CN108196169A - 一种基于方位角测量的局部放电定位方法 - Google Patents

一种基于方位角测量的局部放电定位方法 Download PDF

Info

Publication number
CN108196169A
CN108196169A CN201711328354.9A CN201711328354A CN108196169A CN 108196169 A CN108196169 A CN 108196169A CN 201711328354 A CN201711328354 A CN 201711328354A CN 108196169 A CN108196169 A CN 108196169A
Authority
CN
China
Prior art keywords
signal
partial discharge
covariance matrix
partial
represent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711328354.9A
Other languages
English (en)
Inventor
高强
刘齐
郭占男
王茂军
钟丹田
张光明
原峰
潘丰厚
代继承
李在林
张云华
潘家玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenyang Ke Kai Electric Power Technology Co Ltd
Shanghai Jiaotong University
State Grid Corp of China SGCC
Electric Power Research Institute of State Grid Liaoning Electric Power Co Ltd
Original Assignee
Shenyang Ke Kai Electric Power Technology Co Ltd
Shanghai Jiaotong University
State Grid Corp of China SGCC
Electric Power Research Institute of State Grid Liaoning Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenyang Ke Kai Electric Power Technology Co Ltd, Shanghai Jiaotong University, State Grid Corp of China SGCC, Electric Power Research Institute of State Grid Liaoning Electric Power Co Ltd filed Critical Shenyang Ke Kai Electric Power Technology Co Ltd
Priority to CN201711328354.9A priority Critical patent/CN108196169A/zh
Publication of CN108196169A publication Critical patent/CN108196169A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Relating To Insulation (AREA)

Abstract

本发明公开了一种基于方位角测量的局部放电定位方法,包括步骤:(1)在检测现场设置由M×M个特高频传感器构成的特高频传感器平面阵列,该M×M个特高频传感器均匀分布;(2)构建平面坐标系,设局部放电源位于该平面坐标系中的坐标(x,y)处;(3)将特高频传感器平面阵列设置在平面坐标系内的第一位置(x1,y1),则局部放电源与第一位置的夹角为局部放电第一方位角θ1;(4)获得第一方位角θ1;(5)将特高频传感器平面阵列移动至平面坐标系内的第二位置(x2,y2),则局部放电源与第二位置的夹角为局部放电第二方位角θ2;(6)获得第二方位角θ2;(7)基于局部放电源的位置方程,获取局部放电源的坐标进行定位。

Description

一种基于方位角测量的局部放电定位方法
技术领域
本发明涉及一种局部放电定位方法,尤其涉及一种角度测量的局部放电定位系统。
背景技术
基于特高频(Ultra-High Frequency,简称UHF)信号的局部放电(PartialDischarge,简称PD)检测方法抗干扰性强,近年来受到了广泛的研究与关注。
然而,在现有技术中,基于特高频局部放电信号时差的局部放电定位方法由于信号时差往往处于纳秒级别,测量困难,因此定位误差较大,限制了其在实际变电站中的应用。
基于此,期望获得一种局部放电定位方法,该局部放电定位方法能够快速准确地判断局部放电源的位置,所获得的局部放电源的位置误差小,满足实际应用需求。
发明内容
本发明的目的之一是提供一种基于方位角测量的局部放电定位方法,该局部放电定位方法通过将若干个特高频传感器构成的特高频传感器平面阵列放置于不同位置,接收局部放电特高频局部放电信号,再经过计算获得局部放电方位角,对同一局部放电源在不同位置进行多次方位角测量,最终构建局部放电源位置方程,求解即可获得局部放电源位置坐标。
基于上述目的,本发明提出了一种基于方位角测量的局部放电定位方法,包括步骤:
(1)在检测现场设置由M×M个特高频传感器构成的特高频传感器平面阵列,所述M×M个特高频传感器在特高频传感器平面阵列内均匀分布;
(2)构建平面坐标系XOY,设局部放电源位于该平面坐标系XOY中的坐标(x,y)处;
(3)将所述特高频传感器平面阵列设置在平面坐标系XOY内的第一位置(x1,y1),则局部放电源与第一位置的夹角为局部放电第一方位角θ1
(4)获得第一方位角θ1
(5)将所述特高频传感器平面阵列移动至平面坐标系XOY内的第二位置(x2,y2),则局部放电源与第二位置的夹角为局部放电第二方位角θ2
(6)获得第二方位角θ2
(7)基于下述局部放电源的位置方程:
获取局部放电源的坐标(x,y),以对局部放电源进行定位。
本发明所述的局部放电定位方法,不同于现有技术中基于时差计算定位局部放电源,而是通过在不同位置多次测量局部放电方位角,从而构建位置方程,求解最终获得局部放电位置坐标,相较于传统的时差法计算定位局部放电源,本发明所述的局部放电定位方法精确度更高,且实际应用效果满足精度需求。
此外,相较于原有的基于空间谱计算定位局部放电源的定位方法,本案通过位置方程建立局部放电源位置与局部放电方位角的联系,从而准确精确定位局部放电源的坐标位置。
进一步地,在本发明所述的基于方位角测量的局部放电定位方法中,步骤(4)获得第一方位角θ1包括步骤:
(4a)采用位于第一位置的特高频传感器平面阵列接收局部放电源发出的第一局部放电特高频实测时域信号y1(t),对y1(t)作快速傅里叶变换以将其转换到复数域,得到相应的第一复信号
(4b)构建第一信号空间谱P(θ1):其中a(θ1)表示第一局部放电特高频实测时域信号的信号导向矢量,aH1)表示信号导向矢量a(θ1)的共轭矩阵;UN1为相应的第一信号噪声子空间,表示UN1的共轭矩阵;
(4c)对构建的第一信号空间谱P(θ1)进行谱峰搜索,则峰值对应的入射角即为第一方位角θ1
进一步地,在本发明所述的基于方位角测量的局部放电定位方法中,步骤(6)获得第二方位角θ2包括步骤:
(6a)采用位于第二位置的特高频传感器平面阵列接收局部放电源发出的第二局部放电特高频实测时域信号y2(t),对y2(t)作快速傅里叶变换以将其转换到复数域,得到相应的第二复信号
(6b)构建第二信号空间谱P(θ2):其中a(θ2)表示第二局部放电特高频实测时域信号的信号导向矢量,aH2)表示信号导向矢量a(θ2)的共轭矩阵;UN2为相应的第二信号噪声子空间,UN H 2表示UN2的共轭矩阵;
(6c)对构建的第二信号空间谱P(θ2)进行谱峰搜索,则峰值对应的入射角即为第二方位角θ2
进一步地,在本发明所述的基于方位角测量的局部放电定位方法中,获得步骤(4b)中的第一噪声子空间UN1包括步骤:
(1)构建第一复信号的第一协方差矩阵R1
其中,E{}表示数学期望,,表示对y1(t)作快速傅里叶变换以将其转换到复数域的复信号的共轭,s1(t)与s1 H(t)分别表示第一局部放电特高频局部放电信号实测时域信号y1(t)的信号源矢量及其共轭;v1(t)与v1 H(t)分别表示第一局部放电特高频局部放电信号实测时域信号的噪声矢量及其共轭;RS1与RN1分别表示去除噪声的第一协方差矩阵和第一噪声协方差矩阵,RN1=σ1 2I,其中σ1表示第一噪声功率,I为单位矩阵;
(2)对第一协方差矩阵R1作特征值分解:
R1=U1Σ1U1 H
其中U1和U1 H分别表示第一协方差矩阵R1的特征向量及其共轭;Σ1表示第一协方差矩阵R1的特征值组成的对角阵;
计算第一协方差矩阵R1的特征值并将其记为λ1i,且i=1,2,……N,N+1……,M;
将所有的特征值按照大小排序,得到:
λ11>λ12>…λ1N>λ1(N+1)=λ1(N+2)=…=λ1M=σ1 2
由此,Σ1按照特征值大小排列被写为:将Σ1分为两个矩阵:由大特征值组成的矩阵以及由小特征值组成的矩阵由此特征向量U1被分解为大特征值对应的特征向量US1以及由小特征值对应的特征向量UN1
(3)将由小特征值对应的特征向量UN1作为第一噪声子空间UN1
需要说明的是,在本发明所述的技术方案中,RS1可以通过本领域内现有技术直接获得,例如通过对第一复信号作协方差计算直接获得,因而,在此不再赘述。
进一步地,在本发明所述的基于方位角测量的局部放电定位方法中,获得步骤(6b)中的第二噪声子空间UN2包括步骤:
(1)构建第二复信号的第二协方差矩阵R2
其中,E{}表示数学期望,表示对y2(t)作快速傅里叶变换以将其转换到复数域的复信号的共轭,s2(t)与s2 H(t)分别表示第二局部放电特高频实测时域信号的信号源矢量及其共轭;v2(t)与v2 H(t)分别表示第二局部放电特高频实测时域信号的噪声矢量及其共轭;RS2与RN2分别表示去除噪声的第二信号的协方差矩阵和第二噪声协方差矩阵,RN2=σ2 2I,其中σ2表示第二噪声功率,I为单位矩阵;
(2)对第二协方差矩阵R2作特征值分解:
R2=U2Σ2U2 H
其中,U2和U2 H分别表示第二协方差矩阵R2的特征向量及其共轭;Σ2表示第二协方差矩阵R2的特征值组成的对角阵;
计算第二协方差矩阵R2的特征值并将其记为λ2i,且i=1,2,……N,N+1……,M;
将所有的特征值按照大小排序,得到:
λ21>λ22>…λ2N>λ2(N+1)=λ2(N+2)=…=λ2M=σ2 2
由此,Σ2按照特征值大小排列被写为:将Σ2分为两个矩阵:由大特征值组成的矩阵以及由小特征值组成的矩阵由此特征向量U2被分解为大特征值对应的特征向量US2以及由小特征值对应的特征向量UN2
(3)将由小特征值对应的特征向量UN2作为第二噪声子空间UN2
进一步地,在本发明所述的基于方位角测量的局部放电定位方法中,所述第一位置为平面坐标系的原点O。
需要说明的是,在本发明所述的技术方案中,RS2可以通过本领域内现有技术直接获得,例如通过对第一复信号作协方差计算直接获得,因而,在此不再赘述。
进一步地,在本发明所述的基于方位角测量的局部放电定位方法中,所述特高频传感器平面阵列至少由2×2个特高频传感器构成。
本发明所述的基于方位角测量的局部放电定位方法通过将由若干个特高频传感器构成的特高频传感器平面阵列放置于不同位置,接收局部放电特高频局部放电信号,再经过计算例如基于空间谱估计算法获得局部放电方位角,对同一局部放电源在不同位置进行多次方位角测量,最终构建局部放电源位置方程,求解即可获得局部放电源位置坐标。通过该局部放电定位方法能够快速准确地判断局部放电源的位置,所获得的局部放电源的位置误差小,满足实际应用需求。
附图说明
图1显示了本发明所述的基于方位角测量的局部放电定位方法在一种实施方式下的特高频传感器平面阵列数学模型。
图2为本发明所述的基于方位角测量的局部放电定位方法在一种实施方式下的局部放电定位方法示意图。
图3示意了可使用本发明所述的基于方位角测量的局部放电定位方法的局部放电定位系统的结构。
图4显示了图3中的各个特高频传感器接收的特高频局部放电信号。
具体实施方式
下面在对本发明所述的基于方位角测量的局部放电定位方法做进一步说明之前,先结合说明书附图说明本发明的基本原理。
图1显示了本发明所述的基于方位角测量的局部放电定位方法在一种实施方式下的特高频传感器平面阵列数学模型。
如图1所示,设由M×M个特高频传感器构成的特高频传感器平面阵列,阵列两边均匀分布,其中,一边为x轴,另一边为y轴,特高频传感器位于z=0平面上。
需要说明的是,x轴上的阵元间隔dx与y轴上的阵元间隔dy可以相等也可以不相等,也就是说,特高频传感器平面阵列虽然在x轴以及y轴的上特高频传感器各自等间距分布,但是x轴与y轴的间距可以不相等。
在特高频传感器平面阵列具有一局部放电源,其距离原点位置为r,与x轴夹角为θ,记为P(r,θ)。为了方便计算,将原点设置为特高频传感器平面阵列中距离P点最远的顶角所在位置。
为了对于局部放电源P进行定位,将极坐标(r,θ)转换为平面坐标系XOY中的坐标(x,y),并采用图2所示的局部放电定位方法获得P的位置。
图2为本发明所述的基于方位角测量的局部放电定位方法在一种实施方式下的局部放电定位方法示意图。
如图2所示,本实施方式中的基于方位角测量的局部放电定位方法包括步骤:
(1)在检测现场设置由2×2个特高频传感器构成的特高频传感器平面阵列,该2×2个特高频传感器在特高频传感器平面阵列内均匀分布;
(2)构建平面坐标系XOY,设局部放电源位于该平面坐标系XOY中的坐标(x,y)处;
(3)将2×2个特高频传感器平面阵列设置在平面坐标系XOY内的第一位置D1,为了方便计算,第一位置定为原点(0,0),则局部放电源与第一位置的夹角为局部放电第一方位角θ1
(4)获得第一方位角θ1
(5)将2×2个特高频传感器平面阵列移动至平面坐标系XOY内的第二位置D2,此时坐标位置为(x2,y2),则局部放电源与第二位置的夹角为局部放电第二方位角θ2
(6)获得第二方位角θ2
(7)基于下述局部放电源的位置方程:
获取局部放电源的坐标(x,y),以对局部放电源进行定位。
其中,在本实施方式中,步骤(4)还包括如下步骤:
(4a)采用位于第一位置的特高频传感器平面阵列接收局部放电源发出的第一局部放电特高频实测时域信号y1(t),对y1(t)作快速傅里叶变换以将其转换到复数域,得到相应的第一复信号
(4b)构建第一信号空间谱P(θ1):其中a(θ1)表示第一局部放电特高频实测时域信号的信号导向矢量,aH1)表示信号导向矢量a(θ1)的共轭矩阵;UN1为相应的第一信号噪声子空间,表示UN1的共轭矩阵;
(4c)对构建的第一信号空间谱P(θ1)进行谱峰搜索,则峰值对应的入射角即为第一方位角θ1
而步骤(6)也包括如下步骤:
(6a)采用位于第二位置的特高频传感器平面阵列接收局部放电源发出的第二局部放电特高频实测时域信号y2(t),对y2(t)作快速傅里叶变换以将其转换到复数域,得到相应的第二复信号
(6b)构建第二信号空间谱P(θ2):其中a(θ2)表示第二局部放电特高频实测时域信号的信号导向矢量,aH2)表示信号导向矢量a(θ2)的共轭矩阵;UN2为相应的第二信号噪声子空间,表示UN2的共轭矩阵;
(6c)对构建的第二信号空间谱P(θ2)进行谱峰搜索,则峰值对应的入射角即为第二方位角θ2
此外,还需要说明的是,获得步骤(4b)中的第一噪声子空间UN1包括步骤:
(1)构建第一复信号的第一协方差矩阵R1
其中,E{}表示数学期望,表示对y1(t)作快速傅里叶变换以将其转换到复数域的复信号的共轭,s1(t)与s1 H(t)分别表示第一局部放电特高频局部放电信号实测时域信号y1(t)的信号源矢量及其共轭;v1(t)与v1 H(t)分别表示第一局部放电特高频局部放电信号实测时域信号的噪声矢量及其共轭;RS1与RN1分别表示去除噪声的第一协方差矩阵和第一噪声协方差矩阵,RN1=σ1 2I,其中σ1表示第一噪声功率,I为单位矩阵;
(2)对第一协方差矩阵R1作特征值分解:
R1=U1Σ1U1 H
其中U1和U1 H分别表示第一协方差矩阵R1的特征向量及其共轭;Σ1表示第一协方差矩阵R1的特征值组成的对角阵;
计算第一协方差矩阵R1的特征值并将其记为λ1i,且i=1,2,……N,N+1……,M;
将所有的特征值按照大小排序,得到:
λ11>λ12>…λ1N>λ1(N+1)=λ1(N+2)=…=λ1M=σ1 2
由此,Σ1按照特征值大小排列被写为:将Σ1分为两个矩阵:由大特征值组成的矩阵以及由小特征值组成的矩阵由此特征向量U1被分解为大特征值对应的特征向量US1以及由小特征值对应的特征向量UN1
(3)将由小特征值对应的特征向量UN1作为第一噪声子空间UN1
另外,在本实施方式中,获得步骤(6b)中的第二噪声子空间UN2包括步骤:
(1)构建第二复信号的第二协方差矩阵R2
其中,E{}表示数学期望,表示对y2(t)作快速傅里叶变换以将其转换到复数域的复信号的共轭,s2(t)与s2 H(t)分别表示第二局部放电特高频实测时域信号的信号源矢量及其共轭;v2(t)与v2 H(t)分别表示第二局部放电特高频实测时域信号的噪声矢量及其共轭;RS2与RN2分别表示去除噪声的第二信号的协方差矩阵和第二噪声协方差矩阵,RN2=σ2 2I,其中σ2表示第二噪声功率,I为单位矩阵;
(2)对第二协方差矩阵R2作特征值分解:
R2=U2Σ2U2 H
其中,U2和U2 H分别表示第二协方差矩阵R2的特征向量及其共轭;Σ2表示第二协方差矩阵R2的特征值组成的对角阵;
计算第二协方差矩阵R2的特征值并将其记为λ2i,且i=1,2,……N,
N+1……,M;
将所有的特征值按照大小排序,得到:
λ21>λ22>…λ2N>λ2(N+1)=λ2(N+2)=…=λ2M=σ2 2
由此,Σ2按照特征值大小排列被写为:将Σ2分为两个矩阵:由大特征值组成的矩阵以及由小特征值组成的矩阵由此特征向量U2被分解为大特征值对应的特征向量US2以及由小特征值对应的特征向量UN2
(3)将由小特征值对应的特征向量UN2作为第二噪声子空间UN2
RS1与RS2可以通过本领域内现有技术直接获得,因而,在此不再赘述。
需要说明的是,θ1与θ2一般上是不相等的,因此由位置方程确定的方程式有唯一解。当θ1=θ2时,则局部放电源位于原点与D2所在(x2,y2)同一条直线上,此时将特高频传感器阵列移动至该直线外一点,重新定向并求解位置方程即可得出局部放电源坐标(x,y)。
下面将根据具体实施例及说明书附图对本发明所述的基于方位角测量的局部放电定位方法作进一步说明,但是该说明并不构成对本发明技术方案的不当限定。
图3示意了可使用本发明所述的基于方位角测量的局部放电定位方法的局部放电定位系统的结构。
如图3所示,局部放电定位系统包括由特高频传感器S1、S2、S3、S4构成的特高频传感器平面阵列1、预处理单元2、同步采集系统3、数据处理单元4以及向预处理单元2、同步采集系统3以及数据处理单元4供电的电源模块P。其中,特高频传感器S1、S2、S3、S4采用特高频全向天线,其采集特高频局部放电信号,采集到的特高频局部放电信号通过对应的信号通路T1、T2、T3、T4传送到同步采集系统,经由同步采集系统向数据处理单元4传输数据后,数据处理单元4通过如图2所示的基于方位角测量的局部放电定位方法获得发出特高频局部放电信号的信号源的位置。
需要说明的是,该局部放电定位系统所建立的平面坐标系XOY中,原点可以是指特高频传感器S4所在位置,特高频传感器平面阵列1的长为1.6m,其所在的直线作为平面坐标系XOY的x轴,而特高频传感器平面阵列1的宽为1.2m,其所在的直线作为平面坐标系XOY的Y轴。
图4显示了图3中的各个特高频传感器接收的特高频局部放电信号。
如图4所示,图中I、II、III、IV曲线对应于特高频传感器S1、S2、S3、S4所接收到的特高频局部放电信号随时间的变化情况。
采用图3的局部放电定位系统测量获得的局部放电信号的位置结果列于表1中。
表1.
由表1可以看出,通过本案的局部放电定位方法所获得的局部放电信号的坐标位置虽然与实际坐标有一定误差,但该误差较小,能够满足实际应用的需求。需要指出的是,该误差是由于实际存在电磁噪声干扰造成的。
此外,从图1和图2所示的本案的局部放电定位方法的原理,以及图3、图4以及表1所列的数据可以看出,本案的基于方位角测量的局部放电定位方法通过将由若干个特高频传感器构成的特高频传感器平面阵列放置于不同位置,接收局部放电特高频局部放电信号,再经过计算获得局部放电方位角,对同一局部放电源在不同位置进行多次方位角测量,最终构建局部放电源位置方程,求解即可获得局部放电源位置坐标。通过该局部放电定位方法能够快速准确地判断局部放电源的位置,所获得的局部放电源的位置误差小,满足实际应用需求。
需要说明的是,本发明的保护范围中现有技术部分并不局限于本申请文件所给出的实施例,所有不与本发明的方案相矛盾的现有技术,包括但不局限于在先专利文献、在先公开出版物,在先公开使用等等,都可纳入本发明的保护范围。
另外,还需要说明的是,本案中各技术特征的组合方式并不限本案权利要求中所记载的组合方式或是具体实施例所记载的组合方式,本案所记载的所有技术特征可以以任何方式进行自由组合或结合,除非相互之间产生矛盾。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (7)

1.一种基于方位角测量的局部放电定位方法,其特征在于,包括步骤:
(1)在检测现场设置由M×M个特高频传感器构成的特高频传感器平面阵列,所述M×M个特高频传感器在特高频传感器平面阵列内均匀分布;
(2)构建平面坐标系XOY,设局部放电源位于该平面坐标系XOY中的坐标(x,y)处;
(3)将所述特高频传感器平面阵列设置在平面坐标系XOY内的第一位置(x1,y1),则局部放电源与第一位置的夹角为局部放电第一方位角θ1
(4)获得第一方位角θ1
(5)将所述特高频传感器平面阵列移动至平面坐标系XOY内的第二位置(x2,y2),则局部放电源与第二位置的夹角为局部放电第二方位角θ2
(6)获得第二方位角θ2
(7)基于下述局部放电源的位置方程:
获取局部放电源的坐标(x,y),以对局部放电源进行定位。
2.如权利要求1所述的基于方位角测量的局部放电定位方法,其特征在于,步骤(4)获得第一方位角θ1包括步骤:
(4a)采用位于第一位置的特高频传感器平面阵列接收局部放电源发出的第一局部放电特高频实测时域信号y1(t),对y1(t)作快速傅里叶变换以将其转换到复数域,得到相应的第一复信号
(4b)构建第一信号空间谱P(θ1):其中a(θ1)表示第一局部放电特高频实测时域信号的信号导向矢量,aH1)表示信号导向矢量a(θ1)的共轭矩阵;UN1为相应的第一信号噪声子空间,表示UN1的共轭矩阵;
(4c)对构建的第一信号空间谱P(θ1)进行谱峰搜索,则峰值对应的入射角即为第一方位角θ1
3.如权利要求1所述的基于方位角测量的局部放电定位方法,其特征在于,步骤(6)获得第二方位角θ2包括步骤:
(6a)采用位于第二位置的特高频传感器平面阵列接收局部放电源发出的第二局部放电特高频实测时域信号y2(t),对y2(t)作快速傅里叶变换以将其转换到复数域,得到相应的第二复信号
(6b)构建第二信号空间谱P(θ2):其中a(θ2)表示第二局部放电特高频实测时域信号的信号导向矢量,aH2)表示信号导向矢量a(θ2)的共轭矩阵;UN2为相应的第二信号噪声子空间,表示UN2的共轭矩阵;
(6c)对构建的第二信号空间谱P(θ2)进行谱峰搜索,则峰值对应的入射角即为第二方位角θ2
4.如权利要求2所述的基于方位角测量的局部放电定位方法,其特征在于,获得步骤(4b)中的第一噪声子空间UN1包括步骤:
(1)构建第一复信号的第一协方差矩阵R1
其中,E{}表示数学期望,表示对y1(t)作快速傅里叶变换以将其转换到复数域的复信号的共轭,s1(t)与s1 H(t)分别表示第一局部放电特高频局部放电信号实测时域信号y1(t)的信号源矢量及其共轭;v1(t)与v1 H(t)分别表示第一局部放电特高频局部放电信号实测时域信号的噪声矢量及其共轭;RS1与RN1分别表示去除噪声的第一协方差矩阵和第一噪声协方差矩阵,RN1=σ1 2I,其中σ1表示第一噪声功率,I为单位矩阵;
(2)对第一协方差矩阵R1作特征值分解:
R1=U1Σ1U1 H
其中U1和U1 H分别表示第一协方差矩阵R1的特征向量及其共轭;Σ1表示第一协方差矩阵R1的特征值组成的对角阵;
计算第一协方差矩阵R1的特征值并将其记为λ1i,且i=1,2,……N,N+1……,M;
将所有的特征值按照大小排序,得到:
λ11>λ12>…λ1N>λ1(N+1)=λ1(N+2)=…=λ1M=σ1 2
由此,Σ1按照特征值大小排列被写为:将Σ1分为两个矩阵:由大特征值组成的矩阵以及由小特征值组成的矩阵由此特征向量U1被分解为大特征值对应的特征向量US1以及由小特征值对应的特征向量UN1
(3)将由小特征值对应的特征向量UN1作为第一噪声子空间UN1
5.如权利要求3所述的基于方位角测量的局部放电定位方法,其特征在于,获得步骤(6b)中的第二噪声子空间UN2包括步骤:
(1)构建第二复信号的第二协方差矩阵R2
其中,E{}表示数学期望,表示对y2(t)作快速傅里叶变换以将其转换到复数域的复信号的共轭,s2(t)与s2 H(t)分别表示第二局部放电特高频实测时域信号的信号源矢量及其共轭;v2(t)与v2 H(t)分别表示第二局部放电特高频实测时域信号的噪声矢量及其共轭;RS2与RN2分别表示去除噪声的第二信号的协方差矩阵和第二噪声协方差矩阵,RN2=σ2 2I,其中σ2表示第二噪声功率,I为单位矩阵;
(2)对第二协方差矩阵R2作特征值分解:
R2=U2Σ2U2 H
其中,U2和U2 H分别表示第二协方差矩阵R2的特征向量及其共轭;Σ2表示第二协方差矩阵R2的特征值组成的对角阵;
计算第二协方差矩阵R2的特征值并将其记为λ2i,且i=1,2,……N,N+1……,M;
将所有的特征值按照大小排序,得到:
λ21>λ22>…λ2N>λ2(N+1)=λ2(N+2)=…=λ2M=σ2 2
由此,Σ2按照特征值大小排列被写为:将Σ2分为两个矩阵:由大特征值组成的矩阵以及由小特征值组成的矩阵由此特征向量U2被分解为大特征值对应的特征向量US2以及由小特征值对应的特征向量UN2
(3)将由小特征值对应的特征向量UN2作为第二噪声子空间UN2
6.如权利要求2所述的基于方位角测量的局部放电定位方法,其特征在于,所述第一位置为平面坐标系的原点O。
7.如权利要求1所述的基于方位角测量的局部放电定位方法,其特征在于,所述特高频传感器平面阵列至少由2×2个特高频传感器构成。
CN201711328354.9A 2017-12-13 2017-12-13 一种基于方位角测量的局部放电定位方法 Pending CN108196169A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711328354.9A CN108196169A (zh) 2017-12-13 2017-12-13 一种基于方位角测量的局部放电定位方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711328354.9A CN108196169A (zh) 2017-12-13 2017-12-13 一种基于方位角测量的局部放电定位方法

Publications (1)

Publication Number Publication Date
CN108196169A true CN108196169A (zh) 2018-06-22

Family

ID=62574436

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711328354.9A Pending CN108196169A (zh) 2017-12-13 2017-12-13 一种基于方位角测量的局部放电定位方法

Country Status (1)

Country Link
CN (1) CN108196169A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109029427A (zh) * 2018-06-26 2018-12-18 北京永安信通科技股份有限公司 对象定位方法、对象定位装置和电子设备
CN109387756A (zh) * 2018-12-13 2019-02-26 云南电网有限责任公司电力科学研究院 一种基于光纤光栅的局部放电检测系统及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101702000A (zh) * 2009-11-26 2010-05-05 华北电力大学(保定) 变压器局部放电的相控超声定位方法及系统
WO2014106414A1 (zh) * 2013-01-07 2014-07-10 国家电网公司 局部放电源的定位方法和局部放电源的定位系统
CN104614653A (zh) * 2015-02-09 2015-05-13 国家电网公司 基于天线阵列的局放检测装置的多局放点定位和分辨方法
CN105093070A (zh) * 2014-05-06 2015-11-25 长沙理工大学 一种大型变压器多放电源超声定位方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101702000A (zh) * 2009-11-26 2010-05-05 华北电力大学(保定) 变压器局部放电的相控超声定位方法及系统
WO2014106414A1 (zh) * 2013-01-07 2014-07-10 国家电网公司 局部放电源的定位方法和局部放电源的定位系统
CN105093070A (zh) * 2014-05-06 2015-11-25 长沙理工大学 一种大型变压器多放电源超声定位方法
CN104614653A (zh) * 2015-02-09 2015-05-13 国家电网公司 基于天线阵列的局放检测装置的多局放点定位和分辨方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
谢庆: "基于空间谱估计的变压器局放超声阵列定位方法研究", 《中国博士学位论文全文数据库工程科技II辑》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109029427A (zh) * 2018-06-26 2018-12-18 北京永安信通科技股份有限公司 对象定位方法、对象定位装置和电子设备
CN109387756A (zh) * 2018-12-13 2019-02-26 云南电网有限责任公司电力科学研究院 一种基于光纤光栅的局部放电检测系统及方法

Similar Documents

Publication Publication Date Title
CN103018730B (zh) 分布式子阵波达方向估计方法
CN107015198B (zh) 一种基于天线非规则布设的室内定位方法
Zhao et al. Underdetermined direction of arrival estimation using acoustic vector sensor
CN107505548B (zh) 一种基于柔性阵列传感器的局放超声定位方法
CN105163282A (zh) 一种基于蓝牙位置指纹的室内定位系统及定位方法
CN104869641B (zh) 基于AP优化的Wi‑Fi室内定位方法
CN108181557A (zh) 一种确定特高频局部放电信号方位的方法
Poormohammad et al. Precision of direction of arrival (DOA) estimation using novel three dimensional array geometries
JP2010197050A (ja) 位置推定システム
CN108196169A (zh) 一种基于方位角测量的局部放电定位方法
CN111707986B (zh) 一种基于稀疏面阵的三维参数估计方法
Zhou et al. Accurate DOA estimation with adjacent angle power difference for indoor localization
CN106154217B (zh) Ula和uca中互耦未知时基于空间谱伪峰消除的自校准方法
CN107576951A (zh) 基于嵌套式电磁矢量传感器阵列的波达方向估计方法
CN108398659A (zh) 一种矩阵束与求根music结合的波达方向估计方法
CN106970348A (zh) 电磁矢量传感器阵列解相干二维music参数估计方法
CN109254265A (zh) 一种基于麦克风阵列的鸣笛车辆定位方法
Wang et al. Angular spread measurement and modeling for 3D MIMO in urban macrocellular radio channels
Yang et al. Phase Calibration Based Three-Dimensional Beamspace Matrix Pencil Algorithm for Indoor Passive Positioning and Tracking
Zou et al. High accuracy frequency and 2D-DOAs estimation of conformal array based on PARAFAC
Yang et al. Channel state information-based multi-dimensional parameter estimation for massive RF data in smart environments
Lin et al. Rotary way to resolve ambiguity for planar array
CN110907925A (zh) 一种高频地波雷达双站模型下的权重定位方法
Li et al. Automatic indoor radio map construction and localization via multipath fingerprint extrapolation
Cao et al. DOA estimation for noncircular signals in the presence of mutual coupling

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20180622

WD01 Invention patent application deemed withdrawn after publication