CN108164375A - 一种炸药纳米线及其制备方法 - Google Patents

一种炸药纳米线及其制备方法 Download PDF

Info

Publication number
CN108164375A
CN108164375A CN201810010513.9A CN201810010513A CN108164375A CN 108164375 A CN108164375 A CN 108164375A CN 201810010513 A CN201810010513 A CN 201810010513A CN 108164375 A CN108164375 A CN 108164375A
Authority
CN
China
Prior art keywords
explosive
solution
nano wire
preparation
dihydroxy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810010513.9A
Other languages
English (en)
Inventor
杨志剑
巩飞艳
刘佳辉
张建虎
丁玲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Chemical Material of CAEP
Original Assignee
Institute of Chemical Material of CAEP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Chemical Material of CAEP filed Critical Institute of Chemical Material of CAEP
Priority to CN201810010513.9A priority Critical patent/CN108164375A/zh
Publication of CN108164375A publication Critical patent/CN108164375A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B21/00Apparatus or methods for working-up explosives, e.g. forming, cutting, drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B45/00Compositions or products which are defined by structure or arrangement of component of product
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B49/00Use of single substances as explosives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D257/00Heterocyclic compounds containing rings having four nitrogen atoms as the only ring hetero atoms
    • C07D257/02Heterocyclic compounds containing rings having four nitrogen atoms as the only ring hetero atoms not condensed with other rings
    • C07D257/04Five-membered rings

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明公开了一种炸药纳米线的制备方法,包括如下步骤:A、将1,1'‑二羟基‑5,5'‑联四唑二羟胺盐溶解于水,将溶液加热至完全溶解。B、将溶液转移至聚四氟乙烯瓶中,采用液氮骤冷,至溶液完全结冰成固态。C、将所冷冻固化后的溶液在真空条件下进行冷冻干燥,即可得到具有纳米线结构的炸药。本发明还公开了一种炸药纳米线。本发明产品具有独特的纳米线结构,形貌均匀,在武器用起爆药、传爆药等领域具有重要应用前景。本发明的制备工艺流程简单,重复性好,反应条件温和,且易于放大。

Description

一种炸药纳米线及其制备方法
技术领域
本发明涉及一种含能材料及其制备方法,具体涉及一种炸药纳米线及其制备方法。
背景技术
1,1'-二羟基-5,5'-联四唑二羟胺盐(TKX-50)于2012年被合成并首次报道,作为一种含能离子盐,具有典型的高能低感特性。TKX-50晶体密度为1.918g/cm3,计算爆速为9679m/s,撞击感度和摩擦感度均较低,可用于高威力混合炸药、高能推进剂等领域,具有重要的军事应用前景。作为一种新型含能材料,目前TKX-50的研究主要集中在合成工艺控制。专利(CN103524444A,2013)、专利(CN104829548A,2015)公开了TKX-50的合成方法,任晓婷等(火炸药学报,39,68-71)报道了TKX-50的晶形计算及控制,使用晶形控制剂制备出了晶体形貌规整、呈多面体颗粒状、长径比明显变小的TKX-50晶体。许诚(含能材料,25,409-412)等采用不同结晶工艺制备了6种不同形貌和粒径的TKX-50,并研究了对热性能和机械感度的影响。目前,还未有公开资料报道过关于纳米TKX-50的制备方法。
炸药纳米化后,不仅能够大幅改善能量释放速率,降低感度,还能显著降低炸药的临界起爆阈值。因此,具有纳米结构的炸药在武器用起爆药、传爆药中具有直接应用价值。目前,纳米炸药的制备研究主要集中在采用机械研磨或溶剂-反溶剂冲击结晶制备炸药纳米颗粒。曾贵玉等(CN102924192A,2013)公开了一种微纳米TATB炸药颗粒的制备方法,而炸药纳米线的制备方法则暂无报道。张春勇等(CN107352519A,2017)公开了一种采用高温煅烧制备C3N4纳米线的方法,该方法并不能用于炸药纳米线的制备。而冷冻干燥是制备纳米结构材料一种常用手段。在冷冻干燥过程中,水等溶剂直接以固态冰升华的方式被去除,可以有效维持材料的纳米结构。专利(CN101497444B,2012)公开了一种通过真空冷冻干燥法制备大比表面积纳米多孔材料的方法,可用于制备纳米多孔超级绝热材料。专利(CN105509422A,2015)针对含能材料的安全使用要求,开发了一种通过真空冷冻干燥系统对含能材料进行真空冷冻干燥的方法。这些发明对纳米含能材料的制备具有一定借鉴意义,但从已有的公开资料来看,目前还没有炸药纳米线制备方法的报道。
发明内容
本发明的目的在于提供一种炸药纳米线的制备方法。
本发明是这样实现的:
一种炸药纳米线的制备方法,包括如下步骤:
A、将1,1'-二羟基-5,5'-联四唑二羟胺盐溶解于水,将溶液加热至完全溶解。
B、将溶液转移至聚四氟乙烯瓶中,采用液氮骤冷,至溶液完全结冰成固态。
C、将所冷冻固化后的溶液在真空条件下进行冷冻干燥,即可得到具有纳米线结构的炸药。
进一步的,所述的步骤A中的1,1'-二羟基-5,5'-联四唑二羟胺盐溶解于水后的质量百分浓度为0.1%~1.5%,加热温度为60℃~90℃;
进一步的,所述的步骤B中的液氮温度为-196℃,冷却时间为5min~10min;
进一步的,所述的步骤C中的冷冻干燥温度为-80℃~-40℃,真空度为0.1mba~20mba,处理时间为24h~72h。
本发明的另一个目的在于提供一种炸药纳米线。
本发明的炸药纳米线是通过本发明前述炸药纳米线的制备方法制备而得的。
进一步的,所述的炸药纳米线主体为1,1'-二羟基-5,5'-联四唑二羟胺盐,具有纳米线结构,纳米线直径为100nm~300nm,纳米线长度为20μm~100μm。
与现有技术相比,本发明的有益效果之一是:产品具有独特的纳米线结构,形貌均匀,在武器用起爆药、传爆药等领域具有重要应用前景。本发明的制备工艺流程简单,重复性好,反应条件温和,且易于放大。
附图说明
为了更清楚的说明本申请文件实施例或现有技术中的技术方案,下面将对实施例或现有技术的描述中所需要使用的附图作简单的介绍,显而易见地,下面描述中的附图仅是对本申请文件中一些实施例的参考,对于本领域技术人员来讲,在不付出创造性劳动的情况下,还可以根据这些附图得到其它的附图。
图1为根据本发明实施例1的炸药纳米线2000倍扫描电镜图;
图2为根据本发明实施例1的炸药纳米线10000倍扫描电镜图。
具体实施方式
下面结合实施例对本发明作进一步地详细说明,但本发明的实施方式不限于此。
实施例1
称取0.5g 1,1'-二羟基-5,5'-联四唑二羟胺盐,加入100g水,加热至75℃,至炸药完全溶解,配制成质量百分浓度为0.5%的炸药溶液。将溶液转移至聚四氟乙烯瓶中,采用液氮骤冷5min,至溶液完全结冰成固态。将所冷冻固化后的溶液在真空条件下进行冷冻干燥,冷冻干燥温度为-80℃,真空度为1.5mba,处理时间为48h,即可得到具有纳米线结构的炸药。图1和图2分别为根据本实施例所得的纳米阵列高氯酸铵的2000倍和10000倍扫描电镜图。所得炸药纳米线直径约为150nm,纳米线长度约为50μm。
实施例2
称取0.1g 1,1'-二羟基-5,5'-联四唑二羟胺盐,加入100g水,加热至60℃至完全溶解,配制成质量百分浓度为0.1%的炸药溶液。将溶液转移至聚四氟乙烯瓶中,采用液氮骤冷7min,至溶液完全结冰成固态。将所冷冻固化后的溶液在真空条件下进行冷冻干燥,冷冻干燥温度为-65℃,真空度为0.8mba,处理时间为60h,即可得到具有纳米线结构的炸药。所得炸药纳米线直径为100nm,纳米线长度为20μm。
实施例3
称取3.0g 1,1'-二羟基-5,5'-联四唑二羟胺盐,加入197g水,加热至90℃至完全溶解,配制成质量百分浓度为1.5%的炸药溶液。将溶液转移至聚四氟乙烯瓶中,采用液氮骤冷10min,至溶液完全结冰成固态。将所冷冻固化后的溶液在真空条件下进行冷冻干燥,冷冻干燥温度为-60℃,真空度为0.12mba,处理时间为24h,即可得到具有纳米线结构的炸药。所得炸药纳米线直径为250nm,纳米线长度为90μm。
实施例4
称取2.0g 1,1'-二羟基-5,5'-联四唑二羟胺盐,加入98g水,加热至80℃至完全溶解,配制成质量百分浓度为1%的炸药溶液。将溶液转移至聚四氟乙烯瓶中,采用液氮骤冷6min,至溶液完全结冰成固态。将所冷冻固化后的溶液在真空条件下进行冷冻干燥,冷冻干燥温度为-43℃,真空度为20mba,处理时间为72h,即可得到具有纳米线结构的炸药。所得炸药纳米线直径为200nm,纳米线长度为80μm。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其它实施例的不同之处,各个实施例之间相同相似部分相互参见即可。
尽管这里参照本发明的解释性实施例对本发明进行了描述,上述实施例仅为本发明较佳的实施方式,本发明的实施方式并不受上述实施例的限制,应该理解,本领域技术人员可以设计出很多其他的修改和实施方式,这些修改和实施方式将落在本申请公开的原则范围和精神之内。

Claims (6)

1.一种炸药纳米线的制备方法,其特征在于包括如下步骤:
A、将1,1'-二羟基-5,5'-联四唑二羟胺盐溶解于水,将溶液加热至完全溶解;
B、将溶液转移至聚四氟乙烯瓶中,采用液氮骤冷,至溶液完全结冰成固态;
C、将所冷冻固化后的溶液在真空条件下进行冷冻干燥,即可得到具有纳米线结构的炸药。
2.根据权利要求1所述炸药纳米线的制备方法,其特征在于:
步骤A中的1,1'-二羟基-5,5'-联四唑二羟胺盐溶解于水后的质量百分浓度为0.1%~1.5%,加热温度为60℃~90℃。
3.根据权利要求1所述炸药纳米线的制备方法,其特征在于:
步骤B中的液氮温度为-196℃,冷却时间为5min~10min。
4.根据权利要求1所述炸药纳米线的制备方法,其特征在于:
步骤C中的冷冻干燥温度为-80℃~-40℃,真空度为0.1mba~20mba,处理时间为24h~72h。
5.一种炸药纳米线,其特征在于是通过权利要求1至4任一权利要求所述炸药纳米线的制备方法制备而得的。
6.根据权利要求5所述炸药纳米线,其特征在于:
所述的炸药纳米线主体为1,1'-二羟基-5,5'-联四唑二羟胺盐,具有纳米线结构,纳米线直径为100nm~300nm,纳米线长度为20μm~100μm。
CN201810010513.9A 2018-01-05 2018-01-05 一种炸药纳米线及其制备方法 Pending CN108164375A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810010513.9A CN108164375A (zh) 2018-01-05 2018-01-05 一种炸药纳米线及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810010513.9A CN108164375A (zh) 2018-01-05 2018-01-05 一种炸药纳米线及其制备方法

Publications (1)

Publication Number Publication Date
CN108164375A true CN108164375A (zh) 2018-06-15

Family

ID=62517541

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810010513.9A Pending CN108164375A (zh) 2018-01-05 2018-01-05 一种炸药纳米线及其制备方法

Country Status (1)

Country Link
CN (1) CN108164375A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111410209A (zh) * 2019-10-24 2020-07-14 中北大学 一种制备纳米级高氯酸铵和纳米级硝酸铵的方法
CN112898103A (zh) * 2021-01-19 2021-06-04 西南科技大学 一种g-C3N4基复合含能材料的制备方法
CN116082103A (zh) * 2022-12-27 2023-05-09 西安近代化学研究所 一种tkx-50基高能复合炸药及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101497444A (zh) * 2009-03-04 2009-08-05 中国科学院广州能源研究所 一种真空冷冻干燥法制备大比表面积纳米多孔材料的方法
US9643937B1 (en) * 2016-03-31 2017-05-09 The United States Of America As Represented By The Secretary Of The Army One-pot process for preparation of ammonium and hydroxyl ammonium derivatives of bis 5,5′-tetrazole-1,1′-dihydroxide
CN107512994A (zh) * 2017-08-15 2017-12-26 中国工程物理研究院化工材料研究所 3‑硝基‑1,2,4‑三唑‑5‑酮纳米多孔炸药及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101497444A (zh) * 2009-03-04 2009-08-05 中国科学院广州能源研究所 一种真空冷冻干燥法制备大比表面积纳米多孔材料的方法
US9643937B1 (en) * 2016-03-31 2017-05-09 The United States Of America As Represented By The Secretary Of The Army One-pot process for preparation of ammonium and hydroxyl ammonium derivatives of bis 5,5′-tetrazole-1,1′-dihydroxide
CN107512994A (zh) * 2017-08-15 2017-12-26 中国工程物理研究院化工材料研究所 3‑硝基‑1,2,4‑三唑‑5‑酮纳米多孔炸药及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
毕福强等: "《高能单元推进剂TKX-50能量特性计算研究》", 《化学推进剂与高分子材料》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111410209A (zh) * 2019-10-24 2020-07-14 中北大学 一种制备纳米级高氯酸铵和纳米级硝酸铵的方法
CN112898103A (zh) * 2021-01-19 2021-06-04 西南科技大学 一种g-C3N4基复合含能材料的制备方法
CN116082103A (zh) * 2022-12-27 2023-05-09 西安近代化学研究所 一种tkx-50基高能复合炸药及其制备方法
CN116082103B (zh) * 2022-12-27 2024-01-02 西安近代化学研究所 一种tkx-50基高能复合炸药及其制备方法

Similar Documents

Publication Publication Date Title
CN108164375A (zh) 一种炸药纳米线及其制备方法
Ma et al. Facile, continuous and large-scale production of core–shell HMX@ TATB composites with superior mechanical properties by a spray-drying process
GB962265A (en) Improvements in the granulating and drying of fluid materials such as aqueous solutions, pastes and slurries
Qiu et al. RDX-based nanocomposite microparticles for significantly reduced shock sensitivity
Huang et al. Fabrication of FOX-7 quasi-three-dimensional grids of one-dimensional nanostructures via a spray freeze-drying technique and size-dependence of thermal properties
Danilenko Specific features of synthesis of detonation nanodiamonds
Shi et al. Continuous spheroidization strategy for explosives with micro/nano hierarchical structure by coupling microfluidics and spray drying
Zhigach et al. Aluminum/HMX nanocomposites: Synthesis, microstructure, and combustion
CN107512994B (zh) 3-硝基-1,2,4-三唑-5-酮纳米多孔炸药及其制备方法
Guo et al. Solid–solid phase transition study of ε-CL-20/binder composites
US9828303B1 (en) High brisance metal powder explosive
JIN et al. Preparation and thermal properties of NC/RDX nano-composite energetic materials
CN104493154B (zh) 一种铋金属纳米结构材料及其制备方法
CN110172044B (zh) 一种3,3’-二氨基-4,4’-氧化偶氮呋咱多级晶球及其制备方法
Shi et al. Process optimization and characterization of an HMX/Viton Nanocomposite
US3878524A (en) Process for preparing radar reflecting mass
Mao et al. Study of the microstructure of AZ31B magnesium alloy under high strain rate deformation
Steckle Jr et al. Low-density materials for use in inertial fusion targets
Kudryavtsev COMPOSITE MATERIALS FOR MANUFACTURE OF WATER DESTROYABLE FORM-FORMING EQUIPMENT.
Ananev et al. Dynamic compaction of Ni and Al micron powder blends in cylindrical recovery scheme
RU2633021C1 (ru) Кумулятивный заряд для формирования компактного элемента
Mal'kov Carbon coagulation in a nonstationary detonation-product flow
Geng-Hao et al. Preliminary Study on Application Scope of New Ore Pulverizing Technology
DS et al. THE REASON FOR THE INCREASE IN COMBUSTION RATE OF THE POWDER MIXTURE Ti+ C DILUTED WITH COPPER
Kruglov et al. Analytical model of freezing drop of water to produce ice slurry at a pressure below the triple point

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20180615

RJ01 Rejection of invention patent application after publication