CN108144575A - 硫化石墨硅胶氯化锂固化复合除湿剂及其制备方法 - Google Patents
硫化石墨硅胶氯化锂固化复合除湿剂及其制备方法 Download PDFInfo
- Publication number
- CN108144575A CN108144575A CN201810029119.XA CN201810029119A CN108144575A CN 108144575 A CN108144575 A CN 108144575A CN 201810029119 A CN201810029119 A CN 201810029119A CN 108144575 A CN108144575 A CN 108144575A
- Authority
- CN
- China
- Prior art keywords
- silica gel
- graphite
- lithium chloride
- vulcanization
- dehumidifying agent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 title claims abstract description 118
- 239000000741 silica gel Substances 0.000 title claims abstract description 98
- 229910002027 silica gel Inorganic materials 0.000 title claims abstract description 98
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 title claims abstract description 85
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 72
- 229910002804 graphite Inorganic materials 0.000 title claims abstract description 66
- 239000010439 graphite Substances 0.000 title claims abstract description 66
- 239000003795 chemical substances by application Substances 0.000 title claims abstract description 54
- 238000002360 preparation method Methods 0.000 title claims abstract description 17
- 238000004073 vulcanization Methods 0.000 claims abstract description 61
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 20
- 238000001035 drying Methods 0.000 claims abstract description 17
- 238000005660 chlorination reaction Methods 0.000 claims abstract description 12
- 238000007598 dipping method Methods 0.000 claims abstract description 8
- 238000003756 stirring Methods 0.000 claims abstract description 6
- 238000000034 method Methods 0.000 claims description 7
- 238000012545 processing Methods 0.000 claims description 6
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 3
- 239000005864 Sulphur Substances 0.000 claims description 3
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 2
- 229910052744 lithium Inorganic materials 0.000 claims description 2
- 238000010521 absorption reaction Methods 0.000 abstract description 20
- 229910003002 lithium salt Inorganic materials 0.000 abstract description 10
- 159000000002 lithium salts Chemical class 0.000 abstract description 10
- 229960001866 silicon dioxide Drugs 0.000 description 81
- 239000000243 solution Substances 0.000 description 13
- 239000007787 solid Substances 0.000 description 11
- 238000001179 sorption measurement Methods 0.000 description 11
- 239000011148 porous material Substances 0.000 description 8
- 238000002474 experimental method Methods 0.000 description 7
- 239000003906 humectant Substances 0.000 description 6
- 239000012266 salt solution Substances 0.000 description 6
- 239000003463 adsorbent Substances 0.000 description 5
- 239000002131 composite material Substances 0.000 description 5
- 238000007791 dehumidification Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 150000003839 salts Chemical class 0.000 description 5
- 238000004378 air conditioning Methods 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 239000003292 glue Substances 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000007812 deficiency Effects 0.000 description 2
- 239000002274 desiccant Substances 0.000 description 2
- 238000011835 investigation Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- AMXOYNBUYSYVKV-UHFFFAOYSA-M lithium bromide Chemical compound [Li+].[Br-] AMXOYNBUYSYVKV-UHFFFAOYSA-M 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 231100000252 nontoxic Toxicity 0.000 description 2
- 230000003000 nontoxic effect Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000008929 regeneration Effects 0.000 description 2
- 238000011069 regeneration method Methods 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 239000004575 stone Substances 0.000 description 2
- YLZOPXRUQYQQID-UHFFFAOYSA-N 3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)-1-[4-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]piperazin-1-yl]propan-1-one Chemical compound N1N=NC=2CN(CCC=21)CCC(=O)N1CCN(CC1)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F YLZOPXRUQYQQID-UHFFFAOYSA-N 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 235000006508 Nelumbo nucifera Nutrition 0.000 description 1
- 240000002853 Nelumbo nucifera Species 0.000 description 1
- 235000006510 Nelumbo pentapetala Nutrition 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000003889 chemical engineering Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000004134 energy conservation Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- -1 graphite silica gel lithium chlorides Chemical class 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000008676 import Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910017053 inorganic salt Inorganic materials 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- 235000019341 magnesium sulphate Nutrition 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910021382 natural graphite Inorganic materials 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000005057 refrigeration Methods 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 238000009938 salting Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 239000002918 waste heat Substances 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/0203—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
- B01J20/0262—Compounds of O, S, Se, Te
- B01J20/0266—Compounds of S
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/26—Drying gases or vapours
- B01D53/261—Drying gases or vapours by adsorption
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/26—Drying gases or vapours
- B01D53/28—Selection of materials for use as drying agents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/04—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
- B01J20/046—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium containing halogens, e.g. halides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/10—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
- B01J20/103—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate comprising silica
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/80—Water
Landscapes
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Drying Of Gases (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Abstract
本发明公开了一种硫化石墨硅胶氯化锂固化复合除湿剂的制备方法,包括以下步骤:配制氯化锂水溶液;将硅胶和硫化石墨浸入氯化锂水溶液中,浸渍时间为2~48h,浸渍结束后,去除氯化锂水溶液,再均匀搅拌;将所得的复合除湿剂导入压块模具进行压制;将压制完成的固化复合除湿剂放入烘箱内烘干,得到硫化石墨‑硅胶氯化锂固化复合除湿剂。本发明充分利用硫化石墨固化后的高热导率和氯化锂盐的高吸湿性,在实现硅胶热导率和吸湿性的同时,又降低了硅胶吸湿后的破碎率。
Description
技术领域
本发明涉及的是一种复合材料技术领域的除湿剂及其制备方法,具体涉及一种硫化石墨硅胶氯化锂固化复合除湿剂及其制备方法。
背景技术
固体除湿空调技术采用除湿剂处理空气中的水蒸气,实现潜热和显热负荷的分开处理,弥补了常规蒸汽压缩式空调系统处理湿负荷的不足。同时能充分利用60~150℃的低品位热能,如工业、生活废热或太阳能、地热等可再生能源,用于除湿剂的再生,有着良好的节能特性。但除湿剂在固体除湿过程中释放出的吸附热不仅会增加后续需处理的显热负荷,还会引起除湿剂再生温度的升高,此外,较大的系统尺寸和较低的显热处理效率限制了固体除湿空调技术的发展和应用。为解决这些问题,一种基于除湿换热器(将固体除湿材料涂覆到管翅式换热器的外表面)的新型固体除湿空调系统被提出。其中,除湿材料的吸湿和再生性能的好坏对除湿换热器的除湿性能有着重要影响。硅胶以其安全无毒、价格低廉,热物性稳定等优点被广泛应用于除湿换热器系统:Zhao等在Applied Thermal Engineering发表的Experimental investigation on a desiccant dehumidification unit usingfin-tube heat exchanger with silica gel coating(2014,63(1):52-58)以及Bongs等在Solar Energy上发表的Advanced performance of an open desiccant cycle withinternal evaporative cooling(2014,104:103-114)。但是硅胶除湿剂主要存在以下两大问题;1)吸附量不高,无法满足高湿气候条件下的除湿要求;2)热导率低,吸湿后释放的吸附热无法及时排出,导致硅胶吸湿后易破碎。为提高硅胶的吸湿性能,有效的方法之一是向多孔硅胶内浸入吸湿性能较强的安全无毒无机盐如CaCl2、LiCl、MgSO4、MgCl2、LiBr等进行改性。Jiang等在International Journal of Refrigeration发表的Experimentalinvestigation and analysis of composite silica-gel coated fin-tube heatexchangers(2015.51:169-179),申请者本人在Chemical Engineering Science发表的Performance study of composite silica gels with different pore sizes anddifferent impregnating Hygroscopic salts(2014.120(16):1-9),均表明经吸湿性无机盐改性后,复合硅胶的吸湿性能有着数倍提升。但是这类复合硅胶干燥剂仍未能解决硅胶热导率低,无法及时排出吸附热导致的硅胶颗粒吸湿后易破裂的问题。此外,浸渍的盐颗粒在高湿工况下出现过量吸湿液解,存在腐蚀系统的隐患。为提高硅胶等多孔材料热导率,向多孔材料中混合高热导率材料并进行固化是一种有效方法。Wang等在Applied ThermalEngineering发表的Two types of natural graphite host matrix for compositeactivated carbon adsorbents.(2013.50:p.1652-1657)中,分别向活性炭中添加膨胀石墨和硫化石墨并固化,结果显示添加硫化石墨的活性炭固化后热导率提升更大。申请者本人在International Journal of Heat and Mass Transfer上发表的Thermalconductivity,pore structure and adsorption performance of compact compositesilica gel(2014.68:435-443)中,制备了硅胶-硫化石墨固化混合吸附剂,该固化吸附剂由硅胶和硫化石墨混合压制而成,其中硫化石墨质量分数为20-50%,固化吸附剂密度在210-558kg/m3之间,通过优化硫化石墨质量分数和固化密度(硫化石墨质量分数为50%,固化密度为448kg/m3的热导率最佳;而硫化石墨质量分数为75%,固化密度为448kg/m3的平衡除湿量最大),提升硅胶的热导率。固化混合吸附剂热导率最高可较硅胶能提升270多倍。但是由于硫化石墨本身不吸湿,该固化吸附剂未能改善硅胶的低吸湿量。可以发现,现有的材料和制备方法未能同时解决硅胶吸附量不高和吸湿后易破碎的不足。
发明内容
本发明要解决的技术问题是提供一种吸附量高且吸湿后不易破碎的硫化石墨硅胶氯化锂盐固化复合除湿剂及其制备方法。
为了解决上述技术问题,本发明提供一种硫化石墨硅胶氯化锂固化复合除湿剂的制备方法,包括以下步骤:
(1)、配制氯化锂水溶液;
所述氯化锂水溶液为质量浓度为10%的氯化锂水溶液~饱和氯化锂水溶液;
(2)、将硅胶和硫化石墨浸入氯化锂水溶液中,浸渍时间为2~48h,所述硫化石墨:(硫化石墨+硅胶)为20%~80%质量比,氯化锂水溶液与硅胶的质量比为4~12:1;
上述浸渍结束后,去除氯化锂水溶液,再均匀搅拌,得复合除湿剂;
(3)、将步骤(2)所得的复合除湿剂导入压块模具进行压制;
(4)、将步骤(3)压制完成的固化复合除湿剂放入烘箱内烘干,得到硫化石墨-硅胶氯化锂固化复合除湿剂。
作为本发明的硫化石墨硅胶氯化锂固化复合除湿剂的制备方法的改进:
所述步骤(2)中:硅胶和硫化石墨使用前均经过烘干处理,从而使硅胶的含水率≤5%,硫化石墨的含水率≤5%;
所述步骤(3)中:压制密度为200~500kg/m3;
所述步骤(4)中:烘干温度为60℃~200℃;烘干时间为2h~12h。
本发明还同时提供了利用上述方法制备而得的硫化石墨硅胶氯化锂固化复合除湿剂。
在本发明中,
硅胶为多孔纳米材料,是常用的干燥剂;例如可选用昌全公司生产的粗孔微球硅胶。
硫化石墨是经过高温酸化处理的比普通膨胀石墨密度更小,固化压制后导热系数更高的新型膨胀石墨;例如可选用Mersen公司生产的硫化石墨,其碳含量可以高达99.8%以上,密度在5-6kgm-3之间。
在本发明制备方法的步骤(1)中,为免盐颗粒过饱和析出,氯化锂盐溶液的质量分数不高于环境温度下的饱和盐溶液所对应的质量分数。
本发明的硫化石墨硅胶氯化锂盐固化复合除湿剂,包括硅胶、氯化锂盐和硫化石墨,所述硅胶嵌入在硫化石墨的片状结构间的缝隙内,所述氯化锂盐颗粒附着在硅胶及硫化石墨的片状结构上,固化复合除湿剂由硅胶和硫化石墨均匀混合后浸渍在氯化锂盐溶液一定时间后经压制而成。
与现有技术相比,本发明具有如下技术优势:
第一、本发明的硫化石墨硅胶氯化锂盐固化复合除湿剂相比于硅胶除湿剂的吸附性能有显著的提高,最高可提升6倍以上;
第二、本发明的硫化石墨硅胶氯化锂盐固化复合除湿剂在吸湿过程中未出现盐溶液的溢出;
第三、本发明的硫化石墨硅胶氯化锂盐固化复合除湿剂相比于硅胶除湿剂吸湿后不易破裂,且能保持良好的吸附性能。
综上所述,本发明充分利用硫化石墨固化后的高热导率和氯化锂盐的高吸湿性,在实现硅胶热导率和吸湿性的同时,又降低了硅胶吸湿后的破碎率。
附图说明
图1为实施例1的硫化石墨硅胶氯化锂盐固化复合除湿剂的扫描电镜图。
图2为硅胶颗粒吸湿后破裂图。
图3为硫化石墨和硅胶不同质量比时的外形图;
(a)硫化石墨和硅胶的质量比为1:1;(b)硫化石墨和硅胶的质量比为1:3。
具体实施方式
下面对本发明的实施例作详细说明:本实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
以下案例中,烘干的硫化石墨是指于120℃烘干直至含水率≤5%,烘干的硅胶是指于120℃烘干直至含水率≤5%。
上述%为质量%。
实施例1、一种硫化石墨硅胶氯化锂盐固化复合除湿剂的制备方法,依次进行以下步骤:
(1)配制搅拌均匀的45.5wt.%的饱和氯化锂盐溶液;
(2)将烘干的硫化石墨和硅胶按1:1的质量比例分别称重;
(3)将硅胶和硫化石墨混合后加入硅胶质量6倍的氯化锂溶液,浸渍24h;
上述浸渍结束后,去除氯化锂水溶液,再均匀搅拌,得复合除湿剂;
(4)将搅拌均匀后的复合除湿剂导入压块模具进行压制,压制密度为400kg/m3;
(5)将压制完成的固化复合除湿剂放入120℃烘箱内烘干4h,得到所述硫化石墨-硅胶氯化锂固化复合除湿剂。
对上述实施例1所得的硫化石墨-硅胶氯化锂固化复合除湿剂进行如下的性能测试:
实验一、微观结构检测
硫化石墨-硅胶氯化锂固化复合除湿剂和未进行氯化锂改性的硫化石墨-硅胶固化除湿剂的表面积,孔体积,平均表面积等微观性能参数通过ASAP2020物理吸附仪测试。其中,硫化石墨-硅胶氯化锂固化复合除湿剂固化复合除湿剂的比表面积和孔体积为139m2/g和0.41cm3/g。未进行氯化锂改性的硫化石墨-硅胶固化除湿剂为137m2/g和0.46cm3/g。
对实施例1制备的硫化石墨-硅胶氯化锂固化复合除湿剂进行微观结构检测并计算:硫化石墨-硅胶氯化锂固化复合除湿剂的比表面积和孔体积较未进行氯化锂改性无明显变化,表明添加氯化锂后并未影响硅胶和硫化石墨的多孔性能。
备注说明:未进行氯化锂改性的硫化石墨-硅胶固化除湿剂的制备方法为:将实施例1中加入硅胶质量6倍的45.5wt.%的饱和氯化锂盐溶液改成加入硅胶质量相同的水,其余等同于
实施例1。
实验二、吸附性能检测:
将恒温恒湿箱调至某一工况,将硫化石墨-硅胶氯化锂固化复合除湿剂和未进行氯化锂改性的硫化石墨-硅胶固化除湿剂放入恒温恒湿箱内进行吸附实验,恒温恒湿箱控制湿空气保持在某种工况。用电子天平进行称重实时测量,由于吸附速率随时间逐渐降低,称重的时间间隔由开始的5min逐渐变为10min,20min和30min。当连续两次所测重量的相对变化小于5%时,认为吸附达到平衡。在25℃,70%RH相对湿度下,单位质量的硫化石墨-硅胶氯化锂固化复合除湿剂(实施例1)在30min和吸附饱和时的吸附量分别为0.19g/g和0.47g/g。而未进行氯化锂改性的硫化石墨-硅胶固化除湿剂在30min和吸附饱和时的吸附量分别为0.049g/g和0.064g/g。
即,单位质量硫化石墨-硅胶氯化锂固化复合除湿剂在30min和吸附饱和时的吸附量分别较未改性固体除湿剂提升392%和566%。
实施例2、一种硫化石墨硅胶氯化锂盐固化复合除湿剂的制备方法,依次进行以下步骤:
(1)配制搅拌均匀的45.5wt.%的饱和氯化锂盐溶液;
(2)将烘干的硫化石墨和硅胶按1:1的质量比例分别称重;
(3)将硅胶和硫化石墨混合后加入硅胶质量4倍的氯化锂溶液,浸渍24h;
上述浸渍结束后,去除氯化锂水溶液,再均匀搅拌,得复合除湿剂;
(4)将搅拌均匀的复合除湿剂导入压块模具进行压制,压制密度为300kg/m3;
(5)将压制完成的固化复合除湿剂放入120℃烘箱内烘干4h,得到所述硫化石墨-硅胶氯化锂固化复合除湿剂。
按照上述实验一和实验二所述方法对实施例2制备的硫化石墨-硅胶氯化锂固化复合除湿剂性能测试,结果如下:
(a)微观结构检测:硫化石墨-硅胶氯化锂固化复合除湿剂固化复合除湿剂的比表面积和孔体积为127m2/g和0.39cm3/g;
(b)吸附性能检测:在温度为25℃,湿度为70%下,单位质量的硫化石墨-硅胶氯化锂固化复合除湿剂在30min和吸附饱和时的吸附量分别为0.15g/g和0.40g/g。
直至吸附饱和,实施例2制备所得的硫化石墨硅胶氯化锂盐固化复合除湿剂未出现盐溶液的溢出;也没有出现硅胶破裂的现象。
对比例1、将实施例1中饱和氯化锂溶液改为饱和氯化钙溶液;其余等同于实施例1。
对比例2-1、将实施例1中硫化石墨和硅胶的质量比由1:1改成1:3,其余等同于实施例1。其所得结果如图3所述;
(a)为硫化石墨和硅胶的质量比由1:1条件下混合后压制,(b)硫化石墨和硅胶的质量比由1:3条件下混合后压制,易碎,无法成功制备。
对比例2-2、将实施例1中硫化石墨和硅胶的质量比由1:1改成1:0.25,其余等同于实施例1。
将上述所有的对比例按照上述实验一和实验二方法进行检测,所得结果与实施例1的对比如下表1所述。
表1
最后,还需要注意的是,以上列举的仅是本发明的若干个具体实施例。显然,本发明不限于以上实施例,还可以有许多变形。本领域的普通技术人员能从本发明公开的内容直接导出或联想到的所有变形,均应认为是本发明的保护范围。
Claims (5)
1.硫化石墨硅胶氯化锂固化复合除湿剂的制备方法,其特征是包括以下步骤:
(1)、配制氯化锂水溶液;
所述氯化锂水溶液为质量浓度为10%的氯化锂水溶液~饱和氯化锂水溶液;
(2)、将硅胶和硫化石墨浸入氯化锂水溶液中,浸渍时间为2~48h,所述硫化石墨:(硫化石墨+硅胶)为20%~80%质量比,氯化锂水溶液与硅胶的质量比为4~12:1;
上述浸渍结束后,去除氯化锂水溶液,再均匀搅拌,得复合除湿剂;
(3)、将步骤(2)所得的复合除湿剂导入压块模具进行压制;
(4)、将步骤(3)压制完成的固化复合除湿剂放入烘箱内烘干,得到硫化石墨-硅胶氯化锂固化复合除湿剂。
2.根据权利要求1所述的硫化石墨硅胶氯化锂固化复合除湿剂的制备方法,其特征是:
所述步骤(2)中:硅胶和硫化石墨使用前均经过烘干处理,从而使硅胶的含水率≤5%,硫化石墨的含水率≤5%。
3.根据权利要求2所述的硫化石墨硅胶氯化锂固化复合除湿剂的制备方法,其特征是:
所述步骤(3)中:压制密度为200~500kg/m3。
4.根据权利要求3所述的硫化石墨硅胶氯化锂固化复合除湿剂的制备方法,其特征是:
所述步骤(4)中:烘干温度为60℃~200℃;烘干时间为2h~12h。
5.如权利要求要求1~4任一方法制备而得的硫化石墨硅胶氯化锂固化复合除湿剂。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810029119.XA CN108144575B (zh) | 2018-01-12 | 2018-01-12 | 硫化石墨硅胶氯化锂固化复合除湿剂及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810029119.XA CN108144575B (zh) | 2018-01-12 | 2018-01-12 | 硫化石墨硅胶氯化锂固化复合除湿剂及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108144575A true CN108144575A (zh) | 2018-06-12 |
CN108144575B CN108144575B (zh) | 2021-03-30 |
Family
ID=62461428
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810029119.XA Active CN108144575B (zh) | 2018-01-12 | 2018-01-12 | 硫化石墨硅胶氯化锂固化复合除湿剂及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108144575B (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111939867A (zh) * | 2020-07-24 | 2020-11-17 | 中国兵器工业第五九研究所 | 一种硅胶基复合干燥剂及其制备方法 |
CN109827460B (zh) * | 2019-01-24 | 2020-12-22 | 浙江理工大学 | 纳米银粉掺杂类沸石分子筛复合除湿换热器及其制备方法 |
WO2023021438A1 (en) * | 2021-08-20 | 2023-02-23 | King Abdullah University Of Science And Technology | Microwave-assisted, silica-based composite desiccant dehumidification method and system |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1613551A (zh) * | 2004-09-29 | 2005-05-11 | 上海交通大学 | 氯化钙-膨胀石墨混合吸附剂 |
CN102458625A (zh) * | 2009-05-18 | 2012-05-16 | 迪博因特技术公司 | 用于全热交换和其它应用的涂层膜 |
CN103406003B (zh) * | 2013-05-17 | 2016-08-10 | 江苏同康特种活性炭纤维面料有限公司 | 一种高效吸湿活性炭纤维复合材料及其制备方法 |
CN104531077A (zh) * | 2015-01-27 | 2015-04-22 | 云南师范大学 | 膨胀石墨基水合盐复合固-固相变储能材料的制备方法 |
CN105561915A (zh) * | 2016-01-29 | 2016-05-11 | 袁一军 | 一种新型除湿剂及其制作方法 |
-
2018
- 2018-01-12 CN CN201810029119.XA patent/CN108144575B/zh active Active
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109827460B (zh) * | 2019-01-24 | 2020-12-22 | 浙江理工大学 | 纳米银粉掺杂类沸石分子筛复合除湿换热器及其制备方法 |
CN111939867A (zh) * | 2020-07-24 | 2020-11-17 | 中国兵器工业第五九研究所 | 一种硅胶基复合干燥剂及其制备方法 |
WO2023021438A1 (en) * | 2021-08-20 | 2023-02-23 | King Abdullah University Of Science And Technology | Microwave-assisted, silica-based composite desiccant dehumidification method and system |
Also Published As
Publication number | Publication date |
---|---|
CN108144575B (zh) | 2021-03-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zheng et al. | Experimental study on silica gel-LiCl composite desiccants for desiccant coated heat exchanger | |
Entezari et al. | Modifying water sorption properties with polymer additives for atmospheric water harvesting applications | |
Vivekh et al. | Performance evaluation of PVA-LiCl coated heat exchangers for next-generation of energy-efficient dehumidification | |
CN108144575A (zh) | 硫化石墨硅胶氯化锂固化复合除湿剂及其制备方法 | |
CN1986046B (zh) | 分子筛和改性硅胶复合物块体吸附剂的制备方法 | |
CN1793277A (zh) | 聚乙二醇/二氧化硅复合定形相变材料的制备方法 | |
BR112013020255B1 (pt) | bomba de calor química de absorção, uso de uma partícula e método para fabricar uma partícula | |
Fang et al. | Preparation and performance of desiccant coating with modified ion exchange resin on finned tube heat exchanger | |
CN103194058A (zh) | 一种高导热透湿膜及其制备方法 | |
CN102741469A (zh) | 建筑空气调节用或除湿用高分子复合材料及其制造方法 | |
CN111944495B (zh) | 水合无机盐-膨胀蛭石-石蜡-pam复合相变储能材料的制备方法 | |
Zhang et al. | Dynamic hygroscopic effect of the composite material used in desiccant rotary wheel | |
Liu et al. | Dehumidification performance of aluminum fumarate metal organic framework and its composite | |
Zhong et al. | A new hydrothermal cross-linking ion-imprinted chitosan for high-efficiency uranium removal | |
Wu et al. | Investigation on novel desiccant wheel using wood pulp fiber paper with high coating ratio as matrix | |
Chen et al. | Investigation on activated carbon-sodium polyacrylate coated aluminum sheets for desiccant coated heat exchanger | |
CN107262048A (zh) | 细菌纤维素复合吸湿剂的低温再生除湿材料 | |
Han et al. | Facile and efficient chitosan-based hygroscopic aerogel for air dehumidification | |
CN100348304C (zh) | 一种复合支撑液膜及其制备方法 | |
Jiang et al. | Polyamide 6-LiCl nanofibrous membrane as low-temperature regenerative desiccant with improved stability | |
JP2006205122A (ja) | 除湿用成形体および除湿用複合成形体 | |
CN106984265B (zh) | 一种改性沸石及基于其的复合吸附剂及其用途 | |
CN110743507B (zh) | 一种海藻酸钠-硅胶复合干燥剂及其制备方法 | |
Zhao et al. | Preparation and characterization of composite adsorbent LiCl/zeolite 13X for adsorption system | |
CN115041134A (zh) | 一种具有锂吸附性能的炭化凝胶材料及其制备方法与应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |