CN108191423A - 一种应用于超高功率锁式移相器石榴石铁氧体材料 - Google Patents

一种应用于超高功率锁式移相器石榴石铁氧体材料 Download PDF

Info

Publication number
CN108191423A
CN108191423A CN201810211993.5A CN201810211993A CN108191423A CN 108191423 A CN108191423 A CN 108191423A CN 201810211993 A CN201810211993 A CN 201810211993A CN 108191423 A CN108191423 A CN 108191423A
Authority
CN
China
Prior art keywords
high power
ferrogarnet
phase shifter
remanence ratio
ultra high
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810211993.5A
Other languages
English (en)
Other versions
CN108191423B (zh
Inventor
王文鑫
翁兆平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NANJING GUORUI MICROWAVE DEVICES Co Ltd
Original Assignee
NANJING GUORUI MICROWAVE DEVICES Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NANJING GUORUI MICROWAVE DEVICES Co Ltd filed Critical NANJING GUORUI MICROWAVE DEVICES Co Ltd
Priority to CN201810211993.5A priority Critical patent/CN108191423B/zh
Publication of CN108191423A publication Critical patent/CN108191423A/zh
Application granted granted Critical
Publication of CN108191423B publication Critical patent/CN108191423B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2675Other ferrites containing rare earth metals, e.g. rare earth ferrite garnets
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/18Phase-shifters
    • H01P1/19Phase-shifters using a ferromagnetic device
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3239Vanadium oxides, vanadates or oxide forming salts thereof, e.g. magnesium vanadate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

本发明公开了一种应用于超高功率锁式移相器石榴石铁氧体材料,其组成化学式具体表达为Y3‑x‑2yGdxCa2yVyInzCoξSiξFe5‑2ξ‑y‑z‑θO12;其中0≤x≤3,0<y<1,0≤z<1,0<ξ≤0.06,0<θ≤0.5,θ为缺铁量。本发明通过Co2+‑Si4+小量联合取代,可以获得兼顾良好高功率特性和高剩磁比的石榴石铁氧体材料。

Description

一种应用于超高功率锁式移相器石榴石铁氧体材料
技术领域
本发明属于微波技术和磁性材料领域,是一种应用于超高功率锁式移相器石榴石铁氧体材料,主要是用作微波系统中高功率锁式移相器的旋磁材料。
背景技术
大功率器件锁式移相器,不仅要求微波铁氧体材料具有合适的饱和磁化强度、小的介电损耗和高的自旋波线宽,还要具有高的剩磁比及低的温度系数等特性。石榴石铁氧体与锂铁氧体等系列材料相比,具有较高耐功率特性和较小的损耗,但是其矩形性能并不理想,剩磁比相对较小。高功率锁式移相器对石榴石铁氧体材料的要求主要有:高的自旋波线宽和高的剩磁比。
目前可用于高功率的或具有高剩磁比的石榴石铁氧体材料,国内外已有一些文献或专利报道。其中具有高功率特性如美国专利AD-601-632(1965年)和国内专利CN1286127C中所述的石榴石铁氧体材料,其化学式:YxGd3-xAl0.5Fe4.5O12和Y3Fe5-5yAl5yO12;CN1600741A中所述的石榴石铁氧体材料,其化学式为:Y3-xGdxFet-2y-zCoySiyAlzO12、Y3-x- uGdxFet-2y-u-zCoySiyAlzO12和Y3-xGdxFet-2y-v-zCoyInvSiyAlzO12。以上专利所述的石榴石铁氧体大都属于高功率石榴石铁氧体材料,并没有讲述材料的剩磁比特性。专利CN201510802358.0中描述了一种应用于高功率移相器的石榴石铁氧体材料及制备方法,主要讲述了利用Mn3+这单一离子掺杂提高材料剩磁比的技术方法。大功率锁式移相器需要材料兼顾良好的高功率特性和高的剩磁比,国内外在这俩方面还应该有所关注。
通常为了改善石榴石铁氧体的矩形性能,获得高的剩磁比,必须使材料中的气孔减少,或应力能λσ下降,从而使磁晶各向异性的作用居于首要地位,λ为磁致伸缩系数。一般而言,其体积的变化引起剩磁的变化可以由下式表示:
其中R为材料的剩磁比,P为样品的气孔率,K1为材料的磁晶各向异性常数。上式可以看出,剩磁比R的变化与P,λ之积成正比,与K1值成反比,所以,为了避免应用中剩磁受到外界的影响,工艺上我们需要提高材料的致密度降低气孔率,同时改进材料的配方,使磁致伸缩系数λ尽可能接近于0。在此原则上,人们可以以少量的Ce3+取代Y3+,或少量的Mn3+取代Fe3+时可使磁致伸缩系数下降,从而提高剩磁比。为了同时满足高功率特性,一般还会掺杂快驰豫离子Ho3+、Dy3+等,然而少量快驰豫离子的掺杂会影响材料剩磁比的提高,这对同时满足高功率和高剩磁比是不利的。
常用的高功率石榴石系列铁氧体材料,磁晶各向异性系数K1小并且常为负数,特别是为了进一步降低铁磁共振线宽,会利用In3+离子进行取代,由于In3+等离子半径大,进入a位可明显地降低了K1值,使得λσ的相对作用处于主导地位,大大降低了K1值对剩磁比的贡献,有该类离子掺杂的石榴石系列材料剩磁比都较小些,即使利用少量Mn3+取代Fe3+对剩磁比的提高不是特别明显,这也造成了该类石榴石铁氧体材料剩磁比的提高不易。
发明内容
本发明针对这类磁晶各向异性系数K1小的,掺杂Mn3+或Ce3+不易提高剩磁比的石榴石铁氧体材料,提供了另一种提高剩磁比的思路,即适量提高材料的磁晶各向异性常数K1值,使磁晶各向异性的作用居于首要地位,从而提高石榴石材料的剩磁比,同时提高材料的高功率特性。我们可以从改善材料的磁晶各向异性常数K1方面考虑,磁晶各向异性常数K1的符号和大小取决于磁性离子的性质和所在晶位的晶体场对称性及强度。特别是当Co2+-Si4+小量联合取代石榴石铁氧体时,破坏了Fe3+晶位对称性,Co2+具有强的各向异性,可能改善了该体系的磁晶各向异性,使得材料在立方各向异性上叠加了局部单轴各向异性,从而使K1起主导地位,提高了材料的剩磁比。所以,只要极少量Co2+掺杂,也可能明显增强K1值,从而使磁晶各向异性对剩磁比的影响起主导因数。同时,Co2+可以作为快弛豫离子,可以明显提高材料的自旋波线宽,改善剩磁比的同时增强材料的耐功率特性。
为了解决以上问题,本发明采用了如下技术方案:应用于超高功率锁式移相器石榴石铁氧体材料,为单相石榴石结构且其组成化学式为
Y3-x-2yGdxCa2yVyInzCoξSiξFe5-2ξ-y-z-θO12;其中0≤x≤3,0<y<1,0≤z<1,0<ξ≤0.06,0<θ≤0.5,θ为缺铁量,其中Co2+-Si4+取代可改变材料体系的磁晶各向异性常数K1,可获得更高的剩磁比,这种利用Co2+-Si4+联合取代提高该体系材料剩磁比的新方法,能兼顾材料的剩磁比和耐功率特性。
本发明为了同时获得良好的高功率特性和高的剩磁比,以Co2+-Si4+小量联合取代,克服由于In3+等离子取代减小了材料的磁晶各向异性常数K1而不易得到高剩磁比的石榴石铁氧体材料。本发明使用纯度≥99.9%的Y2O3,Gd2O3和分析纯的CaCO3,V2O5,Co2O3,SiO2,Fe2O3为原材料,调节取代离子的替换量,采用传统陶瓷工艺,可以获得具有良好高功率特性和高剩磁比的石榴石铁氧体材料。
具体实施方式
以下对本发明的具体实施方式进行详细说明。
本发明能够得到兼顾良好功率特性和高剩磁比的石榴石铁氧体材料,该为单相石榴石结构且其组成化学式为
Y3-x-2yGdxCa2yVyInzCoξSiξFe5-2ξ-y-z-θO12;其中0≤x≤3,0<y<1,0≤z<1,0<ξ≤0.06,0<θ≤0.5,θ为缺铁量。
制备工艺流程为:1)原材料预处理→按配方计算并配料→一次球磨→烘干→预烧→二次球磨→二次烘干→造粒→压制成型→烧结。
实施例Ⅰ
根据化学分子式Y3-x-2yGdxCa2yVyInzCoξSiξFe5-2ξ-y-z-θO12
其中x=0.2,ξ分别取0.01、0.02、0.03和0.04,y=0.3,z=0.3,θ=0.08;按分子式分别计算出各种原材料所需的原材料的量,经过一次球磨混合,烘干,于1150℃预烧,保温5小时,再经二次球磨烘干造粒,干压成型后于1370℃烧结10小时,得到样品。经磨加工处理,制成测试所需的样品进行参数测试,测量结果如下表1所示。
表1案例Ⅰ高功率石榴石材料的电磁性能参数
本案例中的石榴石铁氧体材料,如果没有Co2+-Si4+小量联合取代,因为掺杂了较多的In3+(z=0.3),In3+半径大,进入a位,明显地降低了K1值,使得λσ的相对作用处于主导地位,大大降低了K1值对剩磁比的贡献,实验表明此时的剩磁比只有0.61,即使掺杂少量的Mn3+改善λσ也不足以快速提高材料的剩磁比,试验表明掺杂0.06时,此时的剩磁比反而下降为0.54左右。而本技术表明,当具有比较强的各向异性离子Co2+取代时,如表Ⅰ所示,Co2+取代量为0.02时剩磁比为0.71,当取代量大于等于0.03时剩磁比已经提高到0.8以上。由于Co2+取为快弛豫离子,能同时提高耐功率特性。
实施例Ⅱ
根据化学分子式Y3-x-2yGdxCa2yVyInzCoξSiξFe5-2ξ-y-z-θO12
取:x=1.6,y=0.55,z=0.5,ξ分别取0、0.02和0.04,θ=0.05;按分子式分别计算出各种原材料所需的原材料的量,经过一次球磨混合,烘干,于1150℃预烧,保温5小时,再经二次球磨烘干造粒,干压成型后于1320℃烧结10小时,得到样品。经磨加工处理,制成测试所需的测试样品进行参数测试,测量结果如下表2所示。
表2案例Ⅱ高功率石榴石材料的电磁性能参数
本案例中的石榴石铁氧体材料,In3+取代量为0.5,远高于案例Ⅰ中In3+取代量,更明显地降低了K1值,使得材料的剩磁比只有0.55。而本技术表明,当具有比较强的各向异性离子Co2+取代时,如表2所示,Co2+取代量为0.02时剩磁比为0.60,当取代量等于0.04时剩磁比已经提高到0.7,能显著提高该材料的剩磁比。由于Co2+取为快弛豫离子,能同时提高耐功率特性。
上述实施例中只为说明本发明的技术构思及特点,并非对本发明作任何形式上的限制,对于本领域的技术人员来说,在不脱离本发明技术方案范围内,当可利用上述揭示的技术内容做出些许更动或修饰为等同变化的等效实施例。但凡脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均属于本发明技术方案的范围内。

Claims (3)

1.一种应用于超高功率锁式移相器石榴石铁氧体材料,
其特征在于:为单相石榴石结构且组成化学式为:
Y3-x-2yGdxCa2yVyInzCoξSiξFe5-2ξ-y-z-θO12
其中0≤x≤3,0<y<1,0≤z<1,0<ξ≤0.06,0<θ≤0.5,θ为缺铁量。
2.根据权利要求1所述的一种应用于超高功率锁式移相器石榴石铁氧体材料,其特征在于:该石榴石体系为In3+取代为主的石榴石材料,并由Co2+-Si4+小量联合取代旨在提高了剩磁比和耐功率性能的石榴石材料。
3.根据权利要求2所述的石榴石铁氧体材料,其特征在于:Co2+-Si4+联合取代量在0.02≤ξ≤0.06范围。
CN201810211993.5A 2018-03-09 2018-03-09 一种应用于超高功率锁式移相器石榴石铁氧体材料 Active CN108191423B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810211993.5A CN108191423B (zh) 2018-03-09 2018-03-09 一种应用于超高功率锁式移相器石榴石铁氧体材料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810211993.5A CN108191423B (zh) 2018-03-09 2018-03-09 一种应用于超高功率锁式移相器石榴石铁氧体材料

Publications (2)

Publication Number Publication Date
CN108191423A true CN108191423A (zh) 2018-06-22
CN108191423B CN108191423B (zh) 2020-11-13

Family

ID=62595861

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810211993.5A Active CN108191423B (zh) 2018-03-09 2018-03-09 一种应用于超高功率锁式移相器石榴石铁氧体材料

Country Status (1)

Country Link
CN (1) CN108191423B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110615691A (zh) * 2019-10-17 2019-12-27 马鞍山市鑫洋永磁有限责任公司 一种多孔状m型锶铁氧体块体及其制备方法
CN111187067A (zh) * 2020-01-15 2020-05-22 横店集团东磁股份有限公司 一种低损耗石榴石微波铁氧体磁片及其制备方法
CN112430080A (zh) * 2020-10-27 2021-03-02 北京无线电测量研究所 一种高功率和高剩磁比的石榴石铁氧体材料及其制备方法
CN113943154A (zh) * 2021-11-11 2022-01-18 南京国睿微波器件有限公司 一种调整石榴石旋矩磁铁氧体材料矫顽力的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006116403A2 (en) * 2005-04-22 2006-11-02 Intematix Corporation Intracellular thermal ablation using nano-particle electron spin resonance heating
US20100135937A1 (en) * 2007-03-26 2010-06-03 The Trustees Of Columbia University In The City Of New York Metal oxide nanocrystals: preparation and uses
CN103113095A (zh) * 2013-02-20 2013-05-22 东阳富仕特磁业有限公司 一种高功率钇钆石榴石铁氧体材料
CN105347782A (zh) * 2015-11-24 2016-02-24 东阳富仕特磁业有限公司 一种高功率钇钆石榴石铁氧体

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006116403A2 (en) * 2005-04-22 2006-11-02 Intematix Corporation Intracellular thermal ablation using nano-particle electron spin resonance heating
US20100135937A1 (en) * 2007-03-26 2010-06-03 The Trustees Of Columbia University In The City Of New York Metal oxide nanocrystals: preparation and uses
CN103113095A (zh) * 2013-02-20 2013-05-22 东阳富仕特磁业有限公司 一种高功率钇钆石榴石铁氧体材料
CN105347782A (zh) * 2015-11-24 2016-02-24 东阳富仕特磁业有限公司 一种高功率钇钆石榴石铁氧体

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110615691A (zh) * 2019-10-17 2019-12-27 马鞍山市鑫洋永磁有限责任公司 一种多孔状m型锶铁氧体块体及其制备方法
CN111187067A (zh) * 2020-01-15 2020-05-22 横店集团东磁股份有限公司 一种低损耗石榴石微波铁氧体磁片及其制备方法
CN112430080A (zh) * 2020-10-27 2021-03-02 北京无线电测量研究所 一种高功率和高剩磁比的石榴石铁氧体材料及其制备方法
CN113943154A (zh) * 2021-11-11 2022-01-18 南京国睿微波器件有限公司 一种调整石榴石旋矩磁铁氧体材料矫顽力的方法

Also Published As

Publication number Publication date
CN108191423B (zh) 2020-11-13

Similar Documents

Publication Publication Date Title
CN108191423A (zh) 一种应用于超高功率锁式移相器石榴石铁氧体材料
Wu et al. Pr3+-substituted W-type barium ferrite: preparation and electromagnetic properties
CN105347782B (zh) 一种高功率钇钆石榴石铁氧体
CN105174931B (zh) NiCuZn铁氧体材料的制备方法
Wu et al. Barium hexaferrites with narrow ferrimagnetic resonance linewidth tailored by site‐controlled Cu doping
Cheng et al. Preparation and magnetic properties of Y3Fe5O12 nanoparticles doped with the gadolinium oxide
Jiang et al. Cation distribution and magnetic characteristics of textured BaFe12-xScxO19 hexaferrites: Experimental and theoretical evaluations
Cao et al. Structural, morphological, dielectric and magnetic properties of Zn‐Zr co‐doping yttrium iron garnet
CN109437879A (zh) x波段至毫米波波段锁式移相器用尖晶石Li系铁氧体材料
CN110105063A (zh) 一种5g通信用自旋铁氧体材料及其制备方法
Aswathi et al. Magnetization sign reversal, exchange bias, and Griffiths-like phase in orthorhombic perovskite Pr2FeMnO6
Cheng et al. Synthesis and magnetic properties of Y3− xDyxFe5O12 nanoparticles
Liu et al. Effect of Bi doping on the crystal structure, magnetic and magnetocaloric properties of La0. 7-xBixSr0. 15Ca0. 15MnO3 (x= 0, 0.05, 0.10, 0.15) manganites
Cao et al. Magnetic properties and magnetic entropy changes of perovskite manganese oxide La0. 8-xEuxSr0. 2MnO3 (x= 0, 0.075)
Belous et al. Al-doped yttrium iron garnets Y3AlFe4O12: Synthesis and properties
Han et al. High dielectric constant and magnetic properties of Bi-In Co-substituted YIG ferrites
Cheng et al. Study of Y1− xErxFeO3 (0≤ x≤ 1) powder synthesized by sol–gel method and their magnetic properties
CN114436637A (zh) 一种高介电常数高功率微波铁氧体材料及其制备方法
Gunanto et al. The effect of Zn-dopant on the anisotropy constant and reflection loss of the Ba0. 6Sr0. 4Fe10-xZnxMnTiO19 (x= 0.1, 0.3, and 0.5)
Xu et al. Effects of In-substitution on the microstructure and magnetic properties of Bi-CVG ferrite with low temperature sintering
Huang et al. Effects of Zr-substitution on microstructure and properties of YCaVIG ferrites
Rawat et al. Investigation of structural, magnetic, and magnetocaloric properties of nanocrystalline double perovskite Pr2CoMnO6
Amalthi et al. Configuring Nd0. 7Ca0. 3Mn1-xNixO3 perovskite nanocomposites with magnetocaloric performance
Khan et al. The effect of antisite disorder on magnetic and exchange bias properties of Gd-substituted Y2CoMnO6 double perovskite
Xie et al. Low-firing Li 0.42 Zn 0.27 Ti 0.11 Mn 0.1 Fe 2.1 O 4 ceramics modified with V 2 O 5–ZnO–B 2 O 3 glass addition for microwave device application

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant