孔布局设计与优化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611182413.1A CN108202878B (zh) 2016-12-20 2016-12-20 钝头体外形飞行器气动测量引压孔布局设计与优化方法

Publications (2)

Publication Number Publication Date
CN108202878A CN108202878A (zh) 2018-06-26
CN108202878B true CN108202878B (zh) 2021-10-15

Family

ID=62601979

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611182413.1A Active CN108202878B (zh) 2016-12-20 2016-12-20 钝头体外形飞行器气动测量引压孔布局设计与优化方法

Country Status (1)

Country Link
CN (1) CN108202878B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110231138B (zh) * 2019-06-06 2024-03-19 南京大学 一种风洞试验装置及使用方法
CN110697070B (zh) * 2019-10-17 2021-12-07 北京航天长征飞行器研究所 一种面对称布局飞行器研制的升力体标准模型设计方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201063193Y (zh) * 2007-08-07 2008-05-21 南京理工大学 风洞试验无线测压装置
CN201688962U (zh) * 2010-03-29 2010-12-29 南京航空航天大学 可在同一模型上进行测量的进气道实验装置
CN103048110A (zh) * 2012-12-14 2013-04-17 中国航空工业集团公司沈阳空气动力研究所 一种实现推力转向实验装置及其实验技术
CN203921184U (zh) * 2014-04-29 2014-11-05 成都飞机设计研究所 一种高超声速飞行器头锥
CN104155473A (zh) * 2014-08-12 2014-11-19 南京航空航天大学 风速风向传感装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201063193Y (zh) * 2007-08-07 2008-05-21 南京理工大学 风洞试验无线测压装置
CN201688962U (zh) * 2010-03-29 2010-12-29 南京航空航天大学 可在同一模型上进行测量的进气道实验装置
CN103048110A (zh) * 2012-12-14 2013-04-17 中国航空工业集团公司沈阳空气动力研究所 一种实现推力转向实验装置及其实验技术
CN203921184U (zh) * 2014-04-29 2014-11-05 成都飞机设计研究所 一种高超声速飞行器头锥
CN104155473A (zh) * 2014-08-12 2014-11-19 南京航空航天大学 风速风向传感装置

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
FADS压力传感器冗余配置研究;李清东;《计算机仿真》;20081130;第25卷(第11期);48-52 *
孟博.跨音速/高超音速大气数据测量技术研究.《中国优秀硕士学位论文全文数据库》.2011,(第11期), *
嵌入式大气数据传感系统故障检测与处理算法研究;赵磊;《中国优秀硕士学位论文全文数据库》;20120731;1-78 *
跨音速/高超音速大气数据测量技术研究;孟博;《中国优秀硕士学位论文全文数据库》;20111130(第11期);1-91 *

Also Published As

Publication number Publication date
CN108202878A (zh) 2018-06-26

Similar Documents

Publication Publication Date Title
CN104318107B (zh) 一种跨大气层飞行飞行器的高精度大气数据获取方法
EP3181452B1 (en) System and method for aircraft ice detection within a zone of non-detection
US8833153B2 (en) Correction of pressure signals measured during supersonic wind tunnel testing
CN101321667A (zh) 用于重构飞行器、尤其是客机上的阵风和结构载荷的方法
CN104061960A (zh) 一种亚音速飞行器体上气压高度参数确定方法
CN108202878B (zh) 钝头体外形飞行器气动测量引压孔布局设计与优化方法
EP2893360B1 (en) Method of and system for calculation and consolidation of flight parameters of an aircraft
CN104571087B (zh) 一种噪声影响下航天器控制系统可诊断性确定方法
CN105373647A (zh) 一种通过地面滑跑试验辨识气动焦点的方法
EP2950071A1 (en) Aerodynamic pressure sensing system for an airfoil-shaped body
CN112697340A (zh) 一种固定翼飞机大气数据系统及其故障检测方法
Crowther et al. A neural network approach to the calibration of a flush air data system
CN104316052B (zh) 一种基于正交旋转的九陀螺mems惯性测量装置
Bennett et al. CFD simulation of flow around angle of attack and sideslip angle vanes on a BAe Jetstream 3102–Part 1
Zixuan et al. Predictive reentry guidance with aerodynamic parameter online correction
CN112818464B (zh) 动态环境参量对飞行器气动热影响敏感性分析方法
Jiang et al. FADS based aerodynamic parameters estimation for mars entry considering fault detection and tolerance
Frey et al. Wind Tunnel Measurement of the Urban Wind Field for Flight Path Planning of Unmanned Aerial Vehicles
CN104794323B (zh) 一种基于多模型的火星大气进入容中断估计方法
Hurwitz et al. Aerodynamic State Determination Using Multi-Port Pitot Probes with Arbitrary Port Locations
Kim et al. Practical Applications of a Building Method to Construct Aerodynamic Database of Guided Missile Using Wind Tunnel Test Data
Boone et al. The development of a wall pressure measurement system for two NASA Ames wind tunnels
CN106477071B (zh) 一种飞行器fads系统的故障判别与滤波处理方法
Bai A new wind tunnel setup and evaluation of flow characteristics with/without passive devices
CN102938002B (zh) 基于可调参数最大信息量准则的飞行器建模方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant