CN108198913B - A kind of growing method of LED epitaxial slice - Google Patents

A kind of growing method of LED epitaxial slice Download PDF

Info

Publication number
CN108198913B
CN108198913B CN201711240279.0A CN201711240279A CN108198913B CN 108198913 B CN108198913 B CN 108198913B CN 201711240279 A CN201711240279 A CN 201711240279A CN 108198913 B CN108198913 B CN 108198913B
Authority
CN
China
Prior art keywords
gallium nitride
layer
growth
nitride layer
layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711240279.0A
Other languages
Chinese (zh)
Other versions
CN108198913A (en
Inventor
从颖
姚振
胡加辉
李鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Boe Huacan Optoelectronics Suzhou Co ltd
Original Assignee
HC Semitek Suzhou Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HC Semitek Suzhou Co Ltd filed Critical HC Semitek Suzhou Co Ltd
Priority to CN201711240279.0A priority Critical patent/CN108198913B/en
Publication of CN108198913A publication Critical patent/CN108198913A/en
Application granted granted Critical
Publication of CN108198913B publication Critical patent/CN108198913B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/01Manufacture or treatment
    • H10H20/011Manufacture or treatment of bodies, e.g. forming semiconductor layers
    • H10H20/013Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials
    • H10H20/0133Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials with a substrate not being Group III-V materials
    • H10H20/01335Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials with a substrate not being Group III-V materials the light-emitting regions comprising nitride materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/81Bodies
    • H10H20/815Bodies having stress relaxation structures, e.g. buffer layers

Landscapes

  • Led Devices (AREA)

Abstract

The invention discloses a kind of growing methods of LED epitaxial slice, belong to technical field of semiconductors.It include: that a substrate is provided;Successively grown buffer layer, undoped gallium nitride layer, n type semiconductor layer, multiple quantum well layer and p type semiconductor layer over the substrate;Wherein, the buffer layer includes (n+1) a first gallium nitride layer and n the second gallium nitride layers of alternating growth, n >=2 and n is integer;The growth temperature of each second gallium nitride layer is higher than the growth temperature of respectively adjacent first gallium nitride layer, the growth rate of each second gallium nitride layer is faster than the growth rate of respectively adjacent first gallium nitride layer, and the thickness of each second gallium nitride layer is less than the thickness of respectively adjacent first gallium nitride layer.The present invention greatly improves the crystal quality of buffer layer entirety using higher compared with the second gallium nitride layer crystal quality of Seedling height temperature, reduces defect generation, improves the luminous efficiency and antistatic effect of light emitting diode.

Description

一种发光二极管外延片的生长方法A method for growing light-emitting diode epitaxial wafers

技术领域technical field

本发明涉及半导体技术领域,特别涉及一种发光二极管外延片的生长方法。The invention relates to the technical field of semiconductors, in particular to a method for growing a light-emitting diode epitaxial wafer.

背景技术Background technique

发光二极管(英文:Light Emitting Diode,简称:LED)是一种能发光的半导体电子元件,具有高效、环保、绿色的特点,广泛应用在交通信号灯、汽车内外灯、城市景观照明、手机背光源等技术领域。芯片是LED的核心组件,包括外延片和设置在外延片上的电极。Light Emitting Diode (English: Light Emitting Diode, referred to as: LED) is a semiconductor electronic component that can emit light. It has the characteristics of high efficiency, environmental protection and green. technology field. The chip is the core component of the LED, including epitaxial wafers and electrodes arranged on the epitaxial wafers.

现有LED外延片包括衬底以及依次层叠在衬底上的缓冲(英文:buffer)层、未掺杂氮化镓层、N型半导体层、多量子阱(英文:Multiple Quantum Well,简称:MQW)层和P型半导体层。其中,多量子阱层包括多个量子阱和多个量子垒,多个量子阱和多个量子垒交替层叠设置。N型半导体层提供的电子和P型半导体层提供的空穴注入多量子阱层后,被量子垒限定在量子阱中进行辐射复合发光。The existing LED epitaxial wafer includes a substrate and a buffer (English: buffer) layer stacked on the substrate in sequence, an undoped gallium nitride layer, an N-type semiconductor layer, and a multiple quantum well (English: Multiple Quantum Well, referred to as: MQW ) layer and P-type semiconductor layer. Wherein, the multi-quantum well layer includes multiple quantum wells and multiple quantum barriers, and the multiple quantum wells and multiple quantum barriers are alternately stacked. After the electrons provided by the N-type semiconductor layer and the holes provided by the P-type semiconductor layer are injected into the multi-quantum well layer, they are confined in the quantum well by the quantum barrier to perform radiative recombination and light emission.

缓冲层通常为在500℃~600℃低温下生长的氮化镓层,以利用低温进行成核;而未掺杂氮化镓层为在1000℃~1100℃高温下生长的氮化镓层,以在成核的基础上利用高温形成生长质量较好的晶体,为N型半导体层、多量子阱层和P型半导体层提供良好的生长基础。The buffer layer is usually a gallium nitride layer grown at a low temperature of 500°C to 600°C to utilize low temperature for nucleation; while the undoped gallium nitride layer is a gallium nitride layer grown at a high temperature of 1000°C to 1100°C. On the basis of nucleation, high temperature is used to form crystals with better growth quality, which provides a good growth basis for N-type semiconductor layers, multi-quantum well layers and P-type semiconductor layers.

在实现本发明的过程中,发明人发现现有技术至少存在以下问题:In the process of realizing the present invention, the inventor finds that there are at least the following problems in the prior art:

低温下生长的缓冲层晶体质量很差,会产生很多缺陷,这些缺陷会随着外延片的生长而不断延伸。高温虽然有利于形成晶体质量较好的未掺杂氮化镓层,避免未掺杂氮化镓层产生新的缺陷,但是未掺杂氮化镓层对缓冲层已经产生的缺陷并不能起到有效的阻挡作用,缺陷会延伸到N型半导体层、多量子阱层和P型半导体层,导致非辐射复合发光的发生,严重影响发光二极管的发光效率和抗静电能力。The crystal quality of the buffer layer grown at low temperature is very poor, and many defects will be generated, and these defects will continue to extend as the epitaxial wafer grows. Although high temperature is conducive to the formation of an undoped GaN layer with better crystal quality and avoids new defects in the undoped GaN layer, the undoped GaN layer does not play a role in the defects already generated in the buffer layer. Effective blocking effect, the defect will extend to the N-type semiconductor layer, the multi-quantum well layer and the P-type semiconductor layer, resulting in the occurrence of non-radiative recombination luminescence, which seriously affects the luminous efficiency and antistatic ability of the light-emitting diode.

发明内容SUMMARY OF THE INVENTION

为了解决现有技术严重影响发光二极管的发光效率和抗静电能力的问题,本发明实施例提供了一种发光二极管外延片的生长方法。所述技术方案如下:In order to solve the problems in the prior art that seriously affect the luminous efficiency and antistatic ability of light emitting diodes, an embodiment of the present invention provides a method for growing epitaxial wafers of light emitting diodes. Described technical scheme is as follows:

本发明实施例提供了一种发光二极管外延片的生长方法,所述生长方法包括:An embodiment of the present invention provides a method for growing a light-emitting diode epitaxial wafer. The growth method includes:

提供一衬底;providing a substrate;

在所述衬底上依次生长缓冲层、未掺杂氮化镓层、N型半导体层、多量子阱层和P型半导体层;sequentially growing a buffer layer, an undoped gallium nitride layer, an N-type semiconductor layer, a multi-quantum well layer and a P-type semiconductor layer on the substrate;

其中,所述缓冲层包括交替生长的(n+1)个第一氮化镓层和n个第二氮化镓层,n≥2且n为整数;每个所述第二氮化镓层的生长温度高于各自相邻的所述第一氮化镓层的生长温度,每个所述第二氮化镓层的生长速率快于各自相邻的所述第一氮化镓层的生长速率,每个所述第二氮化镓层的厚度小于各自相邻的所述第一氮化镓层的厚度。Wherein, the buffer layer includes (n+1) first gallium nitride layers and n second gallium nitride layers grown alternately, n≥2 and n is an integer; each second gallium nitride layer The growth temperature of each of the second gallium nitride layers is higher than the growth temperature of the respective adjacent first gallium nitride layers, and the growth rate of each of the second gallium nitride layers is faster than that of the respective adjacent first gallium nitride layers. rate, the thickness of each second GaN layer is smaller than the thickness of each adjacent first GaN layer.

可选地,每个所述第二氮化镓层的生长温度比各自相邻的所述第一氮化镓层的生长温度高20℃~60℃。Optionally, the growth temperature of each second gallium nitride layer is 20° C. to 60° C. higher than the growth temperature of each adjacent first gallium nitride layer.

优选地,各个所述第二氮化镓层的生长温度沿所述发光二极管外延片的生长方向逐层升高。Preferably, the growth temperature of each second gallium nitride layer increases layer by layer along the growth direction of the light emitting diode epitaxial wafer.

优选地,各个所述第一氮化镓层的生长温度沿所述发光二极管外延片的生长方向逐层升高。Preferably, the growth temperature of each first gallium nitride layer increases layer by layer along the growth direction of the light emitting diode epitaxial wafer.

可选地,各个所述第二氮化镓层的生长速率为各自相邻的所述第一氮化镓层的生长速率的5倍~10倍。Optionally, the growth rate of each of the second gallium nitride layers is 5 to 10 times that of the respective adjacent first gallium nitride layers.

优选地,各个所述第二氮化镓层的生长速率沿所述发光二极管外延片的生长方向逐层变快。Preferably, the growth rate of each second gallium nitride layer becomes faster layer by layer along the growth direction of the light emitting diode epitaxial wafer.

优选地,各个所述第一氮化镓层的生长速率沿所述发光二极管外延片的生长方向逐层变快。Preferably, the growth rate of each first gallium nitride layer becomes faster layer by layer along the growth direction of the light emitting diode epitaxial wafer.

可选地,所述n个第二氮化镓层的总厚度为所述(n+1)个第一氮化镓层的总厚度的1/6~1/3。Optionally, the total thickness of the n second gallium nitride layers is 1/6˜1/3 of the total thickness of the (n+1) first gallium nitride layers.

优选地,各个所述第二氮化镓层的厚度沿所述发光二极管外延片的生长方向逐层增大。Preferably, the thickness of each second gallium nitride layer increases layer by layer along the growth direction of the light emitting diode epitaxial wafer.

可选地,每个所述第一氮化镓层与所述第二氮化镓层相邻的部分中掺杂有铝。Optionally, a portion of each of the first GaN layers adjacent to the second GaN layer is doped with aluminum.

本发明实施例提供的技术方案带来的有益效果是:The beneficial effects brought by the technical solution provided by the embodiments of the present invention are:

通过在生长温度较低的第一氮化镓层中插入生长温度较高的第二氮化镓层形成缓冲层,利用较高生长温度的第二氮化镓层晶体质量较高,从而大幅提高缓冲层整体的晶体质量,减少缺陷的产生,进而减少延伸到N型半导体层、多量子阱层和P型半导体层的缺陷,避免非辐射复合发光的发生,提高发光二极管的发光效率和抗静电能力。而且第二氮化镓层的生长速率较快、厚度较小,可以减少第二氮化镓层较高的生长温度对生长温度较低的第一氮化镓层的影响,避免氮化镓晶种分解。另外,第二氮化镓层插入在第一氮化镓层中,第一氮化镓层优先生长在衬底上,有利于在低温下成核氮化镓晶种,同时第二氮化镓层和第一氮化镓层都是采用氮化镓材料形成,有利于与未掺杂氮化镓层形成晶格匹配。By inserting a second gallium nitride layer with a higher growth temperature into the first gallium nitride layer with a lower growth temperature to form a buffer layer, the crystal quality of the second gallium nitride layer with a higher growth temperature is higher, thereby greatly improving The overall crystal quality of the buffer layer reduces the generation of defects, and then reduces the defects extending to the N-type semiconductor layer, multi-quantum well layer and P-type semiconductor layer, avoids the occurrence of non-radiative recombination luminescence, and improves the luminous efficiency and antistatic of light-emitting diodes ability. Moreover, the growth rate of the second gallium nitride layer is faster and the thickness is smaller, which can reduce the influence of the higher growth temperature of the second gallium nitride layer on the first gallium nitride layer with a lower growth temperature, and avoid gallium nitride crystal growth. kind of decomposition. In addition, the second GaN layer is inserted in the first GaN layer, and the first GaN layer grows preferentially on the substrate, which is beneficial to the nucleation of GaN seeds at low temperature, while the second GaN layer Both the GaN layer and the first GaN layer are formed of GaN material, which is favorable for lattice matching with the undoped GaN layer.

附图说明Description of drawings

为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to illustrate the technical solutions in the embodiments of the present invention more clearly, the following briefly introduces the accompanying drawings used in the description of the embodiments. Obviously, the accompanying drawings in the following description are only some embodiments of the present invention. For those of ordinary skill in the art, other drawings can also be obtained from these drawings without creative effort.

图1是本发明实施例一提供的一种发光二极管外延片的生长方法的流程图;FIG. 1 is a flow chart of a method for growing a light-emitting diode epitaxial wafer provided by Embodiment 1 of the present invention;

图2是本发明实施例一提供的发光二极管外延片的结构示意图;FIG. 2 is a schematic structural view of a light-emitting diode epitaxial wafer provided by Embodiment 1 of the present invention;

图3是本发明实施例一提供的缓冲层的结构示意图;Fig. 3 is a schematic structural diagram of a buffer layer provided by Embodiment 1 of the present invention;

图3a是本发明实施例一提供的缓冲层中铝掺杂位置的示意图;Fig. 3a is a schematic diagram of aluminum doping positions in the buffer layer provided by Embodiment 1 of the present invention;

图3b是本发明实施例一提供的缓冲层中铝掺杂浓度的示意图;Fig. 3b is a schematic diagram of the doping concentration of aluminum in the buffer layer provided by Embodiment 1 of the present invention;

图4是本发明实施例二提供的一种发光二极管外延片的生长方法的流程图;4 is a flow chart of a method for growing a light-emitting diode epitaxial wafer provided by Embodiment 2 of the present invention;

图5是本发明实施例二提供的样品检测结果的对比图;Fig. 5 is a comparison diagram of the sample detection results provided by Example 2 of the present invention;

图5a是本发明实施例三提供的样品检测结果的对比图;Figure 5a is a comparison chart of the sample detection results provided by Example 3 of the present invention;

图5b是本发明实施例四提供的样品检测结果的对比图。Fig. 5b is a comparison chart of the test results of the samples provided in Example 4 of the present invention.

具体实施方式Detailed ways

为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地详细描述。In order to make the object, technical solution and advantages of the present invention clearer, the implementation manner of the present invention will be further described in detail below in conjunction with the accompanying drawings.

实施例一Example 1

本发明实施例提供了一种发光二极管外延片的生长方法,图1为本实施例提供的生长方法的流程图,参见图1,该生长方法包括:An embodiment of the present invention provides a method for growing a light-emitting diode epitaxial wafer. FIG. 1 is a flow chart of the growth method provided in this embodiment. Referring to FIG. 1 , the growth method includes:

步骤101:提供一衬底。Step 101: Provide a substrate.

步骤102:在衬底上依次生长缓冲层、未掺杂氮化镓层、N型半导体层、多量子阱层和P型半导体层。Step 102: growing a buffer layer, an undoped gallium nitride layer, an N-type semiconductor layer, a multi-quantum well layer and a P-type semiconductor layer sequentially on the substrate.

图2为形成的发光二极管外延片的结构示意图。其中,1为衬底,2为缓冲层,3为未掺杂氮化镓层,4为N型半导体层,5为多量子阱层,6为P型半导体层。参见图2,缓冲层2、未掺杂氮化镓层3、N型半导体层4、多量子阱层5、P型半导体层6依次层叠在衬底1。FIG. 2 is a schematic structural view of the formed light emitting diode epitaxial wafer. Wherein, 1 is a substrate, 2 is a buffer layer, 3 is an undoped gallium nitride layer, 4 is an N-type semiconductor layer, 5 is a multi-quantum well layer, and 6 is a P-type semiconductor layer. Referring to FIG. 2 , a buffer layer 2 , an undoped gallium nitride layer 3 , an N-type semiconductor layer 4 , a multi-quantum well layer 5 , and a P-type semiconductor layer 6 are sequentially stacked on a substrate 1 .

图3为缓冲层的结构示意图,参见图3,在本实施例中,缓冲层2包括交替生长的(n+1)个第一氮化镓层21和n个第二氮化镓层22,n≥2且n为整数。每个第二氮化镓层22的生长温度高于各自相邻的第一氮化镓层21的生长温度,每个第二氮化镓层22的生长速率快于各自相邻的第一氮化镓层21的生长速率,每个第二氮化镓层22的厚度小于各自相邻的第一氮化镓层21的厚度。FIG. 3 is a schematic structural view of the buffer layer. Referring to FIG. 3, in this embodiment, the buffer layer 2 includes (n+1) first gallium nitride layers 21 and n second gallium nitride layers 22 grown alternately, n≥2 and n is an integer. The growth temperature of each second gallium nitride layer 22 is higher than the growth temperature of the respective adjacent first gallium nitride layers 21, and the growth rate of each second gallium nitride layer 22 is faster than that of the respective adjacent first gallium nitride layers. The growth rate of the gallium nitride layer 21 is such that the thickness of each second gallium nitride layer 22 is smaller than the thickness of each adjacent first gallium nitride layer 21 .

例如,缓冲层2包括依次生长的第一氮化镓层21a、第二氮化镓层22a、第一氮化镓层21b、第二氮化镓层22b和第一氮化镓层21c,则第一氮化镓层21a的生长温度低于第二氮化镓层22a的生长温度,第一氮化镓层21a的生长速率慢于第二氮化镓层22a的生长速率,第一氮化镓层21a的厚度大于第二氮化镓层22a的厚度;第二氮化镓层22a的生长温度高于第一氮化镓层21b的生长温度,第二氮化镓层22a的生长速率快于第一氮化镓层21b的生长速率,第二氮化镓层22a的厚度小于第一氮化镓层21b的厚度;第一氮化镓层21b的生长温度低于第二氮化镓层22b的生长温度,第一氮化镓层21b的生长速率慢于第二氮化镓层22b的生长速率,第一氮化镓层21b的厚度大于第二氮化镓层22b的厚度;第二氮化镓层22b的生长温度高于第一氮化镓层21c的生长温度,第二氮化镓层22b的生长速率快于第一氮化镓层21c的生长速率,第二氮化镓层22b的厚度小于第一氮化镓层21c的厚度。For example, the buffer layer 2 includes a first gallium nitride layer 21a, a second gallium nitride layer 22a, a first gallium nitride layer 21b, a second gallium nitride layer 22b and a first gallium nitride layer 21c grown in sequence, then The growth temperature of the first gallium nitride layer 21a is lower than the growth temperature of the second gallium nitride layer 22a, the growth rate of the first gallium nitride layer 21a is slower than the growth rate of the second gallium nitride layer 22a, the first gallium nitride layer The thickness of the gallium layer 21a is greater than the thickness of the second gallium nitride layer 22a; the growth temperature of the second gallium nitride layer 22a is higher than the growth temperature of the first gallium nitride layer 21b, and the growth rate of the second gallium nitride layer 22a is fast At the growth rate of the first gallium nitride layer 21b, the thickness of the second gallium nitride layer 22a is smaller than the thickness of the first gallium nitride layer 21b; the growth temperature of the first gallium nitride layer 21b is lower than that of the second gallium nitride layer The growth temperature of 22b, the growth rate of the first gallium nitride layer 21b is slower than the growth rate of the second gallium nitride layer 22b, the thickness of the first gallium nitride layer 21b is greater than the thickness of the second gallium nitride layer 22b; The growth temperature of the gallium nitride layer 22b is higher than the growth temperature of the first gallium nitride layer 21c, the growth rate of the second gallium nitride layer 22b is faster than the growth rate of the first gallium nitride layer 21c, the second gallium nitride layer The thickness of 22b is smaller than the thickness of the first gallium nitride layer 21c.

本发明实施例通过在生长温度较低的第一氮化镓层中插入生长温度较高的第二氮化镓层形成缓冲层,利用较高生长温度的第二氮化镓层晶体质量较高,从而大幅提高缓冲层整体的晶体质量,减少缺陷的产生,进而减少延伸到N型半导体层、多量子阱层和P型半导体层的缺陷,避免非辐射复合发光的发生,提高发光二极管的发光效率和抗静电能力。而且第二氮化镓层的生长速率较快、厚度较小,可以减少第二氮化镓层较高的生长温度对生长温度较低的第一氮化镓层的影响,避免氮化镓晶种分解。另外,第二氮化镓层插入在第一氮化镓层中,第一氮化镓层优先生长在衬底上,有利于在低温下成核氮化镓晶种,同时第二氮化镓层和第一氮化镓层都是采用氮化镓材料形成,有利于与未掺杂氮化镓层形成晶格匹配。In the embodiment of the present invention, a second gallium nitride layer with a higher growth temperature is inserted into the first gallium nitride layer with a lower growth temperature to form a buffer layer, and the crystal quality of the second gallium nitride layer with a higher growth temperature is higher , so as to greatly improve the overall crystal quality of the buffer layer, reduce the generation of defects, and then reduce the defects extending to the N-type semiconductor layer, multi-quantum well layer and P-type semiconductor layer, avoid the occurrence of non-radiative recombination luminescence, and improve the luminescence of light-emitting diodes efficiency and antistatic capability. Moreover, the growth rate of the second gallium nitride layer is faster and the thickness is smaller, which can reduce the influence of the higher growth temperature of the second gallium nitride layer on the first gallium nitride layer with a lower growth temperature, and avoid gallium nitride crystal growth. kind of decomposition. In addition, the second GaN layer is inserted in the first GaN layer, and the first GaN layer grows preferentially on the substrate, which is beneficial to the nucleation of GaN seeds at low temperature, while the second GaN layer Both the GaN layer and the first GaN layer are formed of GaN material, which is favorable for lattice matching with the undoped GaN layer.

可选地,n≤8。一方面避免造成材料的浪费和生产成本的增加,另一方面也避免插入的高温生长的第二氮化镓层太多而影响需要低温生长的氮化镓晶种的产生及其生长质量。Optionally, n≤8. On the one hand, material waste and production cost increase are avoided, and on the other hand, too many second gallium nitride layers inserted at high temperature are prevented from affecting the generation and growth quality of gallium nitride seeds that need to be grown at low temperature.

可选地,每个第一氮化镓层与第二氮化镓层相邻的部分中可以掺杂有铝,以阻挡第一氮化镓层低温生长带来的缺陷沿该发光二极管的生长方向延伸。Optionally, the portion of each first GaN layer adjacent to the second GaN layer can be doped with aluminum, so as to block the defects caused by the low-temperature growth of the first GaN layer along the growth of the light emitting diode. direction extension.

还是以缓冲层2包括依次生长的第一氮化镓层21a、第二氮化镓层22a、第一氮化镓层21b、第二氮化镓层22b和第一氮化镓层21c为例,第一氮化镓层21a与第二氮化镓层22a相邻的部分、第一氮化镓层21b与第二氮化镓层22a相邻的部分、第一氮化镓层21b与第二氮化镓层22b相邻的部分、第一氮化镓层21c与第二氮化镓层22b相邻的部分中都掺杂有铝(图3a中用涂黑表示)。Still taking the example that the buffer layer 2 includes the first gallium nitride layer 21a, the second gallium nitride layer 22a, the first gallium nitride layer 21b, the second gallium nitride layer 22b and the first gallium nitride layer 21c grown in sequence , the part of the first gallium nitride layer 21a adjacent to the second gallium nitride layer 22a, the part of the first gallium nitride layer 21b adjacent to the second gallium nitride layer 22a, the first gallium nitride layer 21b and the second gallium nitride layer The parts adjacent to the gallium nitride layer 22b and the parts of the first gallium nitride layer 21c and the second gallium nitride layer 22b are all doped with aluminum (indicated by black in FIG. 3a).

优选地,各个第一氮化镓层中铝的掺杂浓度可以沿该发光二极管外延片的生长方向逐层升高,以尽可能阻挡第一氮化镓层低温生长带来的缺陷沿该发光二极管的生长方向延伸。Preferably, the doping concentration of aluminum in each first gallium nitride layer can be increased layer by layer along the growth direction of the light emitting diode epitaxial wafer, so as to block the defects caused by the low temperature growth of the first gallium nitride layer as much as possible along the light emitting diode layer. The growth direction of the diode extends.

还是以缓冲层2包括依次生长的第一氮化镓层21a、第二氮化镓层22a、第一氮化镓层21b、第二氮化镓层22b和第一氮化镓层21c为例,如图3b所示,第一氮化镓层21a与第二氮化镓层22a相邻的部分、第一氮化镓层21b与第二氮化镓层22a相邻的部分、第一氮化镓层21b与第二氮化镓层22b相邻的部分、第一氮化镓层21c与第二氮化镓层22b相邻的部分中铝的掺杂浓度逐渐升高。Still taking the example that the buffer layer 2 includes the first gallium nitride layer 21a, the second gallium nitride layer 22a, the first gallium nitride layer 21b, the second gallium nitride layer 22b and the first gallium nitride layer 21c grown in sequence , as shown in FIG. 3b, the part of the first gallium nitride layer 21a adjacent to the second gallium nitride layer 22a, the part of the first gallium nitride layer 21b adjacent to the second gallium nitride layer 22a, the first nitrogen The doping concentration of aluminum in the portion of the gallium nitride layer 21b adjacent to the second gallium nitride layer 22b, and the portion of the first gallium nitride layer 21c adjacent to the second gallium nitride layer 22b increases gradually.

具体地,各个第一氮化镓层中铝的掺杂浓度可以为1020/cm3~1021/cm3Specifically, the doping concentration of aluminum in each first gallium nitride layer may be 10 20 /cm 3 -10 21 /cm 3 .

还是以缓冲层2包括依次生长的第一氮化镓层21a、第二氮化镓层22a、第一氮化镓层21b、第二氮化镓层22b和第一氮化镓层21c为例,第一氮化镓层21a与第二氮化镓层22a相邻的部分中铝的掺杂浓度可以为2*1020/cm3,第一氮化镓层21b与第二氮化镓层22a相邻的部分中铝的掺杂浓度可以为4*1020/cm3,第一氮化镓层21b与第二氮化镓层22b相邻的部分中铝的掺杂浓度可以为6*1020/cm3,第一氮化镓层21c与第二氮化镓层22b相邻的部分中铝的掺杂浓度可以为8*1020/cm3Still taking the example that the buffer layer 2 includes the first gallium nitride layer 21a, the second gallium nitride layer 22a, the first gallium nitride layer 21b, the second gallium nitride layer 22b and the first gallium nitride layer 21c grown in sequence , the doping concentration of aluminum in the part adjacent to the first gallium nitride layer 21a and the second gallium nitride layer 22a can be 2*10 20 /cm 3 , the first gallium nitride layer 21b and the second gallium nitride layer The doping concentration of aluminum in the part adjacent to 22a may be 4*10 20 /cm 3 , and the doping concentration of aluminum in the part adjacent to the first gallium nitride layer 21b and the second gallium nitride layer 22b may be 6* 10 20 /cm 3 , the doping concentration of aluminum in the portion adjacent to the first gallium nitride layer 21c and the second gallium nitride layer 22b may be 8*10 20 /cm 3 .

可选地,每个第二氮化镓层的生长温度可以比各自相邻的第一氮化镓层的生长温度高20℃~60℃。若第二氮化镓层的生长温度比相邻的第一氮化镓层的生长温度高20℃以下,则可能由于第二氮化镓层的生长温度太低而达不到提高晶体质量的效果;若第二氮化镓层的生长温度比相邻的第一氮化镓层的生长温度高60℃以上,则可能由于第二氮化镓层的生长温度太高而对氮化镓晶种造成破坏。Optionally, the growth temperature of each second GaN layer may be 20° C.˜60° C. higher than the growth temperature of each adjacent first GaN layer. If the growth temperature of the second gallium nitride layer is lower than the growth temperature of the adjacent first gallium nitride layer by 20° C. or less, the growth temperature of the second gallium nitride layer may be too low to achieve the effect of improving the crystal quality. Effect; if the growth temperature of the second gallium nitride layer is higher than the growth temperature of the adjacent first gallium nitride layer by more than 60°C, it may be that the growth temperature of the second gallium nitride layer is too high to affect the gallium nitride crystal kind of damage.

优选地,每个第二氮化镓层的生长温度可以比各自相邻的第一氮化镓层的生长温度高30℃~50℃。Preferably, the growth temperature of each second gallium nitride layer may be 30° C.˜50° C. higher than the growth temperature of each adjacent first gallium nitride layer.

进一步地,各个第二氮化镓层的生长温度可以沿该发光二极管外延片的生长方向逐层升高。第二氮化镓层开始的生长温度较低,可以尽可能避免破坏刚开始生长的氮化镓晶种,随着后续氮化镓晶种的逐渐稳定,第二氮化镓层的生长温度逐层升高,可以最大化地提高晶体质量。Further, the growth temperature of each second gallium nitride layer can be increased layer by layer along the growth direction of the light emitting diode epitaxial wafer. The initial growth temperature of the second gallium nitride layer is relatively low, which can avoid damage to the newly grown gallium nitride crystal seed as much as possible. As the subsequent gallium nitride seed crystals gradually stabilize, the growth temperature of the second gallium nitride layer gradually Layers are raised to maximize crystal quality.

优选地,相邻两个第二氮化镓层的生长温度之差可以为5℃。以5℃为间隔逐层提高第二氮化镓层的生长质量,可以在对生长温度有一定提升效果的情况下,尽量避免由于生长温度提高过快而对低温生长的氮化镓晶种造成破坏。Preferably, the difference between the growth temperatures of two adjacent second gallium nitride layers may be 5°C. Increasing the growth quality of the second gallium nitride layer layer by layer at intervals of 5°C can avoid damage to the low-temperature-grown gallium nitride seed crystals due to the rapid increase in the growth temperature while increasing the growth temperature to a certain extent. destroy.

进一步地,各个第一氮化镓层的生长温度可以沿该发光二极管外延片的生长方向逐层升高。随着后续氮化镓晶种的逐渐稳定,第一氮化镓层的生长温度逐层升高,可以最大化地提高晶体质量。Further, the growth temperature of each first gallium nitride layer can be increased layer by layer along the growth direction of the light emitting diode epitaxial wafer. With the gradual stabilization of the subsequent gallium nitride seed crystals, the growth temperature of the first gallium nitride layer is increased layer by layer, which can maximize the improvement of crystal quality.

优选地,相邻两个第一氮化镓层的生长温度之差可以为3℃。以3℃为间隔逐层提高第一氮化镓层的生长质量,可以在对生长温度有一定提升效果的情况下,尽量避免由于生长温度提高过快而对低温生长的氮化镓晶种造成破坏。Preferably, the difference between the growth temperatures of two adjacent first gallium nitride layers may be 3°C. Increasing the growth quality of the first gallium nitride layer layer by layer at intervals of 3°C can avoid damage to the low-temperature-grown gallium nitride seed crystals due to too fast growth temperature while increasing the growth temperature to a certain extent. destroy.

在实际应用中,各个第二氮化镓层的生长温度可以为600℃~625℃。例如n=4,4个第二氮化镓层的生长温度依次为600℃、605℃、610℃和615℃。同时各个第一氮化镓层的生长温度可以为540℃~560℃。还是以n=4为例,5个第一氮化镓层的生长温度依次为540℃、543℃、546℃、549℃和552℃。In practical application, the growth temperature of each second gallium nitride layer may be 600°C-625°C. For example, n=4, the growth temperatures of the four second GaN layers are 600°C, 605°C, 610°C and 615°C in sequence. Meanwhile, the growth temperature of each first gallium nitride layer may be 540° C.˜560° C. Still taking n=4 as an example, the growth temperatures of the five first gallium nitride layers are 540° C., 543° C., 546° C., 549° C. and 552° C. in sequence.

可选地,各个第二氮化镓层的生长速率可以为各自相邻的第一氮化镓层的平均生长速率的5倍~10倍。若第二氮化镓层的生长速率小于相邻的第一氮化镓层的生长速率的5倍,则可能由于第二氮化镓层的生长速率太慢而影响氮化镓晶种的质量;若第二氮化镓层的生长速率大于相邻的第一氮化镓层的生长速率的10倍,则可能会由于第二氮化镓层的生长速率太快而影响到氮化镓晶种和晶体质量的稳定。Optionally, the growth rate of each second gallium nitride layer may be 5 times to 10 times the average growth rate of each adjacent first gallium nitride layer. If the growth rate of the second GaN layer is less than 5 times the growth rate of the adjacent first GaN layer, the quality of the GaN seed may be affected due to the slow growth rate of the second GaN layer ; If the growth rate of the second gallium nitride layer is greater than 10 times the growth rate of the adjacent first gallium nitride layer, it may affect the gallium nitride crystal because the growth rate of the second gallium nitride layer is too fast The stability of species and crystal quality.

优选地,各个第二氮化镓层的生长速率可以为各自相邻的第一氮化镓层的平均生长速率的7倍~8倍。Preferably, the growth rate of each second gallium nitride layer may be 7 times to 8 times the average growth rate of each adjacent first gallium nitride layer.

进一步地,各个第二氮化镓层的生长速率可以沿该发光二极管外延片的生长方向逐层变快,以与各个第二氮化镓层生长温度的变化情况相匹配,在避免破坏低温生长的氮化镓晶种的情况下,尽可能提高缓冲层的晶体质量。Further, the growth rate of each second gallium nitride layer can be increased layer by layer along the growth direction of the light-emitting diode epitaxial wafer, so as to match the change of the growth temperature of each second gallium nitride layer, and avoid damaging the low-temperature growth In the case of GaN seed crystals, the crystal quality of the buffer layer should be as high as possible.

具体地,各个第一氮化镓层的生长速率可以沿该发光二极管外延片的生长方向逐层变快,以与各个第一氮化镓层生长温度的变化情况相匹配,在实现低温成核的情况下,尽可能提高缓冲层的晶体质量。同时随着后续氮化镓晶种的逐渐稳定,晶体质量较差的第一氮化镓层的生长速率逐渐升高对整体晶体质量的提高具有积极影响。Specifically, the growth rate of each first gallium nitride layer can be increased layer by layer along the growth direction of the light-emitting diode epitaxial wafer, so as to match the change of the growth temperature of each first gallium nitride layer, and realize low-temperature nucleation In the case of , improve the crystal quality of the buffer layer as much as possible. At the same time, with the gradual stabilization of the subsequent gallium nitride seed crystals, the gradual increase in the growth rate of the first gallium nitride layer with poor crystal quality has a positive impact on the improvement of the overall crystal quality.

在实际应用中,各个第二氮化镓层的生长速率可以为25nm/min~50nm/min。例如,n=4,4个第二氮化镓层的生长速率依次为25nm/min、35nm/min、40nm/min和50nm/min。同时各个第一氮化镓层的生长速率可以为5nm/min~10nm/min。还是以n=4为例,5个第一氮化镓层的生长速率依次为5nm/min、6nm/min、7nm/min、8nm/min和9nm/min。In practical application, the growth rate of each second gallium nitride layer may be 25nm/min˜50nm/min. For example, n=4, the growth rates of the four second gallium nitride layers are 25nm/min, 35nm/min, 40nm/min and 50nm/min in sequence. Meanwhile, the growth rate of each first gallium nitride layer may be 5nm/min˜10nm/min. Still taking n=4 as an example, the growth rates of the five first gallium nitride layers are 5 nm/min, 6 nm/min, 7 nm/min, 8 nm/min and 9 nm/min in sequence.

可选地,n个第二氮化镓层的总厚度可以为(n+1)个第一氮化镓层的总厚度的1/6~1/3。若n个第二氮化镓层的总厚度小于(n+1)个第一氮化镓层的总厚度的1/6,则可能由于第二氮化镓层的厚度太小而起不到提高缓冲层晶体质量的效果,也可能由于第一氮化镓层的厚度太大而影响缓冲层的晶体质量;若n个第二氮化镓层的总厚度大于(n+1)个第一氮化镓层的总厚度的1/3,则可能由于第二氮化镓层的厚度太大而对氮化镓晶种造成破坏,也可能由于第一氮化镓层的厚度太小而导致垒晶失败。Optionally, the total thickness of the n second gallium nitride layers may be 1/6˜1/3 of the total thickness of the (n+1) first gallium nitride layers. If the total thickness of the n second gallium nitride layers is less than 1/6 of the total thickness of the (n+1) first gallium nitride layers, it may not be possible because the thickness of the second gallium nitride layers is too small. The effect of improving the crystal quality of the buffer layer may also affect the crystal quality of the buffer layer because the thickness of the first gallium nitride layer is too large; if the total thickness of n second gallium nitride layers is greater than (n+1) first 1/3 of the total thickness of the GaN layer, it may cause damage to the GaN seed due to the thickness of the second GaN layer being too large, or it may be caused by the thickness of the first GaN layer being too small. Base crystal failed.

优选地,n个第二氮化镓层的总厚度可以为(n+1)个第一氮化镓层的总厚度的1/5~1/4。Preferably, the total thickness of the n second gallium nitride layers may be 1/5˜1/4 of the total thickness of the (n+1) first gallium nitride layers.

进一步地,各个第二氮化镓层的厚度可以沿发光二极管外延片的生长方向逐层增大。由于第二氮化镓层的厚度对其所起到的晶体质量改善效果有很大的影响,随着低温氮化镓晶种的逐渐稳定,高温生长的第二氮化镓层对低温氮化镓晶种的影响越来越小,逐层提高第二氮化镓层的厚度,不会对氮化镓晶种造成破坏,同时可以最大化地提高缓冲层的晶体质量。Further, the thickness of each second gallium nitride layer may increase layer by layer along the growth direction of the light emitting diode epitaxial wafer. Since the thickness of the second gallium nitride layer has a great influence on its crystal quality improvement effect, with the gradual stabilization of the low-temperature gallium nitride seed crystal, the high-temperature-grown second gallium nitride layer has a great influence on the low-temperature The influence of the gallium seed crystal is getting smaller and smaller, increasing the thickness of the second gallium nitride layer layer by layer will not cause damage to the gallium nitride crystal seed crystal, and at the same time can maximize the crystal quality of the buffer layer.

在实际应用中,各个第二氮化镓层的厚度可以为0.2nm~1nm。例如,n=4,4个第二氮化镓层的厚度依次为0.2nm、0.4nm、0.8nm和1nm。同时各个第一氮化镓层的厚度可以为2nm~4nm。还是以n=4为例,5个第一氮化镓层的厚度依次为2nm、2.5nm、3nm、3.5nm和4nm。In practical applications, the thickness of each second gallium nitride layer may be 0.2nm˜1nm. For example, n=4, and the thicknesses of the four second GaN layers are 0.2 nm, 0.4 nm, 0.8 nm and 1 nm in sequence. Meanwhile, the thickness of each first gallium nitride layer may be 2nm˜4nm. Still taking n=4 as an example, the thicknesses of the five first gallium nitride layers are 2nm, 2.5nm, 3nm, 3.5nm and 4nm in sequence.

在具体实现中,缓冲层的生长压力可以为200torr~500torr。In a specific implementation, the growth pressure of the buffer layer may be 200 torr-500 torr.

具体地,衬底可以为蓝宝石衬底,缓冲层生长在蓝宝石的[0001]面上。N型半导体层可以为N型掺杂的氮化镓层;P型半导体层可以为P型掺杂的氮化镓层。多量子阱层可以包括多个量子阱和多个量子垒,多个量子阱和多个量子垒交替层叠设置。Specifically, the substrate may be a sapphire substrate, and the buffer layer is grown on the [0001] plane of the sapphire. The N-type semiconductor layer may be an N-type doped gallium nitride layer; the P-type semiconductor layer may be a P-type doped gallium nitride layer. The multi-quantum well layer may include multiple quantum wells and multiple quantum barriers, and multiple quantum wells and multiple quantum barriers are alternately stacked.

更具体地,未掺杂氮化镓层的厚度可以为2μm~3.5μm。N型半导体层的厚度可以为2μm~3μm。P型半导体层的厚度可以为50nm~80nm。各个量子阱的厚度可以为2nm~3nm;各个量子垒层的厚度可以为8nm~11nm;量子垒的数量与量子阱的数量相同,量子阱的数量可以为11个~13个;多量子阱层的厚度可以为130nm~160nm。More specifically, the thickness of the undoped gallium nitride layer may be 2 μm˜3.5 μm. The thickness of the N-type semiconductor layer may be 2 μm˜3 μm. The thickness of the P-type semiconductor layer may be 50nm˜80nm. The thickness of each quantum well can be 2nm to 3nm; the thickness of each quantum barrier layer can be 8nm to 11nm; the number of quantum barriers is the same as the number of quantum wells, and the number of quantum wells can be 11 to 13; multiple quantum well layers The thickness can be 130nm-160nm.

在具体实现中,未掺杂氮化镓层的生长温度可以为1000℃~1100℃,生长压力可以为200torr~600torr,生长速率可以为2μm/h~5μm/h。N型半导体层的生长温度可以为1000℃~1100℃,生长压力可以为200torr~300torr,生长速率可以为3μm/h~8μm/h。P型半导体层的生长温度可以为940℃~980℃,生长压力可以为200torr~600torr,生长速率可以为0.3μm/h~1μm/h。各个量子阱的生长温度可以为760℃~780℃,生长压力可以为200torr,生长速率可以为0.2nm/min~0.6nm/min;各个量子垒层的生长温度可以为860℃~890℃,生长压力可以为200torr,生长速率可以为2nm/min~5nm/min。In a specific implementation, the growth temperature of the undoped gallium nitride layer may be 1000°C-1100°C, the growth pressure may be 200torr-600torr, and the growth rate may be 2μm/h-5μm/h. The growth temperature of the N-type semiconductor layer may be 1000° C. to 1100° C., the growth pressure may be 200 torr to 300 torr, and the growth rate may be 3 μm/h to 8 μm/h. The growth temperature of the P-type semiconductor layer may be 940° C. to 980° C., the growth pressure may be 200 torr to 600 torr, and the growth rate may be 0.3 μm/h to 1 μm/h. The growth temperature of each quantum well can be 760°C-780°C, the growth pressure can be 200torr, the growth rate can be 0.2nm/min-0.6nm/min; the growth temperature of each quantum barrier layer can be 860°C-890°C, the growth The pressure can be 200 torr, and the growth rate can be 2nm/min˜5nm/min.

可选地,该生长方法还可以包括:Optionally, the growth method may also include:

在多量子阱层和P型半导体层之间生长电子阻挡层,以阻挡电子注入P型半导体层与空穴发生非辐射复合。An electron blocking layer is grown between the multi-quantum well layer and the P-type semiconductor layer to prevent non-radiative recombination of electrons injected into the P-type semiconductor layer and holes.

具体地,电子阻挡层可以为P型掺杂的铝镓氮层,具体为AlyGa1-yN层,0.15≤y≤0.25。Specifically, the electron blocking layer may be a P-type doped aluminum gallium nitride layer, specifically an AlyGa1 -yN layer, where 0.15≤y≤0.25.

更具体地,电子阻挡层的厚度可以为30nm~50nm。More specifically, the electron blocking layer may have a thickness of 30nm˜50nm.

在具体实现中,电子阻挡层的生长温度可以为930℃~970℃,生长压力可以为100torr,生长速率可以为0.2μm/h~0.8μm/h。In a specific implementation, the growth temperature of the electron blocking layer may be 930° C.˜970° C., the growth pressure may be 100 torr, and the growth rate may be 0.2 μm/h˜0.8 μm/h.

可选地,在步骤102之前,该生长方法还可以包括:Optionally, before step 102, the growing method may also include:

在氢气气氛下,控制温度为1000℃~1100℃,压力为200torr~500torr,处理衬底5min~6min,以清洁衬底表面。Under a hydrogen atmosphere, the temperature is controlled to be 1000° C. to 1100° C., the pressure is 200 torr to 500 torr, and the substrate is processed for 5 minutes to 6 minutes to clean the surface of the substrate.

可选地,该生长方法还可以包括:Optionally, the growth method may also include:

对P型半导体层的表面进行活化,形成P型接触层,以在外延片与芯片中的透明导电层之间形成欧姆接触。The surface of the P-type semiconductor layer is activated to form a P-type contact layer to form an ohmic contact between the epitaxial wafer and the transparent conductive layer in the chip.

需要说明的是,P型半导体层通常采用镁进行P型掺杂,活化P型半导体层主要是指活化P型把半导体层中掺杂的镁,使镁活化后产生更多的空穴,避免由于不活化而导致欧姆接触差,芯片出现高电压低亮度的情况。It should be noted that the P-type semiconductor layer is usually doped with magnesium for P-type doping. Activating the P-type semiconductor layer mainly refers to activating the P-type magnesium doped in the semiconductor layer, so that more holes will be generated after the activation of magnesium to avoid Due to poor ohmic contact due to inactivation, the chip has high voltage and low brightness.

具体地,对P型半导体层的表面进行活化,形成P型接触层,可以包括:Specifically, activating the surface of the P-type semiconductor layer to form a P-type contact layer may include:

在氮气气氛下,控制温度为650℃~750℃,处理P型半导体层20min~30min。Under a nitrogen atmosphere, the temperature is controlled at 650° C. to 750° C., and the P-type semiconductor layer is processed for 20 minutes to 30 minutes.

实施例二Embodiment 2

本发明实施例提供了一种发光二极管外延片的生长方法,本实施例提供的生长方法是实施例一提供的生长方法的一种具体实现。在本实施例中,采用Veeco K465i or C4金属有机化合物化学气相沉淀(英文:Metal Organic Chemical Vapor Deposition,简称:MOCVD)设备实现LED外延片的生长。采用高纯氢气(H2)或高纯氮气(N2)或高纯H2和高纯N2的混合气体作为载气,高纯NH3作为氮源,三甲基镓(TMGa)及三乙基镓(TEGa)作为镓源,三甲基铟(TMIn)作为铟源,三甲基铝(TMAl)作为铝源,硅烷(SiH4)作为N型掺杂剂,二茂镁(CP2Mg)作为P型掺杂剂。反应室压力控制在100torr~600torr。An embodiment of the present invention provides a method for growing a light-emitting diode epitaxial wafer, and the growth method provided in this embodiment is a specific realization of the growth method provided in Embodiment 1. In this embodiment, Veeco K465i or C4 Metal Organic Chemical Vapor Deposition (English: Metal Organic Chemical Vapor Deposition, MOCVD for short) equipment is used to realize the growth of LED epitaxial wafers. Use high-purity hydrogen (H 2 ) or high-purity nitrogen (N 2 ) or a mixture of high-purity H 2 and high-purity N 2 as carrier gas, high-purity NH 3 as nitrogen source, trimethylgallium (TMGa) and three Ethylgallium (TEGa) was used as gallium source, trimethylindium (TMIn) as indium source, trimethylaluminum (TMAl) as aluminum source, silane (SiH4) as N-type dopant, dimagnesocene (CP 2 Mg ) as a P-type dopant. The pressure of the reaction chamber is controlled at 100torr~600torr.

具体地,图4为本实施例提供的生长方法的流程图,参见图4,该生长方法包括:Specifically, FIG. 4 is a flow chart of the growth method provided in this embodiment. Referring to FIG. 4, the growth method includes:

步骤301:控制反应室温度为1050℃,压力为250torr,将蓝宝石衬底在的氢气气氛下进行5.5min的高温处理。Step 301: Control the temperature of the reaction chamber to 1050° C. and the pressure to 250 torr, and perform high-temperature treatment on the sapphire substrate for 5.5 minutes in a hydrogen atmosphere.

步骤302:控制反应室压力为400torr,在蓝宝石衬底上形成缓冲层。Step 302: Control the pressure of the reaction chamber to 400 torr, and form a buffer layer on the sapphire substrate.

在本实施例中,缓冲层包括交替生长的7个第一氮化镓层和6个第二氮化镓层。7个第一氮化镓层的厚度均为3nm;7个第一氮化镓层的生长温度沿生长方向依次为540℃、543℃、546℃、549℃、552℃、555℃和558℃;7个第一氮化镓层的生长速率沿生长方向依次为5nm/min、6nm/min、7nm/min、8nm/min、9nm/min、10nm/min和11nm/min。6个第二氮化镓层的厚度沿生长方向依次为0.2nm、0.4nm、0.8nm、1nm、1.2nm和1.5nm;6个第二氮化镓层的生长温度沿生长方向依次为600℃、605℃、610℃、615℃、620℃和625℃;6个第二氮化镓层的生长速率沿生长方向依次为25nm/min、30nm/min、35nm/min、40nm/min、45nm/min和50nm/min。In this embodiment, the buffer layer includes 7 first GaN layers and 6 second GaN layers grown alternately. The thickness of the seven first gallium nitride layers is 3nm; the growth temperature of the seven first gallium nitride layers along the growth direction is 540°C, 543°C, 546°C, 549°C, 552°C, 555°C and 558°C ; The growth rates of the seven first gallium nitride layers along the growth direction are 5nm/min, 6nm/min, 7nm/min, 8nm/min, 9nm/min, 10nm/min and 11nm/min. The thicknesses of the six second GaN layers along the growth direction are 0.2nm, 0.4nm, 0.8nm, 1nm, 1.2nm and 1.5nm; the growth temperature of the six second GaN layers along the growth direction is 600°C , 605°C, 610°C, 615°C, 620°C and 625°C; the growth rates of the six second gallium nitride layers along the growth direction are 25nm/min, 30nm/min, 35nm/min, 40nm/min, 45nm/min min and 50nm/min.

步骤303:控制反应室温度为1050℃,压力为400torr,生长速率为3.5μm/h,在缓冲层上生长厚度为2.75μm的未掺杂氮化镓层。Step 303: Control the temperature of the reaction chamber to 1050° C., the pressure to 400 torr, and the growth rate to 3.5 μm/h, and grow an undoped GaN layer with a thickness of 2.75 μm on the buffer layer.

步骤304:控制反应室温度为1050℃,压力为250torr,生长速率为5.5μm/h,在未掺杂氮化镓层上生长厚度为2.5μm的N型氮化镓层。Step 304: Control the temperature of the reaction chamber to 1050° C., the pressure to 250 torr, and the growth rate to 5.5 μm/h, and grow an N-type GaN layer with a thickness of 2.5 μm on the undoped GaN layer.

步骤305:控制反应室压力为200torr,在N型半导体层上生长多量子阱层。Step 305: Control the pressure of the reaction chamber to 200 torr, and grow the multi-quantum well layer on the N-type semiconductor layer.

在本实施例中,多量子阱层包括交替层叠的12个量子阱和12个量子垒。各个量子阱层为铟镓氮层,厚度为2.5nm,生长温度为770℃,生长压力为200torr,生长速率为0.4nm/min;各个量子垒层为氮化镓层,生长温度为875℃,生长压力为200torr,生长速率为3.5nm/min,厚度为12nm。In this embodiment, the multi-quantum well layer includes 12 quantum wells and 12 quantum barriers stacked alternately. Each quantum well layer is an indium gallium nitride layer with a thickness of 2.5nm, the growth temperature is 770°C, the growth pressure is 200torr, and the growth rate is 0.4nm/min; each quantum barrier layer is a gallium nitride layer, and the growth temperature is 875°C. The growth pressure is 200torr, the growth rate is 3.5nm/min, and the thickness is 12nm.

步骤306:控制生长温度为950℃,生长压力为150torr,生长速率为0.6μm/h,在多量子阱层上生长厚度为40nm的铝镓氮层,形成电子阻挡层。Step 306: Control the growth temperature to 950° C., the growth pressure to 150 torr, and the growth rate to 0.6 μm/h, and grow an AlGaN layer with a thickness of 40 nm on the MQW layer to form an electron blocking layer.

步骤307:控制生长温度为960℃,生长压力为400torr,生长速率为0.65μm/h,在电子阻挡层上生长厚度为65nm的P型氮化镓层。Step 307: Control the growth temperature to 960° C., the growth pressure to 400 torr, and the growth rate to 0.65 μm/h, and grow a P-type gallium nitride layer with a thickness of 65 nm on the electron blocking layer.

下面分别对第一样品和第二样品在相同的工艺条件下镀110nm的氧化铟锡金属氧化物(英文:Indium Tin Oxides,简称:ITO)层,120nm的Cr/Pt/Au电极和40nm的SiO2保护层,并分别将处理后的第一样品和第二样品研磨切割成305μm*635μm(12mi*25mil)的芯粒和229μm*559μm(9mi*22mil)的芯粒。其中,第二样品是采用本实施例提供的发光二极管外延片的生长方法得到的,第一样品采用的生长方法与第二样品基本相同,不同之处在于,第一样品中缓冲层是控制反应室温度为545℃,压力为250torr,生长速率为15nm/min生长的厚度为22.5nm的氮化镓层。The first sample and the second sample are respectively plated with a 110nm indium tin oxide metal oxide (English: Indium Tin Oxides, abbreviated: ITO) layer, a 120nm Cr/Pt/Au electrode and a 40nm SiO 2 protective layer, and the treated first sample and second sample were ground and cut into 305μm*635μm (12mi*25mil) core particles and 229μm*559μm (9mi*22mil) core particles. Wherein, the second sample is obtained by adopting the growth method of the light-emitting diode epitaxial wafer provided in this embodiment, and the growth method adopted by the first sample is basically the same as that of the second sample, except that the buffer layer in the first sample is A gallium nitride layer with a thickness of 22.5 nm was grown by controlling the temperature of the reaction chamber at 545° C., the pressure at 250 torr, and the growth rate at 15 nm/min.

接着在处理后的第一样品和第二样品的相同位置各自挑选300颗晶粒,在相同的工艺条件下,封装成白光LED。采用积分球分别在驱动电流120mA条件下测试来自于第一样品的晶粒和来自于第二样品的晶粒的光电性能。Next, 300 crystal grains were selected at the same positions of the processed first sample and the second sample, and packaged into white LEDs under the same process conditions. The photoelectric properties of the crystal grains from the first sample and the crystal grains from the second sample were respectively tested by using an integrating sphere under the condition of a driving current of 120 mA.

图5为上述测试的结果对比图,参见图5,测试结果显示,来自于第二样品的晶粒与比来自于第一样品的晶粒相比,光强在120mA的驱动电流下均有明显提升,且抗静电能力增强,说明本实施例提供的生长方法形成的外延片可以减少缺陷,提高晶体质量。Fig. 5 is the comparison chart of the result of above-mentioned test, referring to Fig. 5, test result shows, the crystal grain from the second sample is compared with the crystal grain from the first sample, and the light intensity all has under the driving current of 120mA It is obviously improved, and the antistatic ability is enhanced, indicating that the epitaxial wafer formed by the growth method provided in this embodiment can reduce defects and improve crystal quality.

实施例三Embodiment 3

本发明实施例提供了一种发光二极管外延片的生长方法,本实施例提供的生长方法是实施例一提供的生长方法的另一种具体实现。本实施例提供的生长方法与实施例二提供的生长方法基本相同,不同之处在于,缓冲层包括交替生长的6个第一氮化镓层和5个第二氮化镓层。7个第一氮化镓层的厚度均为3nm;7个第一氮化镓层的生长温度均为550℃;7个第一氮化镓层的生长速率沿生长方向依次8nm/min。6个第二氮化镓层的厚度沿生长方向依次为0.2nm、0.4nm、0.8nm、1nm、1.2nm和1.5nm;6个第二氮化镓层的生长温度沿生长方向依次为600℃、605℃、610℃、615℃、620℃和625℃;6个第二氮化镓层的生长速率沿生长方向依次为25nm/min、30nm/min、35nm/min、40nm/min、45nm/min和50nm/min。An embodiment of the present invention provides a method for growing a light-emitting diode epitaxial wafer, and the growth method provided in this embodiment is another specific realization of the growth method provided in Embodiment 1. The growth method provided in this embodiment is basically the same as the growth method provided in Embodiment 2, except that the buffer layer includes 6 first gallium nitride layers and 5 second gallium nitride layers grown alternately. The thicknesses of the seven first gallium nitride layers are all 3 nm; the growth temperatures of the seven first gallium nitride layers are all 550° C.; the growth rates of the seven first gallium nitride layers are sequentially 8 nm/min along the growth direction. The thicknesses of the six second GaN layers along the growth direction are 0.2nm, 0.4nm, 0.8nm, 1nm, 1.2nm and 1.5nm; the growth temperature of the six second GaN layers along the growth direction is 600°C , 605°C, 610°C, 615°C, 620°C and 625°C; the growth rates of the six second gallium nitride layers along the growth direction are 25nm/min, 30nm/min, 35nm/min, 40nm/min, 45nm/min min and 50nm/min.

将本实施例得到的发光二极管外延片处理成与实施例二相同的样品并进行测试,图5a为上述测试的结果对比图,参见图5a,测试结果显示,光强在120mA的驱动电流下均有明显提升,且抗静电能力增强。The light-emitting diode epitaxial wafer obtained in this embodiment was processed into the same sample as in Example 2 and tested. Figure 5a is a comparison chart of the results of the above tests. See Figure 5a. The test results show that the light intensity is equal to There is a significant improvement, and the antistatic ability is enhanced.

实施例四Embodiment 4

本发明实施例提供了一种发光二极管外延片的生长方法,本实施例提供的生长方法是实施例一提供的生长方法的另一种具体实现。本实施例提供的生长方法与实施例二提供的生长方法基本相同,不同之处在于,缓冲层包括交替生长的7个第一氮化镓层和6个第二氮化镓层。7个第一氮化镓层的厚度均为3nm;7个第一氮化镓层的生长温度沿生长方向依次为540℃、543℃、546℃、549℃、552℃、555℃和558℃;7个第一氮化镓层的生长速率沿生长方向依次为5nm/min、6nm/min、7nm/min、8nm/min、9nm/min、10nm/min和11nm/min。6个第二氮化镓层的厚度沿生长方向依次为0.2nm、0.4nm、0.8nm、1nm、1.2nm和1.5nm;6个第二氮化镓层的生长温度沿生长方向依次为610℃;6个第二氮化镓层的生长速率沿生长方向依次为35nm/min。An embodiment of the present invention provides a method for growing a light-emitting diode epitaxial wafer, and the growth method provided in this embodiment is another specific realization of the growth method provided in Embodiment 1. The growth method provided in this embodiment is basically the same as the growth method provided in Embodiment 2, except that the buffer layer includes 7 first gallium nitride layers and 6 second gallium nitride layers grown alternately. The thickness of the seven first gallium nitride layers is 3nm; the growth temperature of the seven first gallium nitride layers along the growth direction is 540°C, 543°C, 546°C, 549°C, 552°C, 555°C and 558°C ; The growth rates of the seven first gallium nitride layers along the growth direction are 5nm/min, 6nm/min, 7nm/min, 8nm/min, 9nm/min, 10nm/min and 11nm/min. The thicknesses of the six second GaN layers along the growth direction are 0.2nm, 0.4nm, 0.8nm, 1nm, 1.2nm and 1.5nm; the growth temperature of the six second GaN layers along the growth direction is 610°C ; The growth rate of the six second gallium nitride layers along the growth direction is 35nm/min.

将本实施例得到的发光二极管外延片处理成与实施例二相同的样品并进行测试,图5b为上述测试的结果对比图,参见图5b,测试结果显示,光强在120mA的驱动电流下均有明显提升,且抗静电能力增强。The light-emitting diode epitaxial wafer obtained in this embodiment was processed into the same sample as in Example 2 and tested. Figure 5b is a comparison chart of the results of the above tests. See Figure 5b. The test results show that the light intensity is equal to There is a significant improvement, and the antistatic ability is enhanced.

需要说明的是,在其它实施例中,各层的生长温度等参数还可以取其它值,本发明并不限制于上述实施例中的数值。It should be noted that in other embodiments, parameters such as the growth temperature of each layer may also take other values, and the present invention is not limited to the values in the above embodiments.

以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included in the protection of the present invention. within range.

Claims (10)

1.一种发光二极管外延片的生长方法,其特征在于,所述生长方法包括:1. A growth method of light-emitting diode epitaxial wafer, it is characterized in that, described growth method comprises: 提供一衬底;providing a substrate; 在所述衬底上依次生长缓冲层、未掺杂氮化镓层、N型半导体层、多量子阱层和P型半导体层;sequentially growing a buffer layer, an undoped gallium nitride layer, an N-type semiconductor layer, a multi-quantum well layer and a P-type semiconductor layer on the substrate; 其中,所述缓冲层包括交替生长的(n+1)个第一氮化镓层和n个第二氮化镓层,n≥2且n为整数;每个所述第二氮化镓层的生长温度高于各自相邻的所述第一氮化镓层的生长温度,每个所述第二氮化镓层的生长速率快于各自相邻的所述第一氮化镓层的生长速率,每个所述第二氮化镓层的厚度小于各自相邻的所述第一氮化镓层的厚度。Wherein, the buffer layer includes (n+1) first gallium nitride layers and n second gallium nitride layers grown alternately, n≥2 and n is an integer; each second gallium nitride layer The growth temperature of each of the second gallium nitride layers is higher than the growth temperature of the respective adjacent first gallium nitride layers, and the growth rate of each of the second gallium nitride layers is faster than that of the respective adjacent first gallium nitride layers. rate, the thickness of each second GaN layer is smaller than the thickness of each adjacent first GaN layer. 2.根据权利要求1所述的生长方法,其特征在于,每个所述第二氮化镓层的生长温度比各自相邻的所述第一氮化镓层的生长温度高20℃~60℃。2. The growth method according to claim 1, characterized in that the growth temperature of each second gallium nitride layer is 20° C. to 60° C. higher than the growth temperature of the respective adjacent first gallium nitride layers. ℃. 3.根据权利要求2所述的生长方法,其特征在于,各个所述第二氮化镓层的生长温度沿所述发光二极管外延片的生长方向逐层升高。3 . The growth method according to claim 2 , wherein the growth temperature of each second gallium nitride layer increases layer by layer along the growth direction of the light emitting diode epitaxial wafer. 4 . 4.根据权利要求2所述的生长方法,其特征在于,各个所述第一氮化镓层的生长温度沿所述发光二极管外延片的生长方向逐层升高。4 . The growth method according to claim 2 , wherein the growth temperature of each first gallium nitride layer increases layer by layer along the growth direction of the light emitting diode epitaxial wafer. 5.根据权利要求1~4任一项所述的生长方法,其特征在于,各个所述第二氮化镓层的生长速率为各自相邻的所述第一氮化镓层的生长速率的5倍~10倍。5. The growth method according to any one of claims 1 to 4, characterized in that, the growth rate of each of the second GaN layers is equal to the growth rate of the respective adjacent first GaN layers. 5 times to 10 times. 6.根据权利要求5所述的生长方法,其特征在于,各个所述第二氮化镓层的生长速率沿所述发光二极管外延片的生长方向逐层变快。6 . The growth method according to claim 5 , wherein the growth rate of each second gallium nitride layer becomes faster layer by layer along the growth direction of the light emitting diode epitaxial wafer. 7.根据权利要求5所述的生长方法,其特征在于,各个所述第一氮化镓层的生长速率沿所述发光二极管外延片的生长方向逐层变快。7. The growth method according to claim 5, wherein the growth rate of each of the first GaN layers becomes faster layer by layer along the growth direction of the light emitting diode epitaxial wafer. 8.根据权利要求1~4任一项所述的生长方法,其特征在于,所述n个第二氮化镓层的总厚度为所述(n+1)个第一氮化镓层的总厚度的1/6~1/3。8. The growth method according to any one of claims 1 to 4, characterized in that, the total thickness of the n second gallium nitride layers is equal to that of the (n+1) first gallium nitride layers 1/6~1/3 of the total thickness. 9.根据权利要求8所述的生长方法,其特征在于,各个所述第二氮化镓层的厚度沿所述发光二极管外延片的生长方向逐层增大。9 . The growth method according to claim 8 , wherein the thickness of each second gallium nitride layer increases layer by layer along the growth direction of the light emitting diode epitaxial wafer. 10.根据权利要求1~4任一项所述的生长方法,其特征在于,每个所述第一氮化镓层与所述第二氮化镓层相邻的部分中掺杂有铝。10 . The growth method according to claim 1 , wherein a part of each first gallium nitride layer adjacent to the second gallium nitride layer is doped with aluminum. 11 .
CN201711240279.0A 2017-11-30 2017-11-30 A kind of growing method of LED epitaxial slice Active CN108198913B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711240279.0A CN108198913B (en) 2017-11-30 2017-11-30 A kind of growing method of LED epitaxial slice

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711240279.0A CN108198913B (en) 2017-11-30 2017-11-30 A kind of growing method of LED epitaxial slice

Publications (2)

Publication Number Publication Date
CN108198913A CN108198913A (en) 2018-06-22
CN108198913B true CN108198913B (en) 2019-08-02

Family

ID=62573251

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711240279.0A Active CN108198913B (en) 2017-11-30 2017-11-30 A kind of growing method of LED epitaxial slice

Country Status (1)

Country Link
CN (1) CN108198913B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110767782A (en) * 2018-07-26 2020-02-07 上海亚曼光电科技有限公司 High-brightness light-emitting diode epitaxial wafer and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104157750A (en) * 2014-08-25 2014-11-19 圆融光电科技有限公司 Light-emitting diode epitaxial growth method
CN105576090A (en) * 2016-01-25 2016-05-11 华灿光电(苏州)有限公司 Preparation method of LED epitaxial wafer and LED epitaxial wafer
CN107086256A (en) * 2017-03-15 2017-08-22 华灿光电(浙江)有限公司 Manufacturing method of light-emitting diode epitaxial wafer

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5838029A (en) * 1994-08-22 1998-11-17 Rohm Co., Ltd. GaN-type light emitting device formed on a silicon substrate
JPH11274649A (en) * 1998-03-26 1999-10-08 Hitachi Ltd Semiconductor optical element and manufacture thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104157750A (en) * 2014-08-25 2014-11-19 圆融光电科技有限公司 Light-emitting diode epitaxial growth method
CN105576090A (en) * 2016-01-25 2016-05-11 华灿光电(苏州)有限公司 Preparation method of LED epitaxial wafer and LED epitaxial wafer
CN107086256A (en) * 2017-03-15 2017-08-22 华灿光电(浙江)有限公司 Manufacturing method of light-emitting diode epitaxial wafer

Also Published As

Publication number Publication date
CN108198913A (en) 2018-06-22

Similar Documents

Publication Publication Date Title
CN108091741B (en) A kind of growing method of LED epitaxial slice
CN108091736B (en) Light emitting diode epitaxial wafer and manufacturing method thereof
CN106057988B (en) A kind of preparation method of the epitaxial wafer of GaN base light emitting
CN105679893B (en) LED epitaxial slice production method and LED epitaxial slice
CN107293619B (en) Light emitting diode epitaxial wafer and manufacturing method thereof
CN107195738B (en) Light emitting diode epitaxial wafer and manufacturing method thereof
CN108336198B (en) Light emitting diode epitaxial wafer and manufacturing method thereof
CN104465898B (en) Growing method of light-emitting diode epitaxial wafer and light emitting diode epitaxial wafer
CN106611808A (en) Growth method of light-emitting diode epitaxial wafer
CN106449915A (en) Growth method of light-emitting diode epitaxial wafer
CN106206866A (en) Manufacturing method of light-emitting diode and light-emitting diode
CN106887494A (en) Epitaxial wafer of light emitting diode and manufacturing method thereof
CN107887485B (en) Light emitting diode epitaxial wafer and manufacturing method thereof
CN108470805B (en) A kind of LED epitaxial slice and its manufacturing method
CN107086256A (en) Manufacturing method of light-emitting diode epitaxial wafer
CN107068824B (en) Epitaxial wafer of light emitting diode and manufacturing method thereof
CN105957927B (en) A kind of growing method of LED epitaxial slice
CN106252480B (en) Light emitting diode epitaxial wafer and growth method thereof
CN108075019B (en) Light emitting diode epitaxial wafer and preparation method thereof
CN108281519B (en) A light-emitting diode epitaxial wafer and its manufacturing method
CN107134517B (en) A kind of LED epitaxial growth methods
CN108461582B (en) A kind of growing method and LED epitaxial slice of LED epitaxial slice
CN105870269B (en) Improve the LED epitaxial growing method of hole injection
CN104900778A (en) Growing method of epitaxial wafer of light emitting diode and epitaxial wafer
CN105870266B (en) The growing method of electron barrier layer structure and LED epitaxial structure containing this structure

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP03 Change of name, title or address

Address after: 215600 CHENFENG highway, Zhangjiagang Economic Development Zone, Suzhou City, Jiangsu Province

Patentee after: BOE Huacan Optoelectronics (Suzhou) Co.,Ltd.

Country or region after: China

Address before: 215600 CHENFENG highway, Zhangjiagang Economic Development Zone, Suzhou City, Jiangsu Province

Patentee before: HC SEMITEK (SUZHOU) Co.,Ltd.

Country or region before: China

CP03 Change of name, title or address