CN108197352B - 一种用于大口径反射镜的面形精确计算方法 - Google Patents

一种用于大口径反射镜的面形精确计算方法 Download PDF

Info

Publication number
CN108197352B
CN108197352B CN201711343126.9A CN201711343126A CN108197352B CN 108197352 B CN108197352 B CN 108197352B CN 201711343126 A CN201711343126 A CN 201711343126A CN 108197352 B CN108197352 B CN 108197352B
Authority
CN
China
Prior art keywords
reflector
node
unit
finite element
axis coordinate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711343126.9A
Other languages
English (en)
Other versions
CN108197352A (zh
Inventor
王鹏
谢永军
王凤彪
徐崧博
毛祥龙
李锦鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
XiAn Institute of Optics and Precision Mechanics of CAS
Original Assignee
XiAn Institute of Optics and Precision Mechanics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by XiAn Institute of Optics and Precision Mechanics of CAS filed Critical XiAn Institute of Optics and Precision Mechanics of CAS
Priority to CN201711343126.9A priority Critical patent/CN108197352B/zh
Publication of CN108197352A publication Critical patent/CN108197352A/zh
Application granted granted Critical
Publication of CN108197352B publication Critical patent/CN108197352B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Lenses (AREA)
  • Aerials With Secondary Devices (AREA)

Abstract

本发明具体涉及一种大口径反射镜的面形精确计算方法,主要解决现有面型计算方法存在误差划分,误差导致计算结果与真实值之间差距太大,反射镜面形结果不准确的问题。该方法包括以下步骤:1)确定坐标系:2)建立反射镜数字化模型,反射镜数字化模型信息包括反射镜节点和单元信息;3)建立反射镜支撑结构三维模型;4)对反射镜支撑结构进行有限元网格划分;5)建立反射镜的有限元网格模型;6)在有限元软件中建立反射镜节点和反射镜支撑之间的约束关系;7)在有限元软件中对反射镜节点和反射镜支撑结构进行有限元边界条件和载荷的加载;8)进行有限元求解;9)后处理,对提取的反射镜镜面变形数据进行最佳逼近曲面拟合。

Description

一种用于大口径反射镜的面形精确计算方法
技术领域
本发明涉及光学精密机械领域,具体涉及一种用于大口径反射镜的面形精确计算方法。
背景技术
随着光学加工能力的逐渐加强,大口径反射镜已经被普遍应用,但大口径反射镜应用的一个难点是保证反射镜在各种使用状态下的面形精度满足要求。因此大口径反射镜支撑结构形式的选择尤为关键,现有支撑结构形式的判断标准主要包括以下步骤:1.通过对反射镜支撑结构和反射镜进行网格划分;2.建立反射镜与反射镜支撑间的约束关系;3.进行边界条件设置和工况加载;4.有限元求解;5.后处理,提取反射镜镜面变形数据,拟合反射镜面形;最终将拟合求解的反射镜面形数据作为判断反射镜支撑结构是否合理的依据。
有限元软件是一种普适商业软件,能够满足一般工程计算的精度要求,但是对于光学精密仪器而言,其结构宏观尺寸可达到几十米,微观尺寸计量达到纳米级,其跨度达到1010量级,如图1所示,现有的一些商业有限元软件在对反射镜进行网格划分时,反射镜网格一般依据网格尺寸或网格数量进行自动生成,生成的有限元网格节点并非精确地落在反射镜镜面上,而是存在一定的误差划分效果。不同有限元软件误差的差别也很大,最大的有几百纳米,最小的也有几十纳米,这些误差甚至超过反射镜实际的面形变化值,其直接导致计算结果与真实值之间差距太大,出现光学精密仪器所关注的变形数据被淹没在网格划分时的误差中,通过有限元软件计算最终得到的反射镜面形结果,并不能真实反映反射镜支撑结构的合理性。因此非常有必要找到一种精确求解反射镜面形的一种手段。
发明内容
本发明的目的是解决现有大口径反射镜在采用限元软件划分反射镜网格时,存在节点位置误差相对于光学仪器要求而言较大,误差导致反射镜面形计算结果与真实值之间差距太大的问题,提供一种用于大口径反射镜的面形精确计算方法。
本发明的技术方案是:
一种用于大口径反射镜的面形精确计算方法,包括以下步骤:
1)确定坐标系:
对于中心带孔的球面反射镜,将反射镜镜面顶点作为坐标系原点,X、Y平面与反射镜底面平行,Z轴向上垂直反射镜底面;
2)利用数学方法建立反射镜数字化模型,反射镜数字化模型信息包括反射镜节点和单元信息,反射镜节点和单元编号顺序如下:
根据反射镜模型参数可以确定:
整个反射镜所有单元数量
Figure GDA0002377350050000021
整个反射镜所有节点数量
Figure GDA0002377350050000022
其中:沿直径方向网格布置数量为M;
沿轴向方向网格布置数量为N;
沿圆周方向网格布置角度为θ;
2.1)确定反射镜第i个单元对应的节点编号:
Figure GDA0002377350050000023
时,第i个单元Ei所对应的节点编号为:
n1=INT(i÷(N×M))×(N+1)×(M+1)+(λ-1)×(M+1)+τ
n2=n1+1
n3=n1+(N+1)×(M+1)+1
n4=n1+(N+1)×(M+1)
n5=n1+(M+1)
n6=n1+(M+1)+1
n7=n1+(N+2)×(M+1)+1
n8=n1+(N+2)×(M+1)
Figure GDA0002377350050000024
时,第i个单元Ei所对应的节点编号为:
n1=INT(i÷(N×M))×(N+1)×(M+1)+(λ-1)×(M+1)+τ
n2=n1+1
n3=(λ-1)×(M+1)+τ+1
n4=(λ-1)×(M+1)+τ
n5=n1+(M+1)
n6=n1+(M+1)+1
n7=λ×(M+1)+τ+1
n8=λ×(M+1)+τ
其中:
τ=MOD(MOD(i,(N×M)),M)
λ=INT(MOD(i,(N×M)),M)+1
2.2)确定反射镜第j个节点坐标对应的位置;
Figure GDA0002377350050000031
Figure GDA0002377350050000032
Figure GDA0002377350050000033
其中:
f=INT(j÷(N+1)×(M+1))
Figure GDA0002377350050000034
ω=ceil((MOD(j,(M+1))-1)÷(M+1))
其中:反射镜球面半径为R;
反射镜中心孔半径为Rin
反射镜外圆半径为Rout
反射镜厚度为H;
对以下符号定义:
INT(A):取A的整数部分,A为任意数值;
MOD(B,C):取B÷C的余数,B、C为任意数值;
ABS(D):取D得绝对值,D为任意数值;
ceil(E):返回大于或者等于E的最小整数,E为任意数值;
2.3)存储反射镜节点编号与位置信息;
2.4)存储反射镜单元编号与对应节点顺序,得到的整个反射镜节点和单元信息;
3)建立除反射镜以外的反射镜支撑结构三维模型;
4)对反射镜支撑结构进行有限元网格划分;
5)有限元软件识别反射镜的节点位置信息和单元信息,建立反射镜的有限元网格模型;
6)在有限元软件中建立反射镜节点和反射镜支撑之间的约束关系;
7)在有限元软件中对反射镜节点和反射镜支撑结构进行有限元边界条件和载荷的加载;
8)进行有限元求解;
9)后处理,提取反射镜镜面变形数据,利用最小二乘法对提取的反射镜镜面变形数据进行最佳逼近曲面拟合,获得反射镜面形的PV和RMS数值。
进一步地,步骤2.3)存储反射镜节点编号与位置信息,存储格式如下:
“*Part,name=Primary mirror
*Node
1,第1节点X轴坐标,第1节点Y轴坐标,第1节点Z轴坐标
2,第2节点X轴坐标,第2节点Y轴坐标,第2节点Z轴坐标
…………
j,第j节点X轴坐标,第j节点Y轴坐标,第j节点Z轴坐标
…………
NNUM,第NNUM节点X轴坐标,第NNUM节点Y轴坐标,第NNUM节点Z轴坐标”,将以上信息存储。
进一步地,步骤2.4)存储反射镜单元编号与对应节点顺序,存储格式如下:
“*Element,type=C3D8R
1.第1单元n1节点编号,第1单元n2节点编号,…,第1单元n8节点编号
2.第2单元n1节点编号,第2单元n2节点编号,…,第2单元n8节点编号
……
i,第i单元n1节点编号,第i单元n2节点编号,…,第i单元n8节点编号
……
NNUM,第NNUM单元n1节点编号,第NNUM单元n2节点编号,…,第NNUM单元n8节点编号”
将以上信息存储到节点位置信息的下一行,并保存。
本发明的优点为:
1.本发明对反射镜建立了数字化节点和单元信息,使反射镜的数据信息不再依赖于反射镜的三维模型,实现了反射镜节点位置精确落点在反射镜镜面上,得到的反射镜节点位置精确信息,其精度可达0.1纳米量级。
2.本发明实现了反射镜面形的精确计算,经实践反射镜面形计算误差由几十纳米甚至百纳米的量级降到了纳米量级,大大地提高了反射镜面形计算精度。
附图说明
图1为现有有限元软件划分的网格图;
图2为本发明反射镜参数与坐标系示意图;
图3为本发明反射镜节点与单元编码结构图;
图4为本发明反射镜每个单元上的节点排列顺序;
图5为本发明整个反射镜的数字化网格图。
具体实施方式
下面结合说明书附图对本发明的技术方案进行清楚、完整地描述。
本发明采用数学方法对反射镜建立反射镜数字化节点和单元信息,反射镜的数据信息不再依赖于反射镜的三维模型,使得反射镜镜面上网格节点精确地落在反射镜面上,保证反射镜节点位置数据精确到0.1纳米,采用8节点6面体单元C3D8R,对反射镜进行有限元节点位置信息和单元信息存储,节点位置信息以“节点编号,节点在X轴上的位置,节点在Y轴上的位置,节点在Z轴上的位置”的形式分行存储到Primary mirror Node_Element.txt文档中;单元信息以“单元编号,第1个节点的编号,第2个节点的编号,第3个节点的编号,第4个节点的编号,第5个节点的编号,第6个节点的编号,第7个节点的编号,第8个节点的编号”的形式分行存储到节点位置信息的下一行。有限元软件通过读取反射镜节点和单元信息,可以建立反射镜的有限元网格模型,通过对反射镜支撑结构进行有限元网格划分,然后建立反射镜和反射镜支撑之间的接触关系,再进行有限元求解,通过后处理,提取反射镜镜面变形数据,拟合反射镜面形。
本发明用于大口径反射镜的面形精确计算方法具体包括以下步骤:
1.确定坐标系:
对于中心带孔的球面反射镜,将反射镜镜面顶点作为坐标系原点,X、Y平面与反射镜底面平行,Z轴向上垂直反射镜底面,如图2所示;
2.利用数学方法建立反射镜数字化模型,反射镜模型信息只包括反射镜节点和单元信息,反射镜节点和单元编号顺序如图3和图4,反射镜模型参数如下:
根据反射镜模型参数可以确定:
整个反射镜所有单元数量
Figure GDA0002377350050000061
整个反射镜所有节点数量
Figure GDA0002377350050000062
其中:沿直径方向网格布置数量为M;
沿轴向方向网格布置数量为N;
沿圆周方向网格布置角度为θ;
2.1)确定反射镜第i个单元对应的节点编号:
Figure GDA0002377350050000063
时,第i个单元Ei所对应的节点编号为:
n1=INT(i÷(N×M))×(N+1)×(M+1)+(λ-1)×(M+1)+τ
n2=n1+1
n3=n1+(N+1)×(M+1)+1
n4=n1+(N+1)×(M+1)
n5=n1+(M+1)
n6=n1+(M+1)+1
n7=n1+(N+2)×(M+1)+1
n8=n1+(N+2)×(M+1)
Figure GDA0002377350050000064
时,第i个单元Ei所对应的节点编号为:
n1=INT(i÷(N×M))×(N+1)×(M+1)+(λ-1)×(M+1)+τ
n2=n1+1
n3=(λ-1)×(M+1)+τ+1
n4=(λ-1)×(M+1)+τ
n5=n1+(M+1)
n6=n1+(M+1)+1
n7=λ×(M+1)+τ+1
n8=λ×(M+1)+τ
其中:
τ=MOD(MOD(i,(N×M)),M)
λ=INT(MOD(i,(N×M)),M)+1
2.2)确定反射镜第j个节点坐标对应的位置;
Figure GDA0002377350050000071
Figure GDA0002377350050000072
Figure GDA0002377350050000073
其中:
f=INT(j÷(N+1)×(M+1))
Figure GDA0002377350050000074
ω=ceil((MOD(j,(M+1))-1)÷(M+1))
其中:反射镜球面半径为R;
反射镜中心孔半径为Rin
反射镜外圆半径为Rout
反射镜厚度为H;
对以下符号定义:
INT(A):取A的整数部分,A为任意数值;
MOD(B,C):取B÷C的余数,B、C为任意数值;
ABS(D):取D得绝对值,D为任意数值;
ceil(E):返回大于或者等于E的最小整数,E为任意数值;
2.3)存储反射镜节点编号与位置信息,存储格式如下:
“*Part,name=Primary mirror
*Node
1,第1节点X轴坐标,第1节点Y轴坐标,第1节点Z轴坐标
2,第2节点X轴坐标,第2节点Y轴坐标,第2节点Z轴坐标
…………
j,第j节点X轴坐标,第j节点Y轴坐标,第j节点Z轴坐标
…………
NNUM,第NNUM节点X轴坐标,第NNUM节点Y轴坐标,第NNUM节点Z轴坐标”,将以上信息存储到Primary mirror Node_Element.txt文档中。
2.4)存储反射镜单元编号与对应节点顺序,存储格式如下:
“*Element,type=C3D8R
1.第1单元n1节点编号,第1单元n2节点编号,…,第1单元n8节点编号
2.第2单元n1节点编号,第2单元n2节点编号,…,第2单元n8节点编号
…………,…
i,第i单元n1节点编号,第i单元n2节点编号,…,第i单元n8节点编号
…………,…
NNUM,第NNUM单元n1节点编号,第NNUM单元n2节点编号,…,第NNUM单元n8节点编号”
将以上信息存储到节点位置信息的下一行,并保存到Primary mirror Node_Element.txt文档中,最终得到的整个数字化反射镜节点和单元信息如图5所示;
3)建立除反射镜以外的反射镜支撑结构三维模型;
4)对反射镜支撑结构进行有限元网格划分;
5)有限元软件识别反射镜的节点位置信息和单元信息,建立反射镜的有限元网格模型;
6)在有限元软件中建立反射镜节点和反射镜支撑之间的约束关系;
7)在有限元软件中对反射镜节点和反射镜支撑结构进行有限元边界条件和载荷的加载;
8)进行有限元求解;
9)后处理,提取反射镜镜面变形数据,利用最小二乘法对提取的反射镜镜面变形数据进行最佳逼近曲面拟合,获得反射镜面形的PV和RMS数值。
本发明通过对反射镜球面半径R=4000mm,中心孔半径Rin=100mm,外圆半径Rout=550mm,反射镜厚度H=150mm,取反射镜沿直径方向网格布置数量M=20,沿轴向方向网格布置数量N=10,沿圆周方向网格布置角度θ=7.5°的反射镜采用进行无加载原始拟合,分别采用有限元软件直接划分网格和反射镜数据化模型进行反射镜面形拟合对比,数据如下:
表1
Figure GDA0002377350050000081
Figure GDA0002377350050000091
由此表1可见反射镜数据化模型计算拟合后结果的误差都在纳米量级,精度更高,更加贴近反射镜原始状态,因此采用这种计算方法更加符合实际情况,对反射镜支撑结构设计的合理判断才具有实际意义。

Claims (3)

1.一种用于大口径反射镜的面形精确计算方法,其特征在于,包括以下步骤:
1)确定坐标系:
对于中心带孔的球面反射镜,将反射镜镜面顶点作为坐标系原点,X、Y平面与反射镜底面平行,Z轴向上垂直反射镜底面;
2)利用数学方法建立反射镜数字化模型,反射镜数字化模型信息包括反射镜节点和单元信息,反射镜节点和单元编号顺序如下:
根据反射镜模型参数可以确定:
整个反射镜所有单元数量
Figure FDA0002377350040000011
整个反射镜所有节点数量
Figure FDA0002377350040000012
其中:沿直径方向网格布置数量为M;
沿轴向方向网格布置数量为N;
沿圆周方向网格布置角度为θ;
2.1)确定反射镜第i个单元对应的节点编号:
Figure FDA0002377350040000013
时,第i个单元Ei所对应的节点编号为:
n1=INT(i÷(N×M))×(N+1)×(M+1)+(λ-1)×(M+1)+τ
n2=n1+1
n3=n1+(N+1)×(M+1)+1
n4=n1+(N+1)×(M+1)
n5=n1+(M+1)
n6=n1+(M+1)+1
n7=n1+(N+2)×(M+1)+1
n8=n1+(N+2)×(M+1)
Figure FDA0002377350040000014
时,第i个单元Ei所对应的节点编号为:
n1=INT(i÷(N×M))×(N+1)×(M+1)+(λ-1)×(M+1)+τ
n2=n1+1
n3=(λ-1)×(M+1)+τ+1
n4=(λ-1)×(M+1)+τ
n5=n1+(M+1)
n6=n1+(M+1)+1
n7=λ×(M+1)+τ+1
n8=λ×(M+1)+τ
其中:
τ=MOD(MOD(i,(N×M)),M)
λ=INT(MOD(i,(N×M)),M)+1
2.2)确定反射镜第j个节点坐标对应的位置;
Figure FDA0002377350040000021
Figure FDA0002377350040000022
Figure FDA0002377350040000023
其中:
f=INT(j÷(N+1)×(M+1))
Figure FDA0002377350040000024
ω=ceil((MOD(j,(M+1))-1)÷(M+1))
其中:反射镜球面半径为R;
反射镜中心孔半径为Rin
反射镜外圆半径为Rout
反射镜厚度为H;
对以下符号定义:
INT(A):取A的整数部分,A为任意数值;
MOD(B,C):取B÷C的余数,B、C为任意数值;
ABS(D):取D得绝对值,D为任意数值;
ceil(E):返回大于或者等于E的最小整数,E为任意数值;
2.3)存储反射镜节点编号与位置信息;
2.4)存储反射镜单元编号与对应节点顺序,得到的整个反射镜节点和单元信息;
3)建立除反射镜以外的反射镜支撑结构三维模型;
4)对反射镜支撑结构进行有限元网格划分;
5)有限元软件识别反射镜的节点位置信息和单元信息,建立反射镜的有限元网格模型;
6)在有限元软件中建立反射镜节点和反射镜支撑之间的约束关系;
7)在有限元软件中对反射镜节点和反射镜支撑结构进行有限元边界条件和载荷的加载;
8)进行有限元求解;
9)后处理,提取反射镜镜面变形数据,利用最小二乘法对提取的反射镜镜面变形数据进行最佳逼近曲面拟合,获得反射镜面形的PV和RMS数值。
2.根据权利要求1所述的用于大口径反射镜的面形精确计算方法,其特征在于:步骤2.3)存储反射镜节点编号与位置信息,存储格式如下:
“*Part,name=Primary mirror
*Node
1,第1节点X轴坐标,第1节点Y轴坐标,第1节点Z轴坐标
2,第2节点X轴坐标,第2节点Y轴坐标,第2节点Z轴坐标
…………
j,第j节点X轴坐标,第j节点Y轴坐标,第j节点Z轴坐标
…………
NNUM,第NNUM节点X轴坐标,第NNUM节点Y轴坐标,第NNUM节点Z轴坐标”,将以上信息存储。
3.根据权利要求1或2所述的用于大口径反射镜的面形精确计算方法,其特征在于:步骤2.4)存储反射镜单元编号与对应节点顺序,存储格式如下:
“*Element,type=C3D8R
1.第1单元n1节点编号,第1单元n2节点编号,…,第1单元n8节点编号
2.第2单元n1节点编号,第2单元n2节点编号,…,第2单元n8节点编号
……
i,第i单元n1节点编号,第i单元n2节点编号,…,第i单元n8节点编号
……
NNUM,第NNUM单元n1节点编号,第NNUM单元n2节点编号,…,第NNUM单元n8节点编号”,将以上信息存储到节点位置信息的下一行,并保存。
CN201711343126.9A 2017-12-14 2017-12-14 一种用于大口径反射镜的面形精确计算方法 Active CN108197352B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711343126.9A CN108197352B (zh) 2017-12-14 2017-12-14 一种用于大口径反射镜的面形精确计算方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711343126.9A CN108197352B (zh) 2017-12-14 2017-12-14 一种用于大口径反射镜的面形精确计算方法

Publications (2)

Publication Number Publication Date
CN108197352A CN108197352A (zh) 2018-06-22
CN108197352B true CN108197352B (zh) 2020-07-31

Family

ID=62574310

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711343126.9A Active CN108197352B (zh) 2017-12-14 2017-12-14 一种用于大口径反射镜的面形精确计算方法

Country Status (1)

Country Link
CN (1) CN108197352B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112818570B (zh) * 2019-11-15 2022-12-20 中国科学院长春光学精密机械与物理研究所 光学镜镜面的面形计算方法
CN115017754A (zh) * 2022-05-09 2022-09-06 南京航空航天大学 一种考虑制造误差的有限元模型修正方法
CN115453750B (zh) * 2022-08-30 2024-03-01 中国科学院长春光学精密机械与物理研究所 拼接式反射镜的面形精度分析方法、装置、设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7837341B2 (en) * 2006-05-08 2010-11-23 Sony Corporation Deformable mirror device
CN102416590A (zh) * 2011-10-28 2012-04-18 中国科学院光电技术研究所 一种大口径轻质反射镜柔性限位支撑装置及安装方法
CN103605875A (zh) * 2013-12-09 2014-02-26 中国科学院紫金山天文台 大视场天文望远镜主镜轴向和侧支撑的自动优化设计方法
CN104657585A (zh) * 2014-12-16 2015-05-27 湖南科技大学 风载作用的碟式光热系统吸热器表面能流分布预测方法
CN104898264A (zh) * 2015-06-30 2015-09-09 日芯光伏科技有限公司 一种大口径旋转对称非成像自由曲面反射镜及其设计方法
CN105426592A (zh) * 2015-11-06 2016-03-23 西安电子科技大学 一种静电成形薄膜反射面天线分析方法
CN106649922A (zh) * 2016-09-18 2017-05-10 中国科学院长春光学精密机械与物理研究所 前处理接口程序的光机集成分析方法及镜面面形优化方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7194388B2 (en) * 2002-03-25 2007-03-20 Alcoa Inc. Method for determining a die profile for forming a metal part having a desired shape and associated methods
US6968096B2 (en) * 2003-07-18 2005-11-22 Nippon Sheet Glass Co., Ltd. Diffraction device using photonic crystal

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7837341B2 (en) * 2006-05-08 2010-11-23 Sony Corporation Deformable mirror device
CN102416590A (zh) * 2011-10-28 2012-04-18 中国科学院光电技术研究所 一种大口径轻质反射镜柔性限位支撑装置及安装方法
CN103605875A (zh) * 2013-12-09 2014-02-26 中国科学院紫金山天文台 大视场天文望远镜主镜轴向和侧支撑的自动优化设计方法
CN104657585A (zh) * 2014-12-16 2015-05-27 湖南科技大学 风载作用的碟式光热系统吸热器表面能流分布预测方法
CN104898264A (zh) * 2015-06-30 2015-09-09 日芯光伏科技有限公司 一种大口径旋转对称非成像自由曲面反射镜及其设计方法
CN105426592A (zh) * 2015-11-06 2016-03-23 西安电子科技大学 一种静电成形薄膜反射面天线分析方法
CN106649922A (zh) * 2016-09-18 2017-05-10 中国科学院长春光学精密机械与物理研究所 前处理接口程序的光机集成分析方法及镜面面形优化方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
中心轴支撑大口径反射镜面形装调控制方法;段学霆等;《光子学报》;20111215;全文 *

Also Published As

Publication number Publication date
CN108197352A (zh) 2018-06-22

Similar Documents

Publication Publication Date Title
CN108197352B (zh) 一种用于大口径反射镜的面形精确计算方法
CN110480075A (zh) 基于点云数据的工件曲面轮廓补偿系统及方法及介质
Pathak et al. Form error evaluation of noncontact scan data using constriction factor particle swarm optimization
CN111444573B (zh) 船舶对称分段模型生成方法及装置、存储介质和终端
Dong et al. An improved signal processing method for the laser displacement sensor in mechanical systems
Li et al. Section curve reconstruction and mean-camber curve extraction of a point-sampled blade surface
Feng et al. Direct slicing of T-spline surfaces for additive manufacturing
CN114608461A (zh) 一种非均匀壁厚零件的激光扫描测量方法
CN116433873B (zh) 一种网格划分方法、装置及电子设备
WO2003017017A1 (fr) Procede et appareil d'usinage a haute precision pour materiau heterogene
CN116049941B (zh) 装配式环桁架结构构件装配前多维度状态提取及分析方法
CN116227045B (zh) 一种结构试件的局部应力应变场构造方法及系统
Barari et al. Convergence of a finite difference approach for detailed deviation zone estimation in coordinate metrology
Rajagopal et al. Assessment of circularity error using a selective data partition approach
CN112052641B (zh) 大规模集成电路版图非结构网格偏心中点生成方法和系统
CN113806951A (zh) 一种基于半边数据结构的自然邻近点搜索的弹性仿真方法
CN113793412A (zh) 基于二维平面模板图的核电厂三维建模方法和系统
CN113747342A (zh) 网络监控方法、装置及计算设备
CN112378476A (zh) 大长径比卧式罐容积多站三维激光扫描内测装置及方法
Mu et al. Sampling method for similar section surface inspection
CN112818502A (zh) 光学镜面面形计算方法
CN114549793B (zh) 一种从二维非结构网格重构结构网格的方法、介质及装置
CN115048825A (zh) 一种薄壳体曲面仿真方法、装置、设备及介质
CN117313471A (zh) 一种门机应力场反演方法、系统及电子设备
CN117664045A (zh) 定位结构自动检测方法、装置、设备及存储介质

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant