CN108144071A - 原发性肝癌磁共振双靶点特异性分子探针及其制备方法 - Google Patents

原发性肝癌磁共振双靶点特异性分子探针及其制备方法 Download PDF

Info

Publication number
CN108144071A
CN108144071A CN201711328472.XA CN201711328472A CN108144071A CN 108144071 A CN108144071 A CN 108144071A CN 201711328472 A CN201711328472 A CN 201711328472A CN 108144071 A CN108144071 A CN 108144071A
Authority
CN
China
Prior art keywords
liver
target spot
carrier
molecular probes
afp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711328472.XA
Other languages
English (en)
Other versions
CN108144071B (zh
Inventor
马霄虹
赵心明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cancer Hospital and Institute of CAMS and PUMC
Original Assignee
Cancer Hospital and Institute of CAMS and PUMC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cancer Hospital and Institute of CAMS and PUMC filed Critical Cancer Hospital and Institute of CAMS and PUMC
Priority to CN201711328472.XA priority Critical patent/CN108144071B/zh
Publication of CN108144071A publication Critical patent/CN108144071A/zh
Application granted granted Critical
Publication of CN108144071B publication Critical patent/CN108144071B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/08Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by the carrier
    • A61K49/10Organic compounds
    • A61K49/14Peptides, e.g. proteins
    • A61K49/16Antibodies; Immunoglobulins; Fragments thereof

Landscapes

  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Peptides Or Proteins (AREA)

Abstract

本发明公开了一种原发性肝癌MR双靶点特异性分子探针及其制备方法,包括载体,所述载体末端分别连接有两种能够与原发肝癌细胞特异性结合抗体:Anti‑AFP和Anti‑GPC3。所述载体选自超顺磁性氧化铁(SPIO)或超小超顺磁性氧化铁(USPIO)。对所述载体末端修饰后增加羧基,通过所述羧基分别连接Anti‑AFP和Anti‑GPC3。本发明有益效果:在一个分子探针上连接连个双靶点特异性抗体,可以显著提高对肝癌病灶,以及肝癌末血管侵犯病灶(MVI)检出率。同时也便于对原发性肝癌体外和活体分子成像研究。

Description

原发性肝癌磁共振双靶点特异性分子探针及其制备方法
技术领域
本发明属于医疗及分子影像学技术领域,具体地说,本发明涉及一种原发性肝癌磁共振(MR)双靶点特异性分子探针及其制备方法。
背景技术
磁共振检查具有软组织分辨率高、无电离辐射,能够提供多参数、多对比度图像等特点,已经成为肝脏占位病变临床影像学检查最重要的检查方法。但是,目前使用的或用于临床前期研究原发肝癌MR特异性分子探针均为甲胎蛋白(Alpha-fetoprotein,AFP)或磷脂酰肌醇蛋白聚糖3(Glypican-3,GPC3)单分子靶点的分子探针,这些单靶点特异性分子探针存在检测灵敏度低,对于AFP或 GPC3低表达得原发性肝癌就无法检测到,更是无法检测到小的肝癌病灶。
原发性肝癌(Hepatocellular carcinoma,HCC)是多种因素造成的多基因累积、多步骤和多阶段的过程,属于一种多基因复杂性状疾病。在其发生和发展过程涉及到不同的基因和不同表达形式。所以,单靶点的分子探针无法提高探测的灵敏度,致使无法检测到小的病灶,特别是肝癌微血管侵犯(microvascular invasion,MVI)病灶。肝细胞肝癌小病灶和MVI检出对于肝细胞肝癌治疗效果至关重要。
AFP和GPC3在原发性肝癌肝细胞呈现出高表达,但是有些肝癌细胞AFP 表达并不高,有文献报道在AFP低表达的肝癌细胞GPC3呈现高的表达。AFP 和GPC3在原发性肝癌检出中具有很好的互补性,原发性肝癌诊疗规范(2017 年版)也将这两个生物标志物纳入诊疗规范中。
为了解决检测小的肝癌病灶和提高对MVI检出率。我们先前工作的基础上,制备出原发性肝癌MR双靶点(AFP和GPC3)特异性分子探针。
发明内容
针对相关技术中的上述技术问题,本发明提出一种对原发性肝癌MR双靶点特异性分子探针及其制备方法。
为实现上述技术目的,本发明的技术方案是这样实现的:
一种原发性肝癌MR双靶点特异性分子探针,包括载体,所述载体末端分别连接有两种能够与原发肝癌细胞特异性结合抗体:Anti-AFP和Anti-GPC3。
其中,所述载体为MR非特异性对比剂,所述载体选自超顺磁性氧化铁 (SPIO)或超小超顺磁性氧化铁(USPIO)。对所述载体末端修饰后增加羧基,通过所述羧基分别连接Anti-AFP和Anti-GPC3。
进一步的,Anti-AFP与所述载体连接的分子数量多于Anti-GPC3与所述载体连接的分子数量,Anti-AFP与Anti-GPC3优选比例为3:2或3:1。
本发明提供一种原发性肝癌MR双靶点特异性分子探针,其分子结构如下所示:
本发明还提供一种原发性肝癌MR双靶点特异性分子探针的制备方法,采用一锅法制备,具体包括以下步骤:
S1选择载体,所述载体为超顺磁性氧化铁SPIO或超小超顺磁性氧化铁 USPIO,对其末端修饰后增加羧基;
S2利用羧基连接两个能够与原发肝癌细胞特异性结合抗体:Anti-AFP和 Anti-GPC3;
S3采用离心机离心方法或磁性分离方法分离最后产物。
进一步的,Anti-AFP与所述载体结合分子数量多于Anti-GPC3与所述载体结合分子数量。
优选的,Anti-AFP与所述载体结合分子数量和Anti-GPC3与所述载体结合分子数量的比例为3:2或3:1。
本发明的有益效果:在一个分子探针上连接连个双靶点特异性抗体,可以显著提高对肝癌病灶,以及MVI检出率。同时也便于对原发性肝癌体外和活体分子成像研究。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1和图2是根据本发明实施例的一种原发肝癌双靶点USPIO纳米载体双靶点特异性分子探针分子结构;
图3和图4是两种羧基末端修饰的载体与Anti-AFP-NH2/Anti-GPC3-NH2的酰胺反应式;
图5是三种特异性肝癌MR分子探针与人肝癌细胞BEL-7402结合图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
基于纳米USPIO或SPIO为载体,对其末端修饰后增加羧基。
采用一锅法,将N-乙基-N'-(3-二甲胺基丙基)碳二亚胺盐酸盐(N-ethyl-N’- (3-dimethylaminopropyl)carbodiimide hydrochloride,EDC)1mg和N-羟基硫代琥珀酰亚胺(sulfo-NHS)2mg溶解到0.5mL磷酸盐缓冲液(phosphate-buffered saline,PBS)中,PH=7.4。将缓冲液PH调至5.0。加入末端修饰后带有羧基USPIO 或SPIO 1ml或5mg后反应3小时;然后,加入磷脂酰肌醇蛋白聚糖3(Glypican 3,GPC3)抗体(anti-GPC3)反应1小时后,加入甲胎蛋白(Alpha-Fetoprotein,AFP) 抗体(anti-AFP)再继续反应3小时。将反应液中的PH值调至7.0。然后再反应30分钟。反应过程进行缓慢搅拌。将反应液离心(5000rpm/min,5min)分离探针。或采用磁性分离技术分离探针。
本发明实施例所有试剂均从Sigma-Aldrich公司购得,SPIO或USPIO的比重均为2.6g/cm3,SPIO的颗粒大小大于50nm,USPIO的颗粒大小小于50nm。质量控制:直接用电镜检测,流式细胞鉴定或荧光显微镜。
在EDC/NHS的活化作用下,Anti-AFP/Anti-GPC3与纳米分子或MR对比剂连接化学反应式如下式1和式2,其中,式1中,Anti-AFP与所述载体结合分子数量与Anti-GPC3与所述载体结合分子数量比例为3:2(图1);式2中,Anti-AFP 与所述载体结合分子数量与Anti-GPC3与所述载体结合分子数量比例为3:1(图 2)。
测量T1/T2(USPIO 0.125mg)
图5所示,是三种特异性肝癌MR分子探针(USPIO-antiAFP, USPIO-antiGPC3及antiAFP-USPIO-antiGPC3与人肝癌细胞BEL-7402结合图,表明双靶点分子探针(antiAFP-USPIO-antiGPC3)明显提高细胞摄取率,半定量计算累积光密度值提高25%以上。

Claims (10)

1.一种原发性肝癌MR双靶点特异性分子探针,包括载体,其特征在于,所述载体末端分别连接有两种能够与原发肝癌细胞特异性结合抗体:Anti-AFP和Anti-GPC3。
2.根据权利要求1所述原发性肝癌MR双靶点特异性分子探针,其特征在于,所述载体为MR非特异性对比剂。
3.根据权利要求1所述原发性肝癌MR双靶点特异性分子探针,其特征在于,所述载体选自:超顺磁性氧化铁(SPIO)或超小超顺磁性氧化铁(USPIO)。
4.根据权利要求2或3所述原发性肝癌MR双靶点特异性分子探针,其特征在于,对所述载体末端修饰后增加羧基,通过所述羧基分别连接Anti-AFP和Anti-GPC3。
5.根据权利要求1所述原发性肝癌MR双靶点特异性分子探针,其特征在于,Anti-AFP与所述载体连接的分子数量多于Anti-GPC3与所述载体连接的分子数量,Anti-AFP与Anti-GPC3优选比例为3:2或3:1。
6.一种原发性肝癌MR双靶点特异性分子探针,其特征在于,其分子结构如下所示:
7.一种原发性肝癌MR双靶点特异性分子探针的制备方法,其特征在于,采用一锅法制备,具体包括以下步骤:
S1 选择载体,所述载体为超顺磁性氧化铁(SPIO)或超小超顺磁性氧化铁(USPIO),对其末端修饰后增加羧基;
S2 利用羧基连接两个能够与原发肝癌细胞特异性结合抗体:Anti-AFP和Anti-GPC3。
8.根据权利要求7所述的一种原发性肝癌MR双靶点特异性分子探针的制备方法,其特征在于,进一步包括以下步骤:
S3 采用离心机离心方法或磁性分离方法分离最后产物。
9.根据权利要求8所述的一种原发性肝癌MR双靶点特异性分子探针的制备方法,其特征在于,Anti-AFP与所述载体结合分子数量多于Anti-GPC3与所述载体结合分子数量,两种抗体优选比例为3:2或3:1。
10.根据权利要求9所述的一种原发性肝癌MR双靶点特异性分子探针的制备方法,其特征在于,Anti-AFP与所述载体结合分子数量和Anti-GPC3与所述载体结合分子数量的比例为3:2或3:1。
CN201711328472.XA 2017-12-13 2017-12-13 原发性肝癌磁共振双靶点特异性分子探针及其制备方法 Active CN108144071B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711328472.XA CN108144071B (zh) 2017-12-13 2017-12-13 原发性肝癌磁共振双靶点特异性分子探针及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711328472.XA CN108144071B (zh) 2017-12-13 2017-12-13 原发性肝癌磁共振双靶点特异性分子探针及其制备方法

Publications (2)

Publication Number Publication Date
CN108144071A true CN108144071A (zh) 2018-06-12
CN108144071B CN108144071B (zh) 2021-05-18

Family

ID=62467138

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711328472.XA Active CN108144071B (zh) 2017-12-13 2017-12-13 原发性肝癌磁共振双靶点特异性分子探针及其制备方法

Country Status (1)

Country Link
CN (1) CN108144071B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101526523A (zh) * 2009-03-27 2009-09-09 东南大学 锑化镉量子点免疫标记物的制备及电化学夹心免疫检测方法
US20090239806A1 (en) * 2005-08-09 2009-09-24 Kumamoto University Glypican-3 (gpc3)-derived tumor rejection antigenic peptides useful for hla-a2-positive patients and pharmaceutical comprising the same
CN103784979A (zh) * 2014-01-17 2014-05-14 福州市传染病医院 用于肝癌光热治疗和核磁影像的antiGPC3-PB NPs及其制备和应用
CN104258425A (zh) * 2014-09-17 2015-01-07 东南大学 一种rgd修饰的超小磁性氧化铁纳米颗粒的制备方法及其应用
CN104840947A (zh) * 2015-05-27 2015-08-19 山西医科大学 Afp抗体修饰plga荷载dcn的纳米粒靶向抗肿瘤药物
CN105963719A (zh) * 2016-04-27 2016-09-28 华中科技大学同济医学院附属协和医院 一种靶向多肽纳米探针及其制备方法和应用
CN106075440A (zh) * 2015-07-01 2016-11-09 哈尔滨医科大学 一种肝癌靶向光热治疗剂及其制备方法与应用
CN107121464A (zh) * 2017-05-03 2017-09-01 湖北大学 一种磁性双功能纳米探针及其制备方法和应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090239806A1 (en) * 2005-08-09 2009-09-24 Kumamoto University Glypican-3 (gpc3)-derived tumor rejection antigenic peptides useful for hla-a2-positive patients and pharmaceutical comprising the same
CN101526523A (zh) * 2009-03-27 2009-09-09 东南大学 锑化镉量子点免疫标记物的制备及电化学夹心免疫检测方法
CN103784979A (zh) * 2014-01-17 2014-05-14 福州市传染病医院 用于肝癌光热治疗和核磁影像的antiGPC3-PB NPs及其制备和应用
CN104258425A (zh) * 2014-09-17 2015-01-07 东南大学 一种rgd修饰的超小磁性氧化铁纳米颗粒的制备方法及其应用
CN104840947A (zh) * 2015-05-27 2015-08-19 山西医科大学 Afp抗体修饰plga荷载dcn的纳米粒靶向抗肿瘤药物
CN106075440A (zh) * 2015-07-01 2016-11-09 哈尔滨医科大学 一种肝癌靶向光热治疗剂及其制备方法与应用
CN105963719A (zh) * 2016-04-27 2016-09-28 华中科技大学同济医学院附属协和医院 一种靶向多肽纳米探针及其制备方法和应用
CN107121464A (zh) * 2017-05-03 2017-09-01 湖北大学 一种磁性双功能纳米探针及其制备方法和应用

Also Published As

Publication number Publication date
CN108144071B (zh) 2021-05-18

Similar Documents

Publication Publication Date Title
Hu et al. Dysprosium-modified tobacco mosaic virus nanoparticles for ultra-high-field magnetic resonance and near-infrared fluorescence imaging of prostate cancer
Huang et al. Magnetic nanomaterials for magnetic bioanalysis
Oostendorp et al. Quantitative molecular magnetic resonance imaging of tumor angiogenesis using cNGR-labeled paramagnetic quantum dots
Högemann et al. High throughput magnetic resonance imaging for evaluating targeted nanoparticle probes
Lee et al. Rapid detection and profiling of cancer cells in fine-needle aspirates
Ko et al. A multimodal nanoparticle-based cancer imaging probe simultaneously targeting nucleolin, integrin αvβ3 and tenascin-C proteins
Wunderbaldinger et al. Tat peptide directs enhanced clearance and hepatic permeability of magnetic nanoparticles
Haun et al. Magnetic nanoparticle biosensors
Han et al. Targeted contrast agent specific to an oncoprotein in tumor microenvironment with the potential for detection and risk stratification of prostate cancer with MRI
Burtea et al. In vitro biomedical applications of functionalized iron oxide nanoparticles, including those not related to magnetic properties
Zhao et al. A GPC3-specific aptamer-mediated magnetic resonance probe for hepatocellular carcinoma
Crich et al. In vitro and in vivo magnetic resonance detection of tumor cells by targeting glutamine transporters with Gd-based probes
Ayat et al. Optimization of ZD2 peptide targeted Gd (HP-DO3A) for detection and risk-stratification of prostate cancer with MRI
Mishra et al. A new class of Gd-based DO3A-ethylamine-derived targeted contrast agents for MR and optical imaging
Oghabian et al. Potential use of nanoparticle based contrast agents in MRI: a molecular imaging perspective
Chen et al. Dynamic contrast-enhanced folate-receptor-targeted MR imaging using a Gd-loaded PEG-dendrimer–folate conjugate in a mouse xenograft tumor model
Wang et al. A novel plectin/integrin-targeted bispecific molecular probe for magnetic resonance/near-infrared imaging of pancreatic cancer
Shahbazi-Gahrouei et al. Functionalized magnetic nanoparticles for the detection and quantitative analysis of cell surface antigen
Cho et al. Sensitive angiogenesis imaging of orthotopic bladder tumors in mice using a selective magnetic resonance imaging contrast agent containing VEGF121/rGel
Li et al. Preparation and in vitro studies of MRI-specific superparamagnetic iron oxide antiGPC3 probe for hepatocellular carcinoma
Geng et al. Supramolecular design based activatable magnetic resonance imaging
Oghabian et al. Detectability of Her2 positive tumors using monoclonal antibody conjugated iron oxide nanoparticles in MRI
Koyama et al. Evaluation of selective tumor detection by clinical magnetic resonance imaging using antibody-conjugated superparamagnetic iron oxide
Cao et al. The interplay of T1-and T2-relaxation on T1-weighted MRI of hMSCs induced by Gd-DOTA-peptides
US10156567B2 (en) In-vitro magnetic resonance detection of a target substance without separating bound magnetic nanoparticles from unbound magnetic nanoparticles

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant