CN108169273B - 实现纯吸收线型的二维磁共振单体素定域j分解谱方法 - Google Patents

实现纯吸收线型的二维磁共振单体素定域j分解谱方法 Download PDF

Info

Publication number
CN108169273B
CN108169273B CN201711463709.5A CN201711463709A CN108169273B CN 108169273 B CN108169273 B CN 108169273B CN 201711463709 A CN201711463709 A CN 201711463709A CN 108169273 B CN108169273 B CN 108169273B
Authority
CN
China
Prior art keywords
pulse
localized
sequence
dimensional
gradient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201711463709.5A
Other languages
English (en)
Other versions
CN108169273A (zh
Inventor
林雁勤
田丹
段博
陈忠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiamen University
Original Assignee
Xiamen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiamen University filed Critical Xiamen University
Priority to CN201711463709.5A priority Critical patent/CN108169273B/zh
Publication of CN108169273A publication Critical patent/CN108169273A/zh
Application granted granted Critical
Publication of CN108169273B publication Critical patent/CN108169273B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N24/00Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects
    • G01N24/08Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects by using nuclear magnetic resonance

Landscapes

  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

本发明提供了实现纯吸收线型的二维磁共振单体素定域J分解谱方法,通过在不同位置加入ZS模块构成N序列与R序列,对R序列的实验结果沿间接维F1=0Hz进行对称翻转,之后与N序列的结果进行叠加,得到纯吸收线性的单体素二维定域J分解谱。N序列是在第一个90°定域脉冲后加入ZS模块,R序列是在最后一个180°定域脉冲之后加入ZS模块,两个序列最后一个180°两侧延时均匀为t1/2,实现间接维F1演化。ZS模块由选择性180°软脉冲、Z方向的梯度磁场和对称的破坏梯度组成,这样该选择性180°软脉冲在不同的空间位置实现对不同核的演化重聚,共振核的相干阶发生转移,由于N序列与R序列的ZS模块所处位置不同,使得最后二维信号组成模式不同。

Description

实现纯吸收线型的二维磁共振单体素定域J分解谱方法
技术领域
本发明涉及在磁共振仪器上获取二维定域J分解谱,尤其是涉及一种能够在磁共振仪器上采样得到实现纯吸收线型的单体素二维定域J分解谱方法。
背景技术
定域核磁共振波谱(MRS),作为磁共振成像(MRI)技术的补充工具在活体组织的研究方面有重要应用。MRS能在活体上选择性地、无创地定量测量组织内化学成分与结构,化学环境变化和分子的存在形态,这些信息是联系生化变化和疾病病理之间的桥梁,是以往任何成像技术所无法获取的。点分辨谱(Bottomley PA.Spatial Localization in NMRSpectroscopy in Vivo.Annals of the New York Academy of Sciences 1987;508(1):333-348.)和受激回波采样方式(Frahm J,Merboldt K-D,
Figure BDA0001530698170000011
W.Localized protonspectroscopy using stimulated echoes.Journal of Magnetic Resonance1987;72(3):502-508.)是两种最常用的单体素一维磁共振定域谱方法。而JPRESS即是基于点分辨谱(PRESS)实现的二维定域J分解谱。该二维定域谱可以实现信号的分离,相较于一维谱图,更容易分辨各种信号,但它的信号受到相位扭曲的影响。相位扭曲会使得信号只能舍弃相位信息,采用幅度模式显示,降低了信号的分辨率。
发明内容
本发明所要解决的主要技术问题是提供一种能够在磁共振仪器上采集实现纯吸收线性的单体素二维定域J分解谱方法。该方法进行定域谱研究时,能够获得出吸收线型的二维定域J分解谱,获得更高的分辨率,从而得到更广泛的应用。
为了解决上述的技术问题,本发明提供了一种实现纯吸收线型的二维磁共振单体素定域J分解谱方法,其特征在于包括以下步骤:
1)采集样品的核磁共振图像,确定定域区域;
2)采集定域区域的一维定域谱图;
3)确定溶液样品信号的谱图范围;
4)以溶液样品信号的谱图范围的中心频率作为软脉冲的激发中心,根据信号的谱峰间隔确定软脉冲宽度,测量样品的180°软脉冲的功率;
5)ZS模块由选层梯度、软脉冲以及对称的散相梯度构成,确定ZS模块的相关参数,首先确定软脉冲对应的选层梯度Gs,满足γ×Gs×l=SW,l为Z方向上定域区域的长度,SW为溶液样品信号谱宽,γ为氢原子的磁旋比,其次确定选择性脉冲的中心频率,其中心频率对准谱图中央;
6)确定间接维采样点数ni
7)其他定域脉冲及其对应的选层梯度由实验平台计算获得;
8)先后采集N序列与R序列的数据;
N序列是使用计算所得的90°定域脉冲作为激发脉冲,配合X方向上的选层梯度与重聚梯度,完成X方向上的定域激发,施加由选层梯度、软脉冲以及对称散相梯度构成的ZS模块,在加入Y方向上180°定域脉冲,之后经历
Figure BDA0001530698170000021
时间后,加入Z方向上的180°定域脉冲,再经历
Figure BDA0001530698170000022
时间,进行数据采集;
R序列是使用计算所得的90°定域脉冲作为激发脉冲,配合X方向上的选层梯度与重聚梯度,完成X方向上的定域激发,再加入Y方向上180°定域脉冲,之后经历
Figure BDA0001530698170000031
时间后,加入Z方向上的180°定域脉冲,再经历
Figure BDA0001530698170000032
时间后,施加由选层梯度、软脉冲以及对称散相梯度构成的ZS模块,进行数据采集;
9)将采集到的R序列的数据进行二维傅里叶变换后,沿间接维F1=0Hz作对称翻转,将得到的数据与N序列的数据进行二维傅里叶变换后的结果进行相加,这样就得到了一张纯吸收线型二维定域J谱。
在一较佳实施例中:所述间接维采样点数ni是根据间接维所需的数字分辨率来确定,ni=SW1/v1,其中v1是间接维数字分辨率,SW1是间接维谱宽。
在一较佳实施例中:所述由选层梯度、软脉冲以及对称散相梯度构成的ZS模块中的选层梯度与激发信号的谱宽有关,选择性软脉冲的中心频率根据谱图信号的中心频率确定,选择性软脉冲脉宽需要根据谱图信噪比来确定。
相较于现有技术,本发明的技术方案具备以下有益效果:
本发明提供了一种能够在磁共振仪器上采集实现纯吸收线性的单体素二维定域J分解谱方法,通过ZS模块的去偶作用,使得N型序列与R型序列的信号形成互补关系,在R型序列谱图经过翻转后与N型序列谱图叠加可以实现纯吸收线型图谱,进而获得更好的分辨率。ZS模块由选择性180°软脉冲、Z方向的梯度磁场和对称的破坏梯度组成,去偶作用的实现是通过该选择性180°软脉冲在不同的空间位置实现对不同核的演化重聚,共振核的相干阶发生转移。由于N序列与R序列的ZS模块所处位置不同,使得最后二维信号组成互补关系。
附图说明
图1为纯吸收线型二维定域J分解谱脉冲序列图。
图2基于标准的定点分辨谱的二维定域J分解谱脉冲序列图。
图3 1mol/L的苏氨酸加γ-氨基丁酸溶液构成的套管样品的结构图。图中的长方形框图代表体素位置。上面两张图显示的是苏氨酸的体素位置,下面两张图显示的是γ-氨基丁酸的体素位置。
图4为内管苏氨酸溶液样品与外管γ-氨基丁酸溶液样品的单体素一维定域谱。
图5上面两张是基于定点分辨谱序列获得的二维定域J分解谱,下面两张是纯吸收线型二维定域J分解谱。右边两张是γ-氨基丁酸定域谱,左边两张是苏氨酸定域谱,每张二维谱图上方对应该谱图的直接维投影。
图6是苏氨酸的定域谱,上面三张是基于定域分辨率序列获得的二维定域J分解谱的局部放大图与其对应的间接维投影;下面三张是纯吸收线型二维定域J分解谱的局部放大图与其对应的间接维投影;
图7是γ-氨基丁酸的定域谱,上面三张是基于定域分辨率序列获得的二维定域J分解谱的局部放大图与其对应的间接维投影;下面三张是纯吸收线型二维定域J分解谱的局部放大图与其对应的间接维投影。
具体实施方式
下文结合附图和实施实例,对本发明做进一步说明:
一种获得纯吸收线型单体素二维定域核磁共振J分解谱的方法,主要步骤为:
1)采集样品的核磁共振图像,确定定域区域;
2)采集定域区域的一维定域谱图;
3)确定溶液样品信号的谱图范围;
4)以溶液样品信号的谱图范围的中心频率作为软脉冲的激发中心,根据信号的谱峰间隔确定软脉冲宽度,测量样品的180°软脉冲的功率;
5)ZS模块由选层梯度、软脉冲以及对称的散相梯度构成,确定ZS模块的相关参数,首先确定软脉冲对应的选层梯度GS,满足γ×Gs×l=SW,l为Z方向上定域区域的长度,SW为溶液样品信号谱宽,γ为氢原子的磁旋比,其次确定选择性脉冲的中心频率,其中心频率对准谱图中央;
6)确定间接维采样点数ni
7)其他定域脉冲及其对应的选层梯度由实验平台计算获得;
8)先后采集N序列与R序列的数据;
N序列是使用计算所得的90°定域脉冲作为激发脉冲,配合X方向上的选层梯度与重聚梯度,完成X方向上的定域激发,施加由选层梯度、软脉冲以及对称散相梯度构成的ZS模块,在加入Y方向上180°定域脉冲,之后经历
Figure BDA0001530698170000054
时间后,加入Z方向上的180°定域脉冲,再经历
Figure BDA0001530698170000053
时间,进行数据采集;
R序列是使用计算所得的90°定域脉冲作为激发脉冲,配合X方向上的选层梯度与重聚梯度,完成X方向上的定域激发,再加入Y方向上180°定域脉冲,之后经历
Figure BDA0001530698170000051
时间后,加入Z方向上的180°定域脉冲,再经历
Figure BDA0001530698170000052
时间后,施加由选层梯度、软脉冲以及对称散相梯度构成的ZS模块,进行数据采集;
9)将采集到的R序列的数据进行二维傅里叶变换后,沿间接维F1=0Hz作对称翻转,将得到的数据与N序列的数据进行二维傅里叶变换后的结果进行相加,这样就得到了一张纯吸收线型二维定域J谱。
其中,所述间接维采样点数ni是根据间接维所需的数字分辨率来确定,ni=SW1/v1,其中v1是间接维数字分辨率,SW1是间接维谱宽。
所述由选层梯度、软脉冲以及对称散相梯度构成的ZS模块中的选层梯度与激发信号的谱宽有关,选择性软脉冲的中心频率根据谱图信号的中心频率确定,选择性软脉冲脉宽需要根据谱图信噪比来确定。脉宽越小,信噪比越好,但杂峰增强。
根据上述的方法进行具体的操作如下:
本实施例使用7T Varian 60mm直径小动物成像仪,样品为1摩尔/升的的苏氨酸加γ-氨基丁酸溶液构成的套管样品(图3)。使用的脉冲序列为纯吸收线性的二维定域J分解谱(图1)和基于标准的点分辨谱序列的二维定域J分解谱(图2)。
步骤一:采集一张样品的核磁共振成像图,并确定定域区域,结果如图3所示,内管外管均选择5×5×6mm3作为定域体素;
步骤二:测量采集定域区域的一维定域谱图,结果如图4所示;
步骤三:确定需要溶液样品信号的谱图范围,对于内管苏氨酸样品,我们选择0.8ppm到4.6ppm;对于外管γ-氨基丁酸样品,我们选择1.2ppm到3.4ppm;
步骤四:设置180°软脉冲的激发中心以及脉冲宽度,测定180°软脉冲功率。根据实际样品的谱图分布,对于内管苏氨酸样品,软脉冲激发中心为2.7ppm,脉冲宽度为15ms(对应激发带宽约为104Hz),测得180°软脉冲功率为18dB;对于外管γ-氨基丁酸样品,软脉冲激发中心为2.3ppm,脉冲宽度为40ms(对应激发宽度约为40Hz),测得180°软脉冲功率为10dB;
步骤五:设置由选层梯度、选择性软脉冲以及对称散相梯度构成的ZS模块中选择性软脉冲对应的选层梯度。对于内管苏氨酸样品,Gs设置为0.65G/cm;对于外管γ-氨基丁酸样品,Gs设置为0.3G/cm;
步骤六:设置间接维采样点数ni为50,间接维谱宽SW1为50Hz;
步骤七:通过计算平台获得定域脉冲的相关参数;
步骤八:先后采集N序列与P序列的数据。N序列是使用计算所得的90°定域脉冲作为激发脉冲,配合X方向上的选层梯度与重聚梯度,完成X方向上的定域激发,施加由选层梯度、软脉冲以及对称散相梯度构成的ZS模块,在加入Y方向上180°定域脉冲,之后经历
Figure BDA0001530698170000071
时间后,加入Z方向上的180°定域脉冲,在经历
Figure BDA0001530698170000072
时间,进行数据采集。R序列是使用计算所得的90°定域脉冲作为激发脉冲,配合X方向上的选层梯度与重聚梯度,完成X方向上的定域激发,在加入Y方向上180°定域脉冲,之后经历
Figure BDA0001530698170000073
时间后,加入Z方向上的180°定域脉冲,在经历
Figure BDA0001530698170000074
时间后,施加由选层梯度、软脉冲以及对称散相梯度构成的ZS模块,进行数据采集。
步骤九:将采集到的R序列的数据进行二维傅里叶变换后,沿间接维F1=0Hz作对称翻转,将得到的数据与N序列的数据进行二维傅里叶变换后的结果进行相加,这样就得到了一张纯吸收线型二维定域J谱。
对于套管样品,对应于γ-氨基丁酸的体素大小为5×5×6mm3,对应于苏氨酸的体素大小为5×5×6mm3,两个体素大小一样但所处的空间位置不一样。
利用纯吸收线性的二维定域J分解谱(图1)和基于标准的定点分辨谱序列的二维定域J分解谱(图2)获得了对应体素(图3)的二维定域谱(图5)。纯吸收线性的二维定域J分解谱脉冲序列的定域效果和标准的基于定点分辨谱的二维定域J分解谱序列一致(图4),在直接维投影结果,纯吸收线型线宽较常规谱图更细,分辨率更高;在间接维投影(图6,图7)结果,纯吸收线型线宽为常规谱图的1/2
以上所述仅为本发明较佳实施例,故不能依此限定本发明的技术范围,故凡依本发明的技术实质及说明书内容所作的等效变化与修饰,均应属本发明技术方案的范围内。

Claims (2)

1.一种实现纯吸收线型的二维磁共振单体素定域J分解谱方法,其特征在于包括以下步骤:
1)采集样品的核磁共振图像,确定定域区域;
2)采集定域区域的一维定域谱图;
3)确定溶液样品信号的谱图范围;
4)以溶液样品信号的谱图范围的中心频率作为软脉冲的激发中心,根据信号的谱峰间隔确定软脉冲宽度,测量样品的180°软脉冲的功率;
5)ZS模块由选层梯度、软脉冲以及对称的散相梯度构成,确定ZS模块的相关参数:首先确定软脉冲对应的选层梯度Gs,满足γ×Gs×l=SW,l为Z方向上定域区域的长度,SW为溶液样品信号谱宽,γ为氢原子的磁旋比,其次确定选择性脉冲的中心频率,其中心频率对准谱图中央;
6)确定间接维采样点数ni
7)其他定域脉冲及其对应的选层梯度由实验平台计算获得,所述其他定域脉冲为x、y、z方向上的定域脉冲;
8)先后采集N序列与R序列的数据;
N序列是使用计算所得的90°定域脉冲作为激发脉冲,配合X方向上的选层梯度与重聚梯度,完成X方向上的定域激发,施加由选层梯度、软脉冲以及对称散相梯度构成的ZS模块,在加入Y方向上180°定域脉冲,之后经历
Figure FDA0002258986870000011
时间后,加入Z方向上的180°定域脉冲,再经历时间,进行数据采集;
R序列是使用计算所得的90°定域脉冲作为激发脉冲,配合X方向上的选层梯度与重聚梯度,完成X方向上的定域激发,再加入Y方向上180°定域脉冲,之后经历
Figure FDA0002258986870000021
时间后,加入Z方向上的180°定域脉冲,再经历
Figure FDA0002258986870000022
时间后,施加由选层梯度、软脉冲以及对称散相梯度构成的ZS模块,进行数据采集;
其中t1为间接维的演化时间;
9)将采集到的R序列的数据进行二维傅里叶变换后,沿间接维F1=0Hz作对称翻转,将得到的数据与N序列的数据进行二维傅里叶变换后的结果进行相加,这样就得到了一张纯吸收线型二维定域J谱。
2.根据权利要求1所述的一种实现纯吸收线型的二维磁共振单体素定域J分解谱方法,其特征在于:所述间接维采样点数ni是根据间接维所需的数字分辨率来确定,ni=SW1/v1,其中v1是间接维数字分辨率,SW1是间接维谱宽。
CN201711463709.5A 2017-12-28 2017-12-28 实现纯吸收线型的二维磁共振单体素定域j分解谱方法 Expired - Fee Related CN108169273B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711463709.5A CN108169273B (zh) 2017-12-28 2017-12-28 实现纯吸收线型的二维磁共振单体素定域j分解谱方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711463709.5A CN108169273B (zh) 2017-12-28 2017-12-28 实现纯吸收线型的二维磁共振单体素定域j分解谱方法

Publications (2)

Publication Number Publication Date
CN108169273A CN108169273A (zh) 2018-06-15
CN108169273B true CN108169273B (zh) 2020-04-21

Family

ID=62519765

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711463709.5A Expired - Fee Related CN108169273B (zh) 2017-12-28 2017-12-28 实现纯吸收线型的二维磁共振单体素定域j分解谱方法

Country Status (1)

Country Link
CN (1) CN108169273B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110361680A (zh) * 2019-06-21 2019-10-22 厦门大学 一种超高分辨核磁共振二维j分解谱方法
CN110927643B (zh) * 2019-12-11 2021-02-26 厦门大学 一种压制轴峰的相敏选择性j谱方法
CN116930836B (zh) * 2023-09-18 2023-11-24 哈尔滨医科大学 多核素同步一体化成像最佳脉冲功率测量方法和系统

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7944206B2 (en) * 2005-12-21 2011-05-17 Yeda Research And Development Co. Ltd. Method and apparatus for acquiring high resolution spectral data or high definition images in inhomogeneous environments
KR101211971B1 (ko) * 2010-05-14 2012-12-12 인하대학교 산학협력단 핵자기공명 분광기를 이용한 동등생물의약품 구조의 비교 평가 방법
CN104237820B (zh) * 2014-09-26 2017-10-31 厦门大学 一种单扫描获取磁共振二维j‑分解谱的方法
CN105092629B (zh) * 2015-08-05 2017-04-05 厦门大学 一种测量氢‑氢j耦合常数的磁共振二维谱方法
CN106093099B (zh) * 2016-06-06 2018-06-29 厦门大学 一种获得高分辨二维j分解谱的方法
CN106841270B (zh) * 2017-01-21 2018-04-10 厦门大学 一种获得核磁共振二维相敏j谱的方法
CN106645255B (zh) * 2017-01-21 2017-12-19 厦门大学 一种单体素定域一维纯化学位移核磁共振谱方法
CN106872506B (zh) * 2017-03-15 2018-05-18 厦门大学 一种抵抗不均匀磁场的超快速核磁共振二维j谱方法

Also Published As

Publication number Publication date
CN108169273A (zh) 2018-06-15

Similar Documents

Publication Publication Date Title
CN108169273B (zh) 实现纯吸收线型的二维磁共振单体素定域j分解谱方法
CN106645255B (zh) 一种单体素定域一维纯化学位移核磁共振谱方法
US7863895B2 (en) System, program product, and method of acquiring and processing MRI data for simultaneous determination of water, fat, and transverse relaxation time constants
JP5917077B2 (ja) 磁気共鳴イメージング装置
US7750632B2 (en) Method for producing a magnetic resonance image of an object having a short T2 relaxation time
CN103140167B (zh) 化学物类的磁共振成像
CN113945878B (zh) 一种四核素同步磁共振成像和图像重建方法
CN108872897B (zh) 核磁共振t2图像成像方法
CN106841273B (zh) 一种基于单扫描时空编码磁共振成像的水脂分离重建方法
CN103645453B (zh) 一种获取消除标量耦合调制的单体素一维定域谱的方法
CN116359815A (zh) 一种多核素同步及谱成像一体化磁共振成像系统和方法
JPS62112541A (ja) 磁気共鳴イメ−ジング方法及び装置
CN1975395A (zh) 改进核磁共振频谱分析中弱敏感原子核类探测的方法和装置
Ziegler et al. Localized 2D correlation spectroscopy in human brain at 3 T
WO2012057222A1 (ja) 磁気共鳴撮影装置
Kumar History of MRI
Wieben et al. Multi-echo balanced SSFP imaging for iterative Dixon reconstruction
CN113808176B (zh) 基于装置成像坐标的mr图像配准方法、分析方法及其装置
Klauser et al. Achieving High-Resolution Whole-Brain Slab 1H-MRSI with Compressed-Sensing and Low-Rank Reconstruction at 7 Tesla
JPS6266846A (ja) 化学シフト値を用いたnmr検査装置
US11828822B2 (en) Simultaneous multi-slice MRSI using density weighted concentric ring acquisition
Morgan et al. Correction of distortion in ADC maps using the reversed gradient method
US20210223338A1 (en) System and Method for Proton and Phosphorus Magnetic Resonance Imaging
Karkouri et al. Under-sampled spiral 31P-MRSI for dynamic exercise applications at 3T
ISLAM Compressed Sensing Magnetic Resonance Imaging UsingFourier and Non-Fourier Based Bunched Phase Encoding

Legal Events

Date Code Title Description
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200421

Termination date: 20211228

CF01 Termination of patent right due to non-payment of annual fee