CN108171988B - 一种公路事故勘查系统及方法 - Google Patents

一种公路事故勘查系统及方法 Download PDF

Info

Publication number
CN108171988B
CN108171988B CN201810003129.6A CN201810003129A CN108171988B CN 108171988 B CN108171988 B CN 108171988B CN 201810003129 A CN201810003129 A CN 201810003129A CN 108171988 B CN108171988 B CN 108171988B
Authority
CN
China
Prior art keywords
accident
robot
unmanned aerial
aerial vehicle
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810003129.6A
Other languages
English (en)
Other versions
CN108171988A (zh
Inventor
陈洋卓
江奥
石跃祥
孙锦妮
伏博毅
赵鹿单
王洪
崔超杰
薛阳凡
曹纤纤
李政烜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiangtan University
Original Assignee
Xiangtan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiangtan University filed Critical Xiangtan University
Priority to CN201810003129.6A priority Critical patent/CN108171988B/zh
Publication of CN108171988A publication Critical patent/CN108171988A/zh
Application granted granted Critical
Publication of CN108171988B publication Critical patent/CN108171988B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/017Detecting movement of traffic to be counted or controlled identifying vehicles
    • G08G1/0175Detecting movement of traffic to be counted or controlled identifying vehicles by photographing vehicles, e.g. when violating traffic rules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/024Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services
    • G06Q50/26Government or public services
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/11Region-based segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/194Segmentation; Edge detection involving foreground-background segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • G06T7/73Determining position or orientation of objects or cameras using feature-based methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/10Air crafts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10016Video; Image sequence
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30236Traffic on road, railway or crossing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Abstract

本发明提供了一种公路事故勘查系统及方法,系统包括子母系统和地面控制终端;所述子母系统中以机器人为母机、以无人机为子机,由子母系统共同完成事故勘查和处理作业;无人机和机器人通过其搭载的无线视频传输模块,将事故现场的图像传送给地面控制终端,手持地面控制终端的交警可通过机器人搭载的显示屏与现场人员进行交流,公布事故结论。若车主需要为此缴纳罚款,可在线为其开出罚单,车主可通过二维码扫码立即缴纳。本发明能够提高高速公路事故的处理效率,最大程度地减少因事故造成的损失。本发明能够提高高速公路事故的处理效率,最大程度地减少因事故造成的损失。

Description

一种公路事故勘查系统及方法
技术领域
本发明属于机器人技术领域,具体涉及事故处理勘测方法,特别涉及一种公路事故勘查系统及方法。
背景技术
在高速公路上发生车祸或轻微事故时,往往需要保持事故原样,等待高速交警前来处理或救援,在此过程中往往容易造成高速公路的拥堵情况。而高速公路拥堵的路况也会影响交警赶来处理或救援的速度,即使是未伤人的轻微事故,只要事故点没有处理好,高速公路上就会一直拥堵,由此造成高速公路越来越堵的恶性循环。
据高速交警介绍,高速道路上发生的拥堵七成以上都与交通事故有关,但由于高速公路的特殊性,目前高速事故快处率远不及市区,这也在加剧着拥堵的严重程度。一旦发生事故至少要占据一条车道,有时甚至要占据两三条乃至全部车道,这样大大降低通行效率,高速路上车速这么快,几分钟的时间就会造成几公里的拥堵。
“道路转弯处、互通立交多条道路会集处、收费站等节点,车辆在经过时必然要减速,前车减速后车云集而至,极易压车拥堵”高速民警分析说。除车流量猛增超出道路承载能力外,猛增的车流量也加大了事故发生的概率,事故多发又加剧了拥堵。山东交通出行网每小时都会发布两到三次高速公路的实时路况信息,每次发布都会有10条左右的交通事故信息。
因此,有必要设计一种能够提高高速公路上事故处理效率的系统及方法。
发明内容
本发明所要解决的问题是,针对现有技术的不足,提供一种公路事故勘查系统及方法,能够提高高速公路事故的处理效率,最大程度地减少因事故造成的损失。
本发明采用如下的技术方案:
一种公路事故勘查系统,包括子母系统和地面控制终端;所述子母系统中以机器人为母机、以无人机为子机,由子母系统共同完成事故勘查和处理作业;
所述机器人上设置有第一连接模块和第一控制系统,以及与第一控制系统相连的定位系统、第一视频采集系统、第一无线通信系统和供电系统;所述供电系统为各用电模块供电;
所述无人机上设置有第二连接模块和第二控制系统,以及与第二控制系统相连的第二视频采集系统和第二无线通信系统;
所述第一连接模块和第二连接模块用于机器人与无人机固定,同时实现机器人为无人机提供电能补给;
所述第一无线通信系统、第二无线通信系统和地面控制终端两两通信连接;
所述定位系统(北斗导航),用于机器人自主定位到达事故发生点,并在无人机现场航拍结束后,提供本机位置给无人机,以便无人机正确返航;
所述第一视频采集系统和第二视频采集系统,分别用于机器人和无人机对事故现场及其周边进行系统地拍摄,并将拍摄的视频通过无线通信传输给地面控制终端,以便地面控制终端实时监测事故现场情况,对子母系统进行控制;
所述第一控制系统接收地面终端对于机器人(履带车)的控制;地面控制终端根据实时监测的机器人拍摄视频,人工干预机器人工作状态以及行走区域;
所述第二控制系统接收地面终端对于无人机的控制;地面控制终端根据实时监测的无人机航拍视频,实现人工干预无人机飞行状态以及飞行区域。
进一步地,所述无人机上还设置有电量检测模块,电量检测模块实时监测无人机电量,当电量低于30%,无人机自动返航,与机器人上的第一连接模块连接充电。
进一步地,所述无人机上还设置有与第二控制系统相连的巡航系统,用于定时采集高速公路路况视频,并实时将视频传输给地面控制终端。
进一步地,机器人上还设置有与第一控制系统相连的勘查系统、医疗系统和现场保护系统;
所述机器人勘查系统,用于对事故现场进行勘测和处理;机器人勘查系统包括显示屏模块,与所述的第一控制系统相连接,地面控制终端通过机器人搭载的显示屏与现场人员进行交流,公布事故结论;若车主需要为此缴纳罚款,可在线为其开出罚单,车主可通过显示屏二维码扫码立即缴纳;
所述的机器人医疗系统,由机器人将医疗急救用品和基础的医用器械带往事故现场,给予事故现场的伤者医疗帮助;
所述的机器人现场保护系统,与所述的勘查系统相连接,实施事故现场的设障,并进行声光鸣笛和喊话,对事故现场车辆及相关人员进行疏导,提醒后方车辆绕行,避免二次事故。
进一步地,所述第一连接模块包括卡口和电能补给端口;卡口用于无人机正确返航后与机器人精准对接与固定;电能补给端口集成在所述卡口上,实现机器人为无人机的供电系统充电。
本发明还提供了一种公路事故勘查方法,采用上述公路事故勘查系统拍摄的事故现场视频,实现远程事故勘查。
进一步地,所述事故勘查包括摩擦类事故监测,步骤如下:
Step11:对子母系统拍摄的视频图像进行预处理:对图像进行灰度处理和去噪(由于图像采集中电子设备自身的干扰会产生椒盐噪声,所以使用自适应中值滤波器对图像进行滤波去噪),并按照道路交通标线的方向(交通虚实线)调正图像的方向;
Step12:对预处理后的图像去除背景部分,然后提取图像边缘并进行二值化处理(汽车被处理为白色,其他的碎片和背景实物被处理成黑色),得到图像中的汽车轮廓;将图像中的两个汽车轮廓分别拟合为长方形,分别记为长方形A(QRUV),长方形B(MNOP),其中A相对于车道行进方向为前车,B相对于车道行进方向为后车;把图像映射在二维平面坐标系中,如图1所示;
Step13:计算车身与道路交通标线的角度,即车身偏离方向角度为α;
考虑到发生摩擦类事故时,一般后车会改变形式方向,所以对长方形B做进一步处理;分别求长方形B四条边的斜率,分别记为Ki,i=0,1,2,3,选择其中小于0的值,记为k,则有:
α=arctan(k);
Step14:求取两个汽车车身的最短距离l;
如果Step12中两个汽车轮廓无法拟合为两个独立的长方形(没有可识别区分的两个长方形),则判定:l=0;
否则,进行如下步骤:
首先,求取长方形A的距离长方形B最近的一个顶点V(x1,y1);
然后,求取长方形B四条边中斜率为k并且距离长方形A距离较近的边NO所在直线l2的方程:
S·x+T·y+C=0
其中,S=1,T=-k,C=-a+kb,(a,b)为边NO与其相邻边MN的交点N的坐标;
最后,求点V(x1,y1)到直线l2的距离,即为两个汽车车身的最短距离l:
Figure GDA0002569319110000031
Step15:根据车身偏离方向角度为α和两个汽车车身的最短距离l判断发生摩擦类事故的可能性;
如果l=0,则必定发生了摩擦类事故;
如果l≤ln且α≥αn,则发生摩擦类事故可能性较大;
如果l>ln且α<αn,则发生摩擦类事故可能性较小;
其中,ln为车身距离阈值,αn为车身偏离方向角度阈值,为经验参数。
所述Step15中,ln和αn的初始值由历史数据统计分析得到;通过大量历史数据统计分析,得到车身距离和车身偏离方向角度与发生摩擦类事故的可能性之间的线性关系;根据该线性关系,将发生摩擦类事故的可能性为p(根据经验设定)时,对应的车身距离和车身偏离方向角度作为ln和αn的初始值,即l0和α0
第n次监测之后,若事实上本次监测现场没有发生摩擦类事故,则ln和αn保持原来的阈值不变;若事实上本次监测现场发生了摩擦类事故,则按以下公式更新阈值ln和αn
Figure GDA0002569319110000041
Figure GDA0002569319110000042
其中,
Figure GDA0002569319110000043
为前n个阈值l0~ln-1的平均值,
Figure GDA0002569319110000044
为前n个阈值α0~αn-1的平均值,ε1为调节因子,为经验参数。
进一步地,l0=0.5m,α0=15°。
进一步地,通过多次实验统计得到ε1=0.80。
进一步地,所述事故勘查包括碰撞类事故监测,步骤如下:
Step21:对子母系统拍摄的视频图像进行预处理:对图像进行灰度处理和去噪(由于图像采集中电子设备自身的干扰会产生椒盐噪声,所以使用自适应中值滤波器对图像进行滤波去噪),并按照道路交通标线的方向(交通虚实线)调正图像的方向;
Step22:求解烟雾参数β;
根据车辆碰撞经验可知,车辆碰撞都会产生大量白灰色烟雾,据统计车辆碰撞产生的烟雾灰度值分布在130~230之间,并且结合交通事故的特征,可知当检测到在130~230之间的像素块的面积大幅增加时,可能发生碰撞并发生烟雾;因此,利用双阈值法提取T+1时刻和T时刻的图像中灰度值在130~230之间的像素块,计算T+1时刻相对于T时刻的像素块面积增益,作为烟雾参数β:
Figure GDA0002569319110000045
其中,T+1时刻和T时刻的图像中灰度值在130~230之间的像素块面积大小;
Step23:求解汽车形变参数γ;
由车辆碰撞场景可知,车辆碰撞之后,汽车的形态和表面积都会发生严重形变,特别是高速行驶中汽车发生的碰撞。
对预处理后的图像去除背景部分,然后提取图像边缘并进行二值化处理(汽车被处理为白色,其他的碎片和背景实物被处理成黑色),得到图像中的汽车轮廓;将图像中的汽车轮廓拟合为长方形,得到一个或两个长方形;把图像映射在二维平面坐标系中,如图2所示。
随机选取其中一个长方形QRST,获取其四个顶点在二维平面坐标系中的坐标;根据四条边上顶点的坐标,求出四条边所在的直线Lu的方程:Su·x+Tu·y+Cu=0,其中u=0,1,2,3,为四条边所在的直线的编号;然后在每条边对应的汽车轮廓上各选择M个点(xum,yum),m=0,1,2,….,M-1,带入到以下公式,计算汽车形变参数γ:
Figure GDA0002569319110000051
Step24:根据烟雾参数β和汽车形变参数γ判断发生碰撞类事故的可能性;
如果β≥βn且γ≥γn,则发生碰撞类事故的可能性较大;
如果β<βn且γ<γn,则发生碰撞类事故的可能性较小;
其中,βn为烟雾参数阈值,γn为汽车形变参数阈值,为经验参数。
所述Step24中,βn和γn的初始值由历史数据统计分析得到;通过大量历史数据统计分析,得到烟雾参数和汽车形变参数与发生碰撞类事故的可能性之间的线性关系;根据该线性关系,将发生碰撞类事故的可能性为p时,对应的烟雾参数和汽车形变参数作为βn和γn的初始值,即β0和γ0
第n次监测之后,若事实上本次监测现场没有发生碰撞类事故,则βn和γn保持原来的阈值不变;若事实上本次监测现场发生了摩擦类事故,则按以下公式更新阈值βn和γn
Figure GDA0002569319110000052
Figure GDA0002569319110000053
其中,
Figure GDA0002569319110000054
为前n个阈值β0~βn-1的平均值,
Figure GDA0002569319110000055
为前n个阈值γ0~γn-1的平均值,ε2为调节因子,为经验参数。
进一步地,β0=1.5,γ0=3.2。
进一步地,通过多次实验统计得到ε2=0.85。
有益效果:
本发明中机器人可凭借其体积小的特点,沿高速公路的应急车道快速赶到事故点,采取一系列的措施保护现场,避免二次事故,对事故人提供基础的医疗救助,最大程度地减少因事故造成的损失;无人机和机器人通过其搭载的无线视频传输模块,将事故现场的图像传送给地面控制终端,交警可通过机器人搭载的显示屏与现场人员进行交流,公布事故结论。若车主需要为此缴纳罚款,可在线为其开出罚单,车主可通过二维码扫码立即缴纳。本发明能够提高高速公路事故的处理效率,最大程度地减少因事故造成的损失。
附图说明
图1为本发明流程图;
图2为本发明摩擦类事故监测示例图;
图3为本发明碰撞类事故监测示例图;
图4为本发明实施例1流程图。
具体实施方式
以下结合附图对本发明进行进一步具体说明。
如图1~4所示,本发明公开了一种公路事故勘查系统及方法。
实施例1:
本发明中一种公路事故勘查系统及方法的工作流程为:
无人机主动巡视高速路况,将拍摄的路况视频传送给交警;
假设高速公路上某处(以下称为A点)发生车祸,在场者立即拨打电话报警;
交警接到电话,通过报警者对现场的描述或无人机的路况视频判断是否需要交警到现场;
如果是小型事故,不需要交警到场,就直接从值班处放下机器人,机器人利用北斗定位,自动导航到A点;
若需要交警到场,交警带上机器人乘坐警车从值班处出发,警车到达某处(以下称为B点),因为交通堵塞无法继续驱车前进,交警下车步行前进,同时放下机器人,机器人利用北斗定位,自动导航到A点;
机器人到达A点,通过远程传输系统与交警手中的地面控制终端进行连接,控制端可以通过实时控制机器人,使交警可以获得自己想要看到的现场所有情况,机器人及时铺设路障,同时进行声光报警,提示后方车辆绕行,机器人为事故人提供简易的医疗用品和医疗援助;
交警控制无人机到事故发生地点,对现场进行航拍,并控制机器人及时喊话疏散围观人员、疏通车辆;
现场清理完成之后,无人机对事故现场进行细致的航拍,并结合机器人的视频采集系统,共同得到事故现场的各种信息,结束后无人机落回并固定在机器人上;
交警通过传输回来的画面,进行相应的判断,明确事故各方的具体责任;
机器人找到事故各方,并通过自带的显示屏,让交警与事故各方直接视频,告知各方的需要负的责任,如果需要开罚单,可以直接通过显示屏上的二维码扫码直接支付;
一切处理完之后,机器人按原路返回。

Claims (9)

1.一种公路事故勘查系统,其特征在于,包括子母系统和地面控制终端;所述子母系统中以机器人为母机、以无人机为子机,由子母系统共同完成事故勘查和处理作业;
所述机器人上设置有第一连接模块和第一控制系统,以及与第一控制系统相连的定位系统、第一视频采集系统、第一无线通信系统和供电系统;所述供电系统为各用电模块供电;
所述无人机上设置有第二连接模块和第二控制系统,以及与第二控制系统相连的第二视频采集系统和第二无线通信系统;
所述第一连接模块和第二连接模块用于机器人与无人机固定,同时实现机器人为无人机提供电能补给;
所述第一无线通信系统、第二无线通信系统和地面控制终端两两通信连接;
所述定位系统,用于机器人自主定位到达事故发生点,并在无人机现场航拍结束后,提供本机位置给无人机,以便无人机正确返航;
所述第一视频采集系统和第二视频采集系统,分别用于机器人和无人机对事故现场及其周边进行系统地拍摄,并将拍摄的视频通过无线通信传输给地面控制终端,以便地面控制终端实时监测事故现场情况,对子母系统进行控制;
所述第一控制系统接收地面终端对于机器人的控制;地面控制终端根据实时监测的机器人拍摄视频,人工干预机器人工作状态以及行走区域;
所述第二控制系统接收地面终端对于无人机的控制;地面控制终端根据实时监测的无人机航拍视频,实现人工干预无人机飞行状态以及飞行区域;
所述事故勘查包括摩擦类事故监测,步骤如下:
Step11:对子母系统拍摄的视频图像进行预处理:对图像进行灰度处理和去噪,并按照道路交通标线的方向调正图像的方向;
Step12:对预处理后的图像去除背景部分,然后提取图像边缘并进行二值化处理,得到图像中的汽车轮廓;将图像中的两个汽车轮廓分别拟合为长方形,分别记为长方形A和长方形B,其中A相对于车道行进方向为前车,B相对于车道行进方向为后车;把图像映射在二维平面坐标系中;
Step13:计算车身与道路交通标线的角度,即车身偏离方向角度为α;
求长方形B四条边的斜率,分别记为Ki,i=0,1,2,3,选择其中小于0的值,记为k,则有:
α=arctan(k);
Step14:求取两个汽车车身的最短距离l;
如果Step12中两个汽车轮廓无法拟合为两个独立的长方形,则判定:l=0;
否则,进行如下步骤:
首先,求取长方形A的距离长方形B最近的一个顶点V(x1,y1);
然后,求取长方形B四条边中斜率为k并且距离长方形A距离较近的边NO所在直线l2的方程:
S·x+T·y+C=0
其中,S=1,T=-k,C=-a+kb,(a,b)为边NO与其相邻边MN的交点N的坐标;
最后,求点V(x1,y1)到直线l2的距离,即为两个汽车车身的最短距离l:
Figure FDA0002569319100000021
Step15:根据车身偏离方向角度为α和两个汽车车身的最短距离l判断发生摩擦类事故的可能性;
如果l=0,则必定发生了摩擦类事故;
如果l≤ln且α≥αn,则发生摩擦类事故可能性较大;
如果l>ln且α<αn,则发生摩擦类事故可能性较小;
其中,ln为车身距离阈值,αn为车身偏离方向角度阈值,为经验参数。
2.根据权利要求1所述的公路事故勘查系统,其特征在于,所述无人机上还设置有电量检测模块,电量检测模块实时监测无人机电量,当电量低于30%,无人机自动返航,与机器人上的第一连接模块连接充电。
3.根据权利要求1所述的公路事故勘查系统,其特征在于,所述无人机上还设置有与第二控制系统相连的巡航系统,用于定时采集高速公路路况视频,并实时将视频传输给地面控制终端。
4.根据权利要求1所述的公路事故勘查系统,其特征在于,机器人上还设置有与第一控制系统相连的勘查系统、医疗系统和现场保护系统;
所述机器人勘查系统,用于对事故现场进行勘测和处理;机器人勘查系统包括显示屏、罚单生成模块和二维码生成模块,与所述的第一控制系统相连接,地面控制终端通过机器人搭载的显示屏与现场人员进行交流,公布事故结论;若车主需要为此缴纳罚款,则通过罚单生成模块在线为其开出罚单,并通过二维码生成模块产生相应的二维码,车主能通过扫描显示屏上的二维码扫码立即缴纳罚款;
所述的机器人医疗系统,用于机器人将医疗急救用品和基础的医用器械带往事故现场;
所述的机器人现场保护系统,用于实施事故现场的设障,并进行声光鸣笛和喊话,对事故现场车辆及相关人员进行疏导,提醒后方车辆绕行。
5.根据权利要求1所述的公路事故勘查系统,其特征在于,所述第一连接模块包括卡口和电能补给端口;卡口用于无人机正确返航后与机器人精准对接与固定;电能补给端口集成在所述卡口上,实现机器人为无人机的供电系统充电。
6.一种公路事故勘查方法,其特征在于,采用权利要求1~5中任一项所述的公路事故勘查系统拍摄的事故现场视频,实现远程事故勘查。
7.根据权利要求6所述的公路事故勘查方法,其特征在于,所述Step15中,通过历史数据统计分析,得到车身距离和车身偏离方向角度与发生摩擦类事故的可能性之间的线性关系;根据该线性关系,将发生摩擦类事故的可能性为p时,对应的车身距离和车身偏离方向角度作为ln和αn的初始值,即l0和α0
第n次监测之后,若事实上本次监测现场没有发生摩擦类事故,则ln和αn保持原来的阈值不变;若事实上本次监测现场发生了摩擦类事故,则按以下公式更新阈值ln和αn
Figure FDA0002569319100000031
Figure FDA0002569319100000032
其中,
Figure FDA0002569319100000033
为前n个阈值l0~ln-1的平均值,
Figure FDA0002569319100000034
为前n个阈值α0~αn-1的平均值,ε1为调节因子,为经验参数。
8.根据权利要求6所述的公路事故勘查方法,其特征在于,所述事故勘查包括碰撞类事故监测,步骤如下:
Step21:对子母系统拍摄的视频图像进行预处理:对图像进行灰度处理和去噪,并按照道路交通标线的方向调正图像的方向;
Step22:求解烟雾参数β;
利用双阈值法提取T+1时刻和T时刻的图像中灰度值在130~230之间的像素块,计算T+1时刻相对于T时刻的像素块面积增益,作为烟雾参数β:
Figure FDA0002569319100000035
其中,T+1时刻和T时刻的图像中灰度值在130~230之间的像素块面积大小;
Step23:求解汽车形变参数γ;
对预处理后的图像去除背景部分,然后提取图像边缘并进行二值化处理,得到图像中的汽车轮廓;将图像中的汽车轮廓拟合为长方形,得到一个或两个长方形;把图像映射在二维平面坐标系中;
随机选取其中一个长方形,获取其四个顶点在二维平面坐标系中的坐标;根据四条边上顶点的坐标,求出四条边所在的直线Lu的方程:Su·x+Tu·y+Cu=0,其中u=0,1,2,3,为四条边所在的直线的编号;然后在每条边对应的汽车轮廓上各选择M个点(xum,yum),m=0,1,2,….,M-1,带入到以下公式,计算汽车形变参数γ:
Figure FDA0002569319100000041
Step24:根据烟雾参数β和汽车形变参数γ判断发生碰撞类事故的可能性;
如果β≥βn且γ≥γn,则发生碰撞类事故的可能性较大;
如果β<βn且γ<γn,则发生碰撞类事故的可能性较小;
其中,βn为烟雾参数阈值,γn为汽车形变参数阈值,为经验参数。
9.根据权利要求8所述的公路事故勘查方法,其特征在于,所述Step24中,通过大量历史数据统计分析,得到烟雾参数和汽车形变参数与发生碰撞类事故的可能性之间的线性关系;根据该线性关系,将发生碰撞类事故的可能性为p时,对应的烟雾参数和汽车形变参数作为βn和γn的初始值,即β0和γ0
第n次监测之后,若事实上本次监测现场没有发生碰撞类事故,则βn和γn保持原来的阈值不变;若事实上本次监测现场发生了摩擦类事故,则按以下公式更新阈值βn和γn
Figure FDA0002569319100000042
Figure FDA0002569319100000043
其中,
Figure FDA0002569319100000044
为前n个阈值β0~βn-1的平均值,
Figure FDA0002569319100000045
为前n个阈值γ0~γn-1的平均值,ε2为调节因子,为经验参数。
CN201810003129.6A 2018-01-02 2018-01-02 一种公路事故勘查系统及方法 Active CN108171988B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810003129.6A CN108171988B (zh) 2018-01-02 2018-01-02 一种公路事故勘查系统及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810003129.6A CN108171988B (zh) 2018-01-02 2018-01-02 一种公路事故勘查系统及方法

Publications (2)

Publication Number Publication Date
CN108171988A CN108171988A (zh) 2018-06-15
CN108171988B true CN108171988B (zh) 2020-09-08

Family

ID=62517147

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810003129.6A Active CN108171988B (zh) 2018-01-02 2018-01-02 一种公路事故勘查系统及方法

Country Status (1)

Country Link
CN (1) CN108171988B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108958264B (zh) * 2018-08-03 2021-07-23 北京智行者科技有限公司 基于自动驾驶技术的道路交通稽查方法和车辆
CN110047269B (zh) * 2019-04-08 2022-07-26 王飞跃 事故支援系统、事故支援方法、电子装置及储存介质
CN110460814A (zh) * 2019-08-12 2019-11-15 上海秒针网络科技有限公司 指示信息的发送方法及装置、存储介质、电子装置
CN112712691A (zh) * 2019-10-24 2021-04-27 广州汽车集团股份有限公司 一种智慧交通事故处理方法及装置
CN114926983A (zh) * 2022-05-11 2022-08-19 中国地质大学(武汉) 一种面向交通事故应急的多尺度综合感知方法
CN114742684A (zh) * 2022-06-13 2022-07-12 山东承势电子科技有限公司 一种智能现场勘查大数据分析方法及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105809995A (zh) * 2016-05-18 2016-07-27 中国计量大学 基于飞行器网络的交通事故应急救援监控系统和方法
CN106774221A (zh) * 2017-01-22 2017-05-31 江苏中科院智能科学技术应用研究院 一种无人机与无人车协作巡逻系统及方法
CN206532417U (zh) * 2017-01-17 2017-09-29 长安大学 一种基于无人机的公路行车环境自动综合监测警示系统
CN107272739A (zh) * 2017-07-24 2017-10-20 湘潭大学 一种基于子母系统的喷药系统及方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101080831B1 (ko) * 2009-09-02 2011-11-07 국방과학연구소 지상항법장치에서의 방위각 정보 제공방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105809995A (zh) * 2016-05-18 2016-07-27 中国计量大学 基于飞行器网络的交通事故应急救援监控系统和方法
CN206532417U (zh) * 2017-01-17 2017-09-29 长安大学 一种基于无人机的公路行车环境自动综合监测警示系统
CN106774221A (zh) * 2017-01-22 2017-05-31 江苏中科院智能科学技术应用研究院 一种无人机与无人车协作巡逻系统及方法
CN107272739A (zh) * 2017-07-24 2017-10-20 湘潭大学 一种基于子母系统的喷药系统及方法

Also Published As

Publication number Publication date
CN108171988A (zh) 2018-06-15

Similar Documents

Publication Publication Date Title
CN108171988B (zh) 一种公路事故勘查系统及方法
CN111307166B (zh) 一种构建占据栅格地图的方法及其装置、处理设备
CN112017251B (zh) 标定方法、装置、路侧设备和计算机可读存储介质
CN105314122B (zh) 一种用于应急指挥和占道取证的无人机
CN113345269B (zh) 基于v2x车联网协同的交通工具危险预警的方法、装置和设备
CN110068814B (zh) 一种测量障碍物距离的方法及装置
JP7195543B2 (ja) 収穫機
JP2007323117A (ja) 道路通信システム、移動体装置、および、移動体装置の情報処理方法
CN106569225A (zh) 一种基于测距传感器的无人车实时避障方法
DE102021132853A1 (de) Auf deep learning basierende kamerakalibrierung
CN112560567A (zh) 交通工具风险识别和避免
DE112014002958T5 (de) Verwalten von Sensorerkennung in einem Fahrerassistenzsystem eines Fahrzeugs
DE102018222670A1 (de) Verfahren und Vorrichtung zum Bestimmen eines idealisierten Überholvorgangs
DE102020102624A1 (de) Fortschrittliche vermeidung von kollisionen mit wildtieren für fahrzeuge
US20230415762A1 (en) Peer-to-peer occupancy estimation
CN107172147B (zh) 节点信息获取装置、车辆间拓扑结构获取装置以及方法
DE102015014207A1 (de) Vorrichtung und Verfahren zum Aussenden eines Funksignals bezüglich eines Einsatzfahrzeugs auf Einsatzfahrt
JP7452650B2 (ja) 駐停車地点管理装置、駐停車地点管理方法、車両用装置
DE102022106461A1 (de) Systeme und verfahren zur kameraausrichtung
CN112344854B (zh) 车辆超限检测方法、系统及计算机可读存储介质
SE1650608A1 (en) Method and control unit for a vehicle
DE102021128155A1 (de) Scan-glättung für lidar (lichtdetektion und -entfernungsmessung)
CN114419925A (zh) 一种车路协同的防碰预警系统和方法
US20210103280A1 (en) Autonomous Road Surface Marking Vehicle
Lu Autonomous vision of driverless car in machine learning

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant